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Abstract

In this paper, a class of ordered semigroups, namely semi-pseudo sym-
metric ordered semigroups, which includes the classes of commutative or-
dered semigroups, duo ordered semigroups, normal ordered semigroups and
idempotent ordered semigroups is introduced. We obtain a characterization
for semi-pseudo symmetric ordered semigroups with identity in which proper
prime ideals are maximal and also characterize semi-pseudo symmetric or-
dered semigroups without identity in which proper prime ideals are maximal
and the set of all globally idempotent principal ideals forms a chain under
the set inclusion.

Keywords: ordered semigroup, semi-pseudo symmetric, duo, archimedean,
primary ideal, prime ideal, maximal ideal.
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1. INTRODUCTION AND PRELIMINARIES

Schwarz initiated the study of semigroups in which prime ideals are maximal in
[11] and some interesting results regarding the classical radical in the ring the-
oretic sense were obtained. In [10], Satyanarayana characterized commutative
semigroups in which prime ideals are maximal and idempotent forms a chain un-
der natural ordering. A class of semigroups, namely semi-pseudo symmetric semi-
groups, which includes the classes of one-sided duo semigroups, one-sided pseudo
commutative semigroups and band was introduced by Anjaneyulu. Moreover, in
[1] Anjaneyulu obtained a characterization for semi-pseudo symmetric semigroups
with identity in which proper prime ideals are maximal and also characterized
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2 P. SUMMAPRAB

semi-pseudo symmetric semigroups without identity in which proper prime ideals
are maximal and the family of globally idempotent principal ideals forms a chain
which are a generalization of the results in [10]. The findings presented in this
paper extend the results obtained in [1]. Let us recall some certain definitions and
results used throughout this paper. A semigroup (S5,-) together with a partial
order < that is compatible with the semigroup operation, meaning that, for any
x,y,z in S,

x <y implies zz < zy and zz < yz

is called a partially ordered semigroup (or simply an ordered semigroup)(see [6]).
Under the trivial relation, x < y if and only if z = y, it is observed that every
semigroup is an ordered semigroup. Let (S, -, <) be an ordered semigroup. For
two nonempty subsets A, B of S, we write AB for the set of all elements xy in
S where z € A and y € B, and write (A] for the set of all elements = in S such
that z < a for some a in A, i.e.,

(Al ={z €S|z <afor someac A}.

In particular, we write Az for A{z}, and xA for {z}A. It was shown in [5] that
the followings hold:

=
E
!
S
=
!

(A(B]] = (ABJ;

(A]B C (AB] and A(B] C (AB];

The concepts of left, right and two-sided ideals of an ordered semigroup can
be found in [6]. Let (S,-, <) be an ordered semigroup. A nonempty subset A of
S is called a left (resp., right) ideal of S if it satisfies the following conditions:

(i) SAC A (resp., AS C A);

(ii)) A = (A], that is, for any  in A and y in S, y < z implies y € A.

If A is both a left and a right ideal of S, then A is called a two-sided ideal, or
simply an ideal of S. It is known that the union or intersection of two ideals of
S is an ideal of S.

An element a of an ordered semigroup (S,-, <), the principal left (resp.,
right, two-sided) ideal generated by a is of the form L(a) = (a U Sa] (resp.,
R(a) = (aUaS], I(a) = (aU SaUaS U Sal)).

A nonempty subset B is called a bi-ideal of S if
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(i) BSB C B;
(ii) B = (B], that is, for any « in B and y in S, y < z implies y € B.

An element e of an ordered semigroup (.5, -, <) is called an identity element
of S if ex = x = ze for any x € S. The zero element of S, defined by Birkhoff, is
an element 0 of S such that 0 <z and Ox =0=2z20for all x € S.

Let (S, -, <) be an ordered semigroup. A left ideal A of S is said to be proper
if ACS. A proper right and two-sided ideals are defined similarly. S is said to
be left (resp., right) simple if S does not contain proper left (resp., right) ideals.
S is said to be simple if S does not contain proper ideals. S is said to be 0-simple
if 52 # {0} and {0} is the only proper ideal of S (see [3]). A proper ideal A of S
is said to be mazimal if for any ideal B of S such that A C B C S, then B = S.

Let (S,-, <) be an ordered semigroup. An ideal I of S is said to be prime if
for any ideals A, B of S, AB C I implies A C [ or B C I. An ideal I of S is said
to be completely prime if for any a,b € S, ab € I implies a € I or b € I. An ideal
I of S is said to be semiprime if for any ideal A of S, A?> C I implies A C I. An
ideal I of S is said to be completely semiprime if for any a € S, a® € I implies
a € I. An ideal A of an ordered semigroup (5, -, <), the intersection of all prime
ideals of S containing A, will be denoted by Q*(A) and we write

A={zeS|I(x)" C A for some positive integer n}.

It is observed that A C Q*(A). A subset A of an ordered semigroup (S, -, <), the
radical of A, will be denoted by v/A defined by

VA= {z €S |z"c A for some positive integer n} (see [2]).

Let (S, -, <) be an ordered semigroup. An ideal I of S is said to be left(right)
primary if

(i) If A, B are ideals of S such that AB C I and B € I(A € I) implies A C
Q*(I)(B <€ Q*(1)).
(ii) Q*(I) is a prime ideal (see [14]).

An ideal I of S satisfies condition (i) if and only if for every z,y € S such
that I(z)I(y) C I and y ¢ I(x ¢ I), then x € Q*(I)(y € Q*(1)).

An ideal I of S is said to be primary if it is both the left and right primary
ideal. An ideal I of S is said to be semi-primary if Q*(I) is a prime ideal. It
is clear that every left(right) primary ideal is a semi-primary ideal. An ordered
semigroup (S, -, <) is said to be (left, right, semi-) primary if every ideal of S is
(left, right, semi-) primary.

An element a of an ordered semigroup (.5, -, <) is called a semisimple element
in S if a € (SaSaS]. And S is said to be semisimple if every element of S is
semisimple (see [12]).
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4 P. SUMMAPRAB

An equivalence relation o on S is called congruence if (a,b) € o implies
(ac,bc) € o and (ca,cb) € o for every ¢ € S. A congruence o on S is called semi-
lattice congruence if (a%,a) € o and (ab,ba) € o for every a,b € S. A semilattice
congruence o on S is called complete if a < b implies (a,ab) € o. An ordered
semigroup S is called a semilattice of archimedean semigroups (resp., complete
semilattice of archimedean semigroups) if there exists a semilattice congruence
(resp., complete semilattice congruence) o on S such that the o-class (z), of S
containing x is a archimedean subsemigroup of S for every x € S.

A subsemigroup F' is called a filter of S if

(i) a,b€ S, ab € F implies a € F and b € F;
(i) f e € Fand bin S, a <, then b € F (see [7]).

For an element = of S, we denote by N(z) the filter of S generated by = and
N the equivalence relation on S defined by N := {(x,y) | N(z) = N(y)}. The
relation N is the least complete semilattice congruence on S.

An element a of an ordered semigroup (.5, -, <) is called an ordered idempotent
if @ < a®. We call an ordered semigroup S idempotent ordered semigroup if every
element of S is an ordered idempotent (see [9]). The set of all ordered idempotents
of an ordered semigroup S denoted by E(S5).

Let (S,-, <) be an ordered semigroup. A bi-ideal A of S is said to be B-pure
if AN (zS] = (zA] and AN (Sz] = (Az] for all x € S. An ordered semigroup S
is said to be B*-pure if every bi-ideal of S is B-pure (see [13]).

An ordered semigroup (S, -, <) is called archimedean if for any a,b in S there
exists a positive integer n such that a™ € (SbS] (see [12]). An ordered semigroup
S is said to be normal if (xS] = (Sz] for all x € S (see [13]). An ideal A of
an ordered semigroup S is called globally idempotent if A = (A?] (see [4]). An
ordered semigroup S is said to be weakly commutative if for any a,b € S, then
there exists positive integer n such that (ab)™ € (bSa| (see [7]).

An ordered semigroup (S, -, <) is said to be a left(right) duo if every left(right)
ideal of S is a two-sided ideal of S. An ordered semigroup S is said to be a duo
if it is both a left duo and a right duo.

Let (S,-,<g), (T,*,<r) be an ordered semigroups, f : S — T a mapping
from S into T. The mapping f is called isotone if x,y € S, * <g y implies
f(z) <7 f(y) and reverse isotone if z,y € S, f(x) <r f(y) implies z <g y.
The mapping f is called a homomorphism if it is isotone and satisfies f(xy) =
f(z) % f(y) for all z,y € S. The mapping f is called a isomorphism if it is
reverse isotone onto homomorphism. The ordered semigroups S and T are called
isomorphic, in symbols S = T if there exists an isomorphism between them.

An ordered semigroup V' is called an ideal extension(or just an extension)
of an ordered semigroup S by an ordered semigroup @, if @) has a zero 0, SN
(Q\ {0}) =0, and there exists an ideal K of V such that K =2 S and V/K = Q
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ORDERED SEMIGROUPS IN WHICH PRIME IDEALS ARE MAXIMAL 5)

(see [8]).

Let (S, -, <) be an ordered semigroup and K an ideal of S. S/K is called the
Rees quotient ordered semigroup of S, where 0 is an arbitrary element of K. It is
observed that K N[(S/K)\{0}] =0, K 2 K and S/K = S/K under the identity
mapping and so S is an ideal extension of K by S/K.

2.  MAIN RESULTS

First, we have the following definition.

Definition. Let (S, -, <) be an ordered semigroup. An ideal A of S is said to be
semi-pseudo symmetric if for any z € S and for any positive integer n, z" € A
implies I(x)™ C A. An ordered semigroup S is said to be semi-pseudo symmetric
if every ideal of S is a semi-pseudo symmetric ideal.

It is easy to see the following lemma:

Lemma 1. An ordered semigroup (S,-,<) is a duo if and only if (Sz] = (xS]
forallz € S.

Corollary 2. Let (S,-, <) be an ordered semigroup. Then S is a duo if and only
if S is a normal.

Proposition 3. FEvery duo ordered semigroup is a semi-pseudo symmetric or-
dered semigroup.

Proof. Let S be a duo ordered semigroup and A an ideal of S. For any = € S
and for any positive integer n, " € A. Let b € I(x)™. Then b < s12892 - - TSp 41,
where s; € S or empty symbol. We have b < sz”, where s € § or empty symbol
by Lemma 1. This implies b € A and so I(z)” C A. Thus S is a semi-pseudo
symmetric. [ |

Similarly, we prove the following.

Proposition 4. Every idempotent ordered semigroup is a semi-pseudo symmetric
ordered semigroup.

Lemma 5 [14]. Let (S,-, <) be an ordered semigroup and A an ideal of S. Then
Q*(A) CVA.

Theorem 6. Let (S,-, <) be an ordered semigroup and A an ideal of S. If A is
a semi-pseudo symmetric, then A = Q*(A) = VA.

Proof. As is easily seen, A C Q*(A). We have Q*(A) C VA by Lemma 5. Since
A is a semi-pseudo symmetric, vA C A. Thus A = Q*(A) = VA. ]
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Lemma 7 [14]. Let (S,-,<) be an ordered semigroup with identity. If every
(nonzero, assume this if S has 0) proper prime ideals are mazximal, then S is a
primary.

Theorem 8. Let (S,-,<) be a semi-pseudo symmetric ordered semigroup with
identity. The following statements are equivalent:

(1) Proper prime ideals of S are maximal;

(2) S is either a simple and so an archimedean or S has a unique proper prime
ideal P such that S is an ideal extension of the archimedean subsemigroup P
by a 0-simple ordered semigroup S/P.

In either case S is a primary ordered semigroup and S has at most one proper
globally idempotent principal ideal.

Proof. As is easily seen, (2) implies (1).

(1)=(2). If S is a simple, then S is an archimedean. If S is not a simple,
then S has a unique maximal ideal P and so P is a unique proper prime ideal.
Since P is a maximal ideal, S/P is a 0-simple ordered semigroup by Lemma 1
in [8]. Let a,b € P. Then Q*(I(a)) = P = Q*(I(b)). Since S is a semi-pseudo
symmetric, we have I(a)" C I(b) for some positive integer n by Theorem 6. It
follows that a"*2 € (PbP]. Thus P is an archimedean subsemigroup of S.

We have S is a primary by Lemma 7. Let I(a) and I(b) be two proper
globally idempotent principal ideals. Then Q*(I(a)) = P = Q*(1(b)). We have
(I(a)"] C I(b) for some positive integer n. Since I(a) = (I(a)?], I(a) C I(b).
Similarly, we have I(b) C I(a). Thus I(a) = I(b). ]

Lemma 9 [14]. Let (S,-, <) be an ordered semigroup. The following statements
are equivalent:

(1) S is semisimple;

(2) (A% = A for any ideal A of S;

(3) An B = (AB] for any ideals A, B of S;

(4) I(a) N I(b) = (I(a)I(b)] for any a,b € S;

(5) (I(a)’] = I(a) for any a € S.

Theorem 10. Let (S, -, <) be a semi-pseudo symmetric ordered semigroup with-
out identity. The following statements are equivalent:

(1) Proper prime ideals of S are mazximal and the set of all globally idempotent
principal ideals forms a chain under the set inclusion;

(2) S is an archimedean or there exists a unique proper prime ideal P such that
S is an ideal extension of the archimedean subsemigroup P by a 0-simple
ordered semigroup S/P;



214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

ORDERED SEMIGROUPS IN WHICH PRIME IDEALS ARE MAXIMAL 7

(3) Proper prime ideals of S are mazimal and S has at most two distinct globally
idempotent principal ideals.

If S has exactly two distinct globally idempotent principal ideals then one of their
radicals is S.

Proof. The implication (3)=-(1) is obvious.

(1)=-(2). If S has no proper prime ideals. Then for any a,b € S, Q*(I(a)) =
S = Q*(I1(b)). We have I(a)™ C I(b) for some positive integer n. This implies
a™*? € (SbS]. Thus S is an archimedean. If S has proper prime ideals. Let M
and NN be two proper prime ideals of S. Then M and N are maximal ideals of
S. For any x € S\ M, I(x) € M. Then I(x)*> € M. Since S is a semi-pseudo
symmetric, 22 ¢ M. We have S = M U I(z) = M U I(2?). This implies x is
semisimple. Thus every element of S\ M and S\ N is semisimple. Let a € S\ M
and b € S\ N. Then I(a) and I(b) are globally idempotent by Lemma 9. We
have I(a) C I(b) or I(b) C I(a). Suppose that I(a) C I(b). If b € M, then
a € M. This is a contradiction. Thus b € S\ M. We have I(a) = I(b). It follows
that M = N. Thus S has a unique proper prime ideal, namely P. Since S is
a semi-pseudo symmetric, S/P is a 0-simple ordered semigroup. By the same
method given in Theorem 8 we have S is an ideal extension of the archimedean
subsemigroup P by a 0-simple ordered semigroup S/P.

(2)=-(3). If S is an archimedean. Let P be any prime ideal of S. Let a € P
and b € S. Then there exists positive integer n such that " € (SaS] C P.
Since S is a semi-pseudo symmetric, I(b)" C P. This implies b € P. It follows
that § = P and so S has no proper prime ideals. Thus proper prime ideals are
maximal. Let I(a) and I(b) be two globally idempotent principal ideals. Then
Q*(I(a)) =S =Q*(L(b)). Thus I(a)™ C I(b) and I(b)"™ C I(a) for some positive
integer n, m by Theorem 6. It follows that I(a) C I(b) and I(b) C I(a). Thus
I(a) = I(b). If S has a unique proper prime ideal P such that S is an ideal
extension of the archimedean subsemigroup P by a 0-simple ordered semigroup
S/P. Since S/P is 0-simple ordered semigroup, P is a maximal ideal. Then for
any a,b € S\ P, we have I(a) = I(b) and Q*(I(a)) =S = Q*(1(b)). Let I(a) and
I(b) be two proper globally idempotent principal ideals. Then Q*(I(a)) = P =
Q*(I1(b)) and so I(a) = I(b). Thus S has at most two distinct globally idempotent
principal ideals. Also if S has exactly two distinct globally idempotent principal
ideals then one of their radicals is S. This completes the proof of the theorem. m

Lemma 11 [14]. Let (S,-, <) be an ordered semigroup. Then S is semi-primary
if and only if the set of all prime ideals of S forms a chain under the set inclusion.

Theorem 12. Let (5,-,<) be a semi-pseudo symmetric ordered semigroup such
that S # (S?]. Then S is a primary in which proper prime ideals are mazimal if
and only if S is an archimedean.
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Proof. Assume that S is a primary in which proper prime ideals are maximal.
Then S is a semi-primary. Thus the set of all prime ideals of S forms a chain
under the set inclusion by Lemma 11. If S has proper prime ideals. Since proper
prime ideals are maximal, S has a unique proper prime ideal P which is also a
maximal ideal. Since every element of S\ P is semisimple, we have S\ P C (S?].
Let a € S\ P and b € P. If (I(a)I(b)] # I(b), then b ¢ (I(a)I(b)]. Since
S is a primary, we have a € Q*((I(a)I(b)]) = P. This is a contradiction. Thus
(I(a)I(b)] = I(b). This implies P C (S?] and so S = (S?]. This is a contradiction.
Thus S has no proper prime ideals. We have S is an archimedean follows from
Theorem 10. Conversely, Assume that S is an archimedean. Then clearly S no
proper prime ideals. Thus proper prime ideals are maximal. Let A be any ideal
of S such that I(x)I(y) C A and y ¢ A. Since S is an archimedean, 2" € (SyS]
for some positive integer n. Thus "' € I(x)I(y) C A. We have z € Q*(A) = S
by Theorem 6. Thus A is left primary. Similarly, A is right primary. Thus S is
primary. ]

Corollary 13. Let (S,-,<) be a normal ordered semigroup such that S # (S?].
Then S is a primary in which proper prime ideals are maximal if and only if S
is an archimedean.

Theorem 14. Let (S, -, <) be a weakly commutative ordered semigroup such that
(aS]) = (a®S] and (Sa] = (Sa?] for all a in S and S # (S?]. Then S is a primary
in which proper prime ideals are mazximal if and only if S is an archimedean.

Proof. It follows from Corollary 13 and Theorem 6 in [13]. |

Theorem 15. Let (S,-,<) be a B*-pure ordered semigroup such that S # (S?].
The following statements are equivalent:

(1) S is a primary in which proper prime ideals are mazimal;

(2) S is an archimedean;

(3) (SaS] = (SbS] for all a,b e S;

(4) (aS] = (bS] for all a,b € S;

(5) (aSa] = (bSb] for all a,b € S;

(6) for anye, f € E(S), (e, f) e N;

(7)

every bi-ideal of S is an archimedean subsemigroup.

Proof. We have (1) and (2) are equivalent by Corollary 13 and Lemma 3 in [13]
and (2) to (7) are equivalent by Theorem 12 in [13]. |
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