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Abstract11

Let R be an unital prime ring with characteristic not 2 and containing12

a nontrivial idempotent P and φ be an additive map on R satisfying13

φ([[A,B], C]) = [[φ(A), B], C] = [[A, φ(B)], C],14

for any A,B,C ∈ R whenever AB = 0. In this paper, we study the structure15

of map φ and prove that φ on R is proper, i.e., has the form φ(A) = λA +16

h(A), where λ ∈ Z(R) and h is an additive map into its center vanishing17

at second commutators [[A,B], C] with AB = 0. Applying these results, we18

characterize generalized Lie triple derivations on R. The obtained results19

can be used for some classical operator prime algebras such as standard20

operator algebras and factor von Neumann algebras, which generalize some21

known results.22

Keywords: Lie triple centralizer, generalized Lie triple drivation, prime23

ring.24

2020 Mathematics Subject Classification: 16W25, 16W10, 47B47.25

1. Introduction26

AssumeR be an associative ring. Recall that an additive map δ : R → R is called27

a derivation if d(ab) = d(a)b + ad(b) for all a, b ∈ R. Suppose [a, b] = ab − ba28

denote the Lie product and admit a ◦ b = ab + ba denote the Jordan product29

of elements a, b ∈ R. An additive map δ on R to R is called a Lie derivation30

if it is a derivation for the Lie product, i.e., δ([a, b]) = [δ(a), b] + [a, δ(b)] for all31
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a, b ∈ R. Similarly, an additive map δ on R to itself is called a Jordan derivation32

if it satisfies δ(a ◦ b) = δ(a) ◦ b+ a ◦ δ(b) for all a, b ∈ R. An additive map ∆ on33

R is said to be a generalized Lie derivation associated with the Lie derivation δ34

if35

∆([a, b]) = [∆(a), b] + [a, δ(b)], (a, b ∈ R).36

A Lie triple derivation is an additive map δ : R → R, which satisfies37

δ([[a, b], c]) = [[δ(a), b], c] + [[a, δ(b)], c] + [[a, b], δ(c)], (a, b, c ∈ R).38

An additive map ∆ : R → R is said to be a generalized Lie triple derivation39

associated with the Lie triple derivation δ if40

∆([[a, b], c]) = [[∆(a), b], c] + [[a,∆(b)], c] + [[a, b], δ(c)], (a, b, c ∈ R).41

Every derivation is a Lie derivation and a Jordan derivation. Also, every Lie42

derivation is a generalized Lie derivation. Obviously, Lie derivations are Lie triple43

derivations. The known equation [[a, b], c] = a◦(b◦c)−b◦(a◦c) for all a, b, c ∈ R44

it concludes that every Jordan derivation is also a Lie triple derivation. Lie triple45

derivations are generalized Lie triple derivations. However, the converse is not46

true in general. Therefore, the investigation of the structure of the generalized Lie47

triple derivations leads to the simultaneous characterization of both important48

classes of Jordan, Lie, and Lie triple derivations. These mappings are among the49

important cases in studying the structure of Lie algebras. Extensive studies have50

been performed to characterize these maps on different algebras, and here, for51

instance, we refer to [2, 5, 6, 30, 29] and the references therein.52

An additive map φ : R → R is said to be a Lie centralizer if53

φ([a, b]) = [φ(a), b] = [a, φ(b)], (a, b ∈ R).54

Also, An additive map φ on R into R is a Lie triple centralizer if55

φ([[a, b], c]) = [[φ(a), b], c] = [[a, φ(b)], c], (a, b ∈ R).56

Clearly, each Lie centralizer is a Lie triple centralizer, but the converse is not57

true in general. Therefore, the concept of Lie triple centralizer generalizes the58

concept of Lie centralizer. Additive map φ on R is called a Jordan centralizer59

if φ(a ◦ b) = φ(a) ◦ b for all a, b ∈ R and every Jordan centralizer is also a Lie60

triple centralizer. By straightforward calculations, it can be checked that ∆ is a61

generalized Lie (triple) derivation associated with the Lie derivation δ if and only62

if φ = ∆ − δ is a Lie (triple) centralizer. Hence on a ring, if we determine the63

structure of the Lie (triple) centralizers and Lie (triple) derivations, then we can64

also characterize the structure of the generalized Lie (triple) derivations.65



The structure of Lie triple centralizers on prime rings and ... 3

In the [19, 28], we see that the concept of Lie centralizer is a classical concept66

in other nonassociative algebras and the theory of Lie algebras. Determining the67

structure of Lie (triple) centralizers in the form of centralizers can be of great68

interest. In recent years, maps of Non-linear Lie centralizers on generalized matrix69

algebras to itself and Non-additive Lie centralizers on triangular rings, have been70

studied and investigated by many researchers, and the structure of these maps71

has been characterized into standard forms [12, 13, 16, 18, 22, 25].72

In recent years, certain mappings that act as derivatives in local products73

have been investigated. One of the research paths in this field is the study74

of conditions in which the structure of derivatives on rings (algebras) can be75

determined by mappings that act on local products. Let R be a ring, in this76

case, an additive (a linear) map δ : R → R is called derivable at a given point G77

in R if we have δ(ab) = δ(a)b + aδ(b) for all a, b ∈ R with ab = G. These types78

of maps have been discussed by several researchers (see that [1, 3, 10, 11, 21, 32]79

and references therein). So far, few papers have worked on Lie triple derivations80

mappings that act on local products, and the authors have obtained results on81

operator algebras [23, 24]. An additive (a linear) map δ : R → R is called Lie82

triple derivable at a given point G ∈ R, if δ([[a, b], c]) = [[δ(a), b], c]+[[a, δ(b)], c]+83

[[a, b], δ(c)] for all a, b, c ∈ R with ab = G. In [30] the authors described the84

additive map δ : R → R, where R is a prime ring containing a non-trivial85

idempotent P satisfying86

a, b ∈ R, ab = 0 =⇒ δ([a, b]) = [δ(a), b] + [a, δ(b)],87

Hereon, we say δ is a Lie derivation at zero products. Also, in order to characterize88

various mappings with these local features on different algebras, related works89

have been done in this field, we can see [20, 27, 30]. Recently authors have studied90

the characterization of Lie centralizers and generalized Lie derivations on non-91

unital triangular algebras through zero products [2]. Following their research, the92

authors working in this area have also obtained results, e.g. [8, 12, 15, 17, 26].93

Now, considering the results obtained regarding derivations type maps in94

special products, it seems natural to address the problem of characterizing maps95

that are such as Lie triple centralizers or generalized Lie triple derivations at local96

acting. An additive (a linear) map φ : R → R is called Lie n-centralizer at a97

given point G ∈ R, if98

φ[[a, b], c] = [[φ(a), b], c] = [[a, φ(b)], c]99

for all a, b, c ∈ R with ab = G. It is clear that each Lie triple centralizer satisfies100

Lie triple centralizer at zero product and the converse is, in general, not true101

(see Example 2.4 of [15]). Recently authors have studied the characterization of102

Lie centralizers and generalized Lie derivations on non-unital triangular algebras103

through zero products [2]. Following their research, the authors working in this104
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area have also obtained results, e.g. [8, 15]. Also, the authors in [7, 9] characterize105

Lie triple mappings at zero product as well as at idempotent product on arbitrary106

von Neumann algebras. Suppose that exist λ ∈ Z(R) and an additive map107

h : R → Z(R) vanishing at every second commutator [[A,B], C] when AB = 0108

such that φ(A) = λA+ h(A) for any A ∈ R. In this case, the additive mapping109

φ : R → R defined by φ(A) = λA + h(A) is a Lie triple centralizer, which is110

called the Lie triple centralizer with standard form (proper Lie triple centralizer).111

Note that, in general, every Lie triple centralizer is not necessarily a proper Lie112

triple centralizer (see Example 1.2 in [12]). In [12], Also Fadaee, Gharamani,113

and jing studied Lie triple centralizer φ : U → U under some conditions on an114

unital generalized, and they showed that φ(A) = λA+ ψ(A), where ψ is a linear115

map from U into the center of U which annihilates all second commutators in116

commutators and λ is in the center of U .117

Now, with the idea from the studies mentioned above and as a continuation118

of the above works in this research, we determine the structure of additive maps119

on the unital prime rings that local act like Lie triple centralizers or generalized120

Lie triple derivations at zero products. Specifically, we consider the following121

conditions in additive maps φ and ∆ on a unital prime ring R122

a, b, c ∈ R, ab = 0 =⇒ φ([[a, b], c] = [[φ(a), b], c];123

124

a, b, c ∈ R, ab = 0 =⇒

{

∆([[a, b], c]) = [[∆(a), b], c] + [[a,∆(b)], c] + [[a, b], δ(c)]

δ([[a, b], c]) = [[δ(a), b], c] + [[a, δ(b)], c] + [[a, b], δ(c)].
125

Firstly, in Section 2 we characterize the structure of the additive Lie triple126

centralizers at zero products (Theorem 2.1) and Lie triple centralizers (Theorem127

2.2) on unital prime rings included a non-trivial idempotent and the above results128

are applied to some classical operator prime algebras such as standard operator129

algebras and factor von Neumann algebras (Corollaries 2.3–2.6). Also, in section130

2 we characterize the structure of the additive Lie centralizers (Corollary 2.7)131

and Jordan centralizers (Corollary 2.8) on unital prime rings including a non-132

trivial idempotent and using these results we apply several classical examples of133

unital prime rings with nontrivial idempotents. In Section 3, we proved the main134

results. Finally, in Section 4 using the results above, we determine generalized135

Lie triple derivations at zero products and generalized Lie triple derivations on136

unital prime rings containing a non-trivial idempotent and also on factor von137

Neumann algebras and standard operator algebras (Theorem 4.2 and Corollaries138

4.3–4.5).139

Suppose that R is a prime ring, that is, for any A,B ∈ R, quotation140

ARB = {0} implies A = 0 or B = 0. In this case, we denote the maximal141

right ring of quotients and the two-sided right ring of quotients of R by Qmr(R)142

and Qr(R), respectively. Note that R ⊆ Qr(R) ⊆ Qmr(R). We say that he143
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centre C = Z(Qr(R)) of Qr(R) is the extended centroid of R. We also know that144

the extended centroid of any prime ring is a field(To see more details, you can145

see [4]). On the other, we have Z(R) ⊆ C.146

2. Main results and corollaries on some classical examples of147

prime rings148

In this section, we present the main results of this paper. Throughout this sec-149

tion, it is assumed that R is an unital prime ring with characteristic not 2 and150

containing a nontrivial idempotent P . In the following theorem, we give the151

structure of Lie triple centralizers on prime rings by acting on zero products.152

Theorem 2.1. Suppose R be an unital prime ring with characteristic not 2 and153

containing a nontrivial idempotent P and let φ on R is an additive map. Then,154

the following statements are equivalent.155

(i) A,B,C ∈ R, with AB = 0 =⇒ φ([[A,B], C]) = [[φ(A), B], C]= [[A,φ(B)], C].156

(ii) φ on R is proper Lie triple centralizer (i.e., for A ∈ R, φ has form φ(A) =157

λA + h(A), where λ in center R and h : R → Z(R) is an additive map158

vanishing at every second commutator [[A,B], C] when AB = 0.159

According to Theorem 2.1, we characterize the structure of Lie triple cen-160

tralizers on prime rings in the form of the following theorem.161

Theorem 2.2. Suppose R be an unital prime ring with characteristic not 2 and162

containing a nontrivial idempotent P and let φ on R is an additive map. Then163

map φ is a Lie triple centralizer if and only if φ is a proper Lie triple centralizer.164

Now, we apply the 2.1 theorem to some classical examples of prime rings,165

such as the standard operator algebra and the von Neumann factor algebra,166

to determine the structure of Lie triple centralizer mappings, and we get some167

interesting results. For this, we will first have a review of these operator algebras.168

Standard operator algebras169

Suppose X be a Banach space over the real or complex field F with dimX ≥ 2.170

In this case, we denote the algebra of all bounded operators and the ideal of171

all finite rank operators as B(X ) and F(X ), respectively. We remark that a172

standard operator algebra A is any subalgebra of B(X ) which F(X ) ⊆ A and173

contain the identity operator I. It is clear B(X ) is a unital standard operator174

algebra. We note that the extended centroid of the standard operator algebra A175

is equal to Z(A) = FI. Also, every standard operator algebra is a prime algebra176

and contains nontrivial idempotents.177
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Corollary 2.3. Let X be a Banach space over the real or complex field F with178

dimension greater than 2 and A subalgebra of B(X ) be a standard operator algebra.179

Suppose that φ on A is an additive map. Then, the following statements are180

equivalent.181

(i) A,B,C ∈A, with AB = 0 =⇒ φ([[A,B], C]) = [[φ(A), B], C] = [[A,φ(B)], C].182

(ii) There exist λ ∈ F and a map h such that φ(A) = λA + h(A)I, where h :183

A → FI is an additive map vanishing on each second commutator [[A,B], C]184

whenever AB = 0.185

Proof. The standard operator algebra A is an unital prime algebra that satisfies186

all the conditions of Theorem 2.1.187

According to the explanations in this section and Corollary 2.3, we have the188

following result.189

Corollary 2.4. Let X be a Banach space over the real or complex field F with190

dimension greater than 2 and A subalgebra of B(X ) be a standard operator algebra.191

Then an additive map φ on A is a Lie triple centralizer if and only if φ is a proper192

Lie triple centralizer.193

Factor von Neumann algebras194

A von Neumann algebraM is a weakly closed, self-adjoint algebra of operators on195

a Hilbert space H containing the identity I. A von Neumann algebra is a factor if196

its center is trivial. It is well known that every factor von Neumann algebras are197

unital prime algebras with nontrivial idempotents. It follows from these notes198

that each factor von Neumann algebra satisfies all conditions of Theorem 2.1.199

Corollary 2.5. Let M be a factor von Neumann algebra with degM > 1 and200

let φ on M is an additive map. Then, the following statements are equivalent.201

(i) A,B,C ∈M, with AB = 0 =⇒ φ([[A,B], C])= [[φ(A), B], C]= [[A,φ(B)], C].202

(ii) There exist λ ∈ C and a map h such that φ(A) = λA + h(A)I, where h :203

M → CI is an additive map vanishing on each second commutator [A,B]204

whenever AB = 0.205

According to the explanations in this section and Corollary 2.3, we have the206

following results.207

Corollary 2.6. Let M be a factor von Neumann algebra with deg M > 1. Then208

an additive map φ : M → M is a Lie triple centralizer if and only if φ is a proper209

Lie triple centralizer.210

Note that a Lie centralizer and Jordan centralizer must be a Lie triple cen-211

tralizer. So the following corollary is immediate.212
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Corollary 2.7. Suppose that φ : U → U be an additive map. Let U be any of the213

following algebras.214

(a) Unital prime ring with characteristic not 2 and containing a nontrivial idem-215

potent P .216

(b) Standard operator algebra on a complex Banach space X.217

(c) Factor von Neumann algebra.218

Then an additive map φ on U into itself is a Lie centralizer if and only if φ219

is a proper Lie centralizer.220

Corollary 2.8. Suppose that φ : U → U be additive map. Let U be any of the221

following algebras.222

(a) Unital prime ring with characteristic not 2 and containing a nontrivial idem-223

potent P .224

(b) Standard operator algebra on a complex Banach space X.225

(c) Factor von Neumann algebra.226

Then an additive map φ on U to U is a Jordan centralizer if and only if φ is227

a proper Jordan centralizer.228

3. The proof of main results229

In this section, we will present the proof of the main result, Theorems 2.1 of this230

paper. First, we give the following lemma which is needed to prove the main231

result.232

Lemma 3.1 [4, Theorem 1]. Suppose that R be a prime ring, and let AXB =233

BXA for any A,B ∈ Qmr(R) and any X ∈ R. Then A and B are C-dependent.234

Proof of Theorem 2.1. Let P1 = P be a nontrivial idempotent in R, and235

P2 = I − P1. Set Rij = PiRPj , i, j = 1, 2, then R = R11 +R12 +R21 +R22.236

The ”if” part is obvious, we only check the “only if” part. We will organize237

the proof into a series of Claims.238

Claim 1. φ(Rij) ⊆ Rij , 1 ≤ i 6= j ≤ 2.239

For any A12 ∈ R12, since P2(A12) = 0, by the assumption we have240

φ(A12) = φ([[P2, A12], P1])241

= [[φ(P2), A12], P1]242

= [φ(P2)A12 −A12φ(P2), P1]243

= −A12φ(P2)P1 − P1φ(P2)A12 +A12φ(P2).244
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Multiplying above equation once from left and right to P1, once from left and245

right to P2, and once from left to P2 and from right to P2, we conclude that246

P1φ(A12)P1 = P2φ(A12)P2 = P2φ(A12)P1 = 0.247

Now it is deduced from the previous equations φ(A12) = P1φ(A12)P2. Conse-248

quently, φ(R12) ⊆ R12.249

For any A21 ∈ R21, since P1(A21) = 0, we have250

φ(A12) = φ([[P1, A21], P2])251

= [[φ(P1), A21], P2]252

= [φ(P1)A21 −A21φ(P1), P2]253

= −A21φ(P1)P2 − P2φ(P1)A21 +A21φ(P1).254

Similar to the previous case can be seen φ(A21) ∈ R21.255

256

Claim 2. φ(Rii) ⊆ R11 +R22, for i ∈ {1, 2}.257

For any A11 ∈ R11 and B22 ∈ R22, since A11P2 = P1B22 = 0, we have258

0 = φ([[A11, P2], P1]) = [[φ(A11), P2], P1]259

and260

0 = φ([[B22, P1], P2]) = [[φ(B22), P1], P2]261

which implies that262

(1) P2φ(A11)P1 + P1φ(A11)P2 = 0263

and264

(2) P1φ(B22)P2 + P2φ(B22)P1 = 0.265

Multiplying (1) once from left to P1 and once from left to P2, we get P1φ(A11)266

P2 = 0 and P2φ(A11)P1 = 0. Therefore,267

φ(A11) = P1φ(A11)P1 + P2φ(A11)P2.268

It is obtained by(2) and using similar methods above269

φ(B22) = P1φ(B22)P1 + P2φ(B22)P2.270

Claim 3. For i ∈ {1, 2}, there exists a map hi : Rii → Z(R) such that271

Pjφ(Aii)Pj = hi(Aii)Pj (1 ≤ i 6= j ≤ 2), holds for any Aii ∈ Rii.272
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For any A11 ∈ R11, B22 ∈ R22, and Cij ∈ Rij (1 ≤ i 6= j ≤ 2), since273

A11B22 = B22A11 = 0, we see274

0 = φ([[A11, B22], P1]) = [[φ(A11), B22], C21]275

and276

0 = φ([[B22, A11], P2]) = [[φ(B22), A11], C12].277

Considering the above equations, and using Claim 2, we arrive at278

(P2φ(A11)P2B22 −B22P2φ(A11)P2)C21 = 0279

and280

(P1φ(B22)P1A11 −A11P1φ(B22)P1)C12 = 0.281

Since R is prime, we conclude that P2φ(A11)P2 ∈ Z(R22) and P1φ(B22)P1 ∈282

Z(R11). Thus P2φ(A11)P2AP2 = P2AP2φ(A11)P2 for any A ∈ R and P1φ(B22)283

P1BP1 = P1BP1φ(B22)P1 for any B ∈ R. Therefore Lemma 3.1, there exists284

unique elements λ1, λ2 ∈ C, such that P2φ(A11)P2 = λ1P2 and P1φ(B22)P1 =285

λ2P1. Moreover, since C is feild, it is clear that λ1, λ2 ∈ Z(R). We now define the286

maps h1 : R11 → Z(R) by h1(A11) = λ1 and h2 : R22 → Z(R) by h2(B22) = λ2.287

Given the uniqueness of λ1 and λ2, we know that the maps h1 and h2 are well-288

defined and additive. Also289

P2φ(A11)P2 = h1(A11)P2, and P1φ(B22)P1 = h2(B22)P1.290

Now, for any A = A11+A12+A21+A22 ∈ R, we define linear maps h : R →291

Z(R) and ψ : R → R by292

h(A) = h1(A11) + h2(A22), and ψ(A) = φ(A)− h(A).293

By Claims 1–3, it is clear that ψ(Rij) ⊆ Rij, ψ(Rii) ⊆ Rii and ψ(Rij) = φ(Rij),294

1 ≤ i 6= j ≤ 2.295

Claim 4. ψ is an additive centralizer.296

We divide the proof into the following four Steps.297

Step 1. ψ(AiiBij) = ψ(Aii)Bij = Aiiψ(Bij) for all Aii ∈ Rii and Bij ∈ Rij,298

1 ≤ i 6= j ≤ 2.299

In fact, for any Aii ∈ Rii and Bij ∈ Rij , since BijAii = 0, we have300

ψ(AiiBij) = φ(AiiBij)301

= φ([[Bij , Aii], Pi])302

= [[φ(B12), A11], Pi]303

= Aiiφ(Bij)304

= Aiiψ(Bij)305
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and306

ψ(AiiBij) = φ(AiiBij)307

= φ([[Bij , Aii], Pi])308

= [[Bij , φ(Aii)], Pi]309

= φ(Aii)Bij310

= ψ(Aii)Bij .311

Hence, we obtain312

(3) ψ(AiiBij) = Aiiψ(Bij) = ψ(Aii)Bij .313

Step 2. ψ(AijBjj) = ψ(Aij)Bjj = Aijψ(Bjj) for all Aij ∈ Rij and Bjj ∈ Rjj,314

1 ≤ i 6= j ≤ 2.315

For anyAij ∈ Rij and Bjj ∈ Rjj, since BjjAij = 0, and with the similar316

argument Step 1, one can easily check that Step 2 is hold.317

Step 3. ψ(AiiBii) = ψ(Aii)Bii = Aiiψ(Bii) for all Aii, Bii ∈ Rii, i = 1, 2.318

For any Aii, Bii ∈ Rii and any Sij ∈ Rij, by Step 1, we have319

ψ(AiiBiiSij) = ψ(AiiBii)Sij ,320

on other hands321

ψ(AiiBiiSij) = Aiiψ(BiiSij) = Aiiψ(Bii)Sij .322

It can be seen from the combination of the above two equations that ψ(AiiBii)Sij323

= Aiiψ(Bii)Sij holds for all Sij ∈ Rij. It follows that ψ(AiiBii) = Aiiψ(Bii) since324

R is prime. Also for any Aii, Bii ∈ Rii and any Sji ∈ Rji, by Step 2, we get325

ψ(SjiAiiBii) = Sjiψ(AiiBii),326

on other hands327

ψ(SjiAiiBii) = ψ(SjiAii)Bii = Sjiψ(Aii)Bii,328

Comparing the above two equations and sinceR is prime, we see that ψ(AiiBii) =329

ψ(Aii)Bii.330

Step 4. ψ(AijBji) = ψ(Aij)Bji = Aijψ(Bji) for all Aij ∈ Rij and Bji ∈ Rji,331

1 ≤ i 6= j ≤ 2.332

Let Aij ∈ Rij and Bji ∈ Rji, 1 ≤ i 6= j ≤ 2. It follows from Steps 1, 2 and,333

3 that334

ψ(AijBji) = ψ(PiAijBji) = ψ(Pi)AijBji = ψ(Aij)Bji,335
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and336

ψ(AijBji) = ψ(AijBjiPi) = AijBjiψ(Pi) = Aijψ(Bji).337

In Steps 1–4, it is easy to check that ψ is an additive centralizer. In other338

words, the claim of Claim 4 is obtained.339

Claim 5. h([[A,B], C]) = 0 for all A,B,C ∈ R with AB = 0.340

In fact, for any A,B,C ∈ R with AB = 0, we have341

h([[A,B], C]) = φ([[A,B], C]) − ψ([[A,B], C])342

= [[φ(A), B], C] − ψ([[A,B], C])343

= [[ψ(A) + h(A), B], C]− ψ([[A,B], C])344

= [[ψ(A), B], C] − ψ([[A,B], C])345

= 0.346

Claim 6. The theorem holds.347

Indeed, By Claims 1–6, φ(A) = ψ(A) + h(A) for any A ∈ R. Since ψ is a348

centralizer on R, for all A ∈ R we have349

ψ(A) = ψ(AI) = Aψ(I), ψ(A) = ψ(IA) = ψ(I)A.350

Hence, ψ(I) ∈ Z(R). Set λ = ψ(I). So λ in center R and ψ(A) = λA for351

any A ∈ R. Therefore,we show that φ(A) = λA + h(A) for any A ∈ R, where352

λ ∈ Z(R) and h vanishes at second commutators [[A,B], C] for all A,B,C ∈ R353

with AB = 0. Here the proof of one side of the theorem is complete.354

The converse proof is trivial.355

4. An applications: characterization of generalized Lie356

derivations on prim rings357

In this section, as an application of the 2.1 theorem, we determine the Lie triple358

derivations on prim rings by acting on zero products. To present the main result359

of this section, we need the following theorem, which was proved in [31].360

To the main result of this section, we need the following theorem, which is361

proved in [31].362

Theorem 4.1. Let R be an unital prime ring with characteristic not 2 and363

containing a nontrivial idempotent P and PRP , (1 − P )R(1 − P ) are noncom-364

mutative. Suppose δ on R be a map, then δ is a Lie triple derivation if only if365

there exists an additive derivation d : R → R and a map h : R → Z(R) satisfy-366

ing h([[A,B], C]) = 0 for all A,B,C ∈ R such that δ(A) = d(A) + h(A) for all367

A ∈ R.368
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The following theorem, which is a result of Theorem 2.2 and Theorem 4.1,369

actually generalizes Theorem 4.1.370

Theorem 4.2. Let R be an unital prime ring with characteristic not 2 and371

containing a nontrivial idempotent P and PRP , (1 − P )R(1 − P ) are noncom-372

mutative. Then the following statements are equivalent.373

(i) ∆ : R → R be a generalized Lie triple derivation associated with the Lie374

triple derivation δ : R → R.375

(ii) There exist derivation d : R → R, additive maps h, h1 : R → Z(R) and an376

element λ in center R such that377

∆(A) = d(A) + h(A) + λA, δ(A) = d(A) + h1(A), (A ∈ R)378

where h([[A,B], C]) = h1([[A,B], C]) = 0 for all A,B,C ∈ R.379

Proof. Since (ii)⇒(i) is clear, it suffices to prove (i)⇒(ii). Therefore, by Theorem380

4.1, there exist derivation d : R → R, additive maps h1 : R → Z(R) such that381

δ = d + h1 and h1([[A,B], C]) = 0 for all A,B,C ∈ R. By assumption, for the382

additive map φ = ∆− δ on R, we have383

φ([[A,B], C]) = [[φ(A), B], C] = [[A,φ(B)], C], (A,B,C ∈ R).384

Thus, by Theorem 2.2, there exist λ in center R and addtive map h2 on R such385

that φ = λI + h2 where h2(A) ∈ Z(R) for all A ∈ R and h2([[A,B], C]) = 0 for386

all A,B,C ∈ R. Suppose that h = h1 + h2. Thus, h : R → Z(R) is a addtive387

map that h([[A,B], C]) = 0 for all A,B,C ∈ R. Thus, we have388

∆(A) = δ(A) + φ(A) = d(A) + h1(A) + λA+ h2(A) = d(A) + h(A) + λA389

for all A ∈ R. This completes the proof.390

According to the explanations of the previous section and the above Theorem,391

we have the following results.392

Corollary 4.3. Suppose that ∆ : U → U and δ : U → U be additive maps. Let U393

be any of the following algebras.394

(a) Standard operator algebra on a complex Banach space X.395

(b) Factor von Neumann algebra.396

∆ is a generalized Lie triple derivation associated with the Lie triple derivation397

δ if and only if there exist the additive maps d : U → U , h, h1 : U → Z(U) and398

an element λ ∈ Z(U) such that399

∆(A) = d(A) + h(A) + λA, δ(A) = d(A) + h1(A), (A ∈ U)400

where d is a derivation and h([[A,B], C]) = h1([[A,B], C]) = 0 for all A,B,C401

∈ U .402
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To the next corollary, we need the following theorem, which is proved in [23].403

Theorem 4.4. Let M be a factor von Neumann algebra with dimension greater404

than 1 acting on a Hilbert space and a linear map δ : M → M satisfying405

δ([[A,B,C]) = [[δ(A), B], C] + [[A, δ(B)], C] = [[A,B],∆(C)],406

for all A,B,C ∈ M with AB = 0. Then there exist an operator M ∈ M and a407

linear map h : M → CI vanishing at every second commutator [[A,B], C] when408

AB = 0 such that409

δ(A) = AM −MA+ h(A),410

for any A ∈ M.411

The following results are a generalization of Theorem 4.4.412

Corollary 4.5. Let M be a factor von Neumann algebra with dimension greater413

than 1 acting on a Hilbert space. Suppose that ∆ : M → M and δ : M → M be414

additive maps. Then the following statements are equivalent.415

(i) ∆ and δ satisfy the following conditions.416

∆([[A,B], C]) = [[∆(A), B], C] + [[A, δ(B)], C] = [[A,B],∆(C)];417

418

δ([[A,B], C]) = [[δ(A), B], C] + [[A, δ(B)], C] = [[A,B],∆(C)];419

for all A,B,C ∈ M with AB = 0.420

(ii) There exist additive maps d : M → M, h, h1 : M → CI and are elements421

M,T ∈ CI such that422

∆(A) = AM − TA+ h(A), δ(A) = d(A) + h1(A), (A ∈ M)423

where d is a derivation and h([[A,B], C]) = h1([[A,B], C]) = 0 for all424

A,B,C ∈ M with AB = 0.425

Proof. Since (ii)⇒(i) is clear, it suffices to prove (i)⇒(ii). Therefore, by Theorem426

4.4, there exist an operator M ∈ M and a linear map h1 : M → CI such that427

δ(A) = AM−MA+h1(A), and h1(A) ∈ CI for all A ∈ R and h1([[A,B], C]) = 0428

for all A,B,C ∈ R with AB = 0. By assumption, for the additive map φ = ∆−δ429

on R, we have430

φ([[A,B], C]) = [[φ(A), B], C] = [[A,φ(B)], C], (A,B,C ∈ R).431

By Theorem 2.1, there exist R ∈ CI and addtive map h2 on R such that φ =432

λI+h2 where h2(A) ∈ CI for all A ∈ R and h2([[A,B], C]) = 0 for all A,B,C ∈ R433

with AB = 0. Suppose that h = h1 + h2. Thus, h : R → CI is a addtive map434

that h([[A,B], C]) = 0 for all A,B,C ∈ R. Set T =M +R. Thus, we have435

∆(A) = δ(A) + φ(A) = AM −MA+ h1(A) +RA+ h2(A) = AM − TA+ h(A)436

for all A ∈ R. This completes the proof.437
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