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Abstract11

A Stonean Hilbert algebra is a bounded Hilbert algebra with supremum12

that satisfies the Stone identity. In this paper we characterize the subdirectly13

irreducible Stonean Hilbert algebras. We extend the duality of Hilbert alge-14

bras with supreumum to bounded Hilbert algebras with supremum and we15

identify among the dual spaces of bounded Hilbert algebras with supremum16

those that correspond to Stonean Hilbert algebras in general, and, in par-17

ticular, those that corresponds to sub-directly irreducible Stonean Hilbert18

algebras. As an application we exhibit a special partial endomorphism of19

the dual space of a Stonean Hilbert algebra.20
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1. Introduction23

Hilbert algebras (positive implication algebras in [22]) are the algebraic counter-24

part of the implicative fragment of Intuitionistic Propositional Logic. A Hilbert25

algebra is an algebra 〈A,→, 1〉 of type (2, 0). Diego in [8] proves that the class26

of Hilbert algebras is a variety generated by the {→, 1}-reduct of Heyting alge-27

bras. We recall that a Heyting algebra is an algebra 〈H,∨,∧,→, 0, 1〉 of type28

(2, 2, 2, 0, 0). But there are examples of algebras 〈L,∨,∧,→, 0, 1〉 which are not29

Heyting algebras but their {→, 1}-reduct is a Hilbert algebra. These examples30

encourage the study of Hilbert algebra with lattice operations (∨,∧). The class31

of Hilbert algebras is a subclass of the class of BCK-algebras (see [9]); indeed,32

Hilbert algebras are dual isomorphic positive implicative BCK-algebras (see [18])33
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and Hilbert algebras with lattice operations are a particular case of BCK-algebras34

with lattice operations; this class of BCK-algebras has been studied by Idziak in35

[16] and [17]. A Hilbert algebra with supremum is an algebra 〈A,∨,→, 1〉 such36

that its natural order form a join-semi-lattice, i.e., a → b = 1 iff a ∨ b = b.37

In this paper we study bounded Hilbert algebras with supremum (Hilbert38

algebras with supremum which have a least element for their natural order) sat-39

isfying the Stone identity. They were introduced in [7] and in [20] where they are40

called Stonean Hilbert algebras. Our main motivation is to answer the question41

up to what extent the structure of such a kind of Hilbert algebra is determined42

by the monoid of its endomorphisms. We have addressed the same question for43

the case of finite Hilbert algebras (see [12]) and for the case of Hilbert algebras44

generated by finite chains (see [14]). With such a purpose, building on the duality45

for (bounded) Hilbert algebras of Celani, Cabrer and Montangie (see [4, 5, 7]), in46

Section 5 (Theorem 9) we characterize the dual space of a Stonean Hilbert algebra47

and we identify the dual space of a subdirectly irreducible Stonean Hilbert alge-48

bra; previously, in Section 3 we characterize the subdirectly irreducible Stonean49

Hilbert algebras (Proposition 7 and Corollary 8).50

The class of bounded Hilbert algebras with morphisms the algebraic ho-51

momorphisms is a category dually equivalent to the category of dual spaces of52

bounded Hilbert algebras with morphisms a special kind of partial functions.53

In the last section (Section 6) of the present paper we identify a partial endo-54

morphism of the dual space of a Stonean Hilbert algebra; we think that this55

partial endomorphism will play a very important roll in establishing a connec-56

tion between the structure of Stonean Hilbert algebras and the monoid of their57

endomorphisms. Section 2 will be devoted to recall the necessary definitions and58

known results whereas in Section 4 we present some examples which serve to59

illustrate the main concepts considered in this paper.60

2. Preliminaries61

In this section we provide the main definitions and several rules of computation62

that will be used throughout the paper. They can be consulted mainly in [3, 7,63

11, 22]. A Hilbert algebra is an algebraic structure A = 〈A,→, 1〉 of type (2,0)64

that satisfies, for all a, b, c ∈ A the following65

a → (b → a) = 1;(1)66

(a → (b → c)) → ((a → b) → (a → c)) = 1;(2)67

a → b = 1 and b → a = 1 imply a = b.(3)68

Following [3], we denote the class of Hilbert algebras by H. The binary relation69

≤ defined on A by the rule a ≤ b iff a → b = 1 is a partial order on A with last70
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element 1. We call this order the natural order induced on A by the operation71

‘→’. The following rules valid in any Hilbert algebra will be used without special72

reference73

a → a = 1;(4)74

1 → a = a;(5)75

a ≤ b → a;(6)76

a → (a → b) = a → b;(7)77

a → (b → c) = b → (a → c);(8)78

a → (b → c) = (a → b) → (a → c);(9)79

a ≤ b implies b → c ≤ a → c and c → a ≤ c → b;(10)80

a → b ≤ (b → c) → (a → c).(11)81

A bounded Hilbert algebra or H0-algebra is a Hilbert algebra A := 〈A;→, 1〉 of82

type (2, 0) for which there exists an element 0 ∈ A such that 0 → x = 1 for all83

x ∈ A. We shall write ¬x instead of x → 0. The class of bounded Hilbert algebras84

shall be denoted by H0. It is not difficult to check that the following properties85

are satisfied for all elements a, b, c in any bounded Hilbert algebra86

a ≤ ¬¬a;(12)87

a ≤ b =⇒ ¬b ≤ ¬a;(13)88

¬a = ¬¬¬a;(14)89

a → b ≤ ¬b → ¬a;(15)90

¬a = a → ¬a;(16)91

¬a → a = ¬¬a;(17)92

a → ¬b = b → ¬a;(18)93

¬¬(a → b) ≤ ¬¬a → ¬¬b;(19)94

a ≤ ¬a → b and b ≤ ¬a → b.(20)95

All these properties of bounded Hilbert algebras can be consulted in [7] and the96

reference therein.97

A non-empty subset D of a Hilbert algebra A is called a deductive system if98

(i) 1 ∈ D, and99

(ii) a, a → b ∈ D imply b ∈ D.100

Deductive systems are called in [21] implicative filters or simply filters. We denote101

the set of deductive systems of a bounded Hilbert algebra A as follows102

Ds(A) := deductive systems of A.103
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A proper deductive system D is said to be irreducible if from D = D1 ∩ D2104

with D1,D2 ∈ Ds(A) it always follows that D1 = D or D2 = D. The set of all105

irreducible deductive system of A is denoted by X(A).106

X(A) := irreducible deductive systems of A.107

A proper deductive system is called maximal if it is not contained properly108

in any other deductive system. Every maximal deductive system is also an irre-109

ducible deductive system (see [1], Remark 1.2). A Hilbert algebra is called a local110

Hilbert algebra if it has just a maximal deductive system.111

An element a of a bounded Hilbert algebra A is called dense if ¬a = 0. The set

D(A) := {a ∈ A : ¬a = 0}

of dense elements of A is a deductive system (see [1, 2]).112

Proposition 1 ([21], Proposition 3.3). Let A ∈ H0. Then, A is a local Hilbert113

algebra iff all its elements except 0 are dense, i.e., D(A) = Ar {0}.114

A bounded Hilbert algebra with supremum or H∨
0
-algebra is an algebra A :=115

〈A;→,∨, 1〉 of type (2, 2, 0) such that the reduct 〈A;→, 1〉 is a bounded Hilbert116

algebra, the reduct 〈A;∨, 1〉 is a join semi-lattice with last element 1 and the117

identities118

a → (a ∨ b) = 1,(21)119

(a → b) → ((a ∨ b) → b) = 1(22)120

are satisfied. The class of bounded Hilbert algebras with supremum shall be121

denoted by H∨
0
. Hilbert algebras with supremum are called in [21], sH-Hilbert122

algebras.123

The following identity is valid in any Hilbert algebra with supremum (see124

[11])125

(a → c) → ((b → c) → ((a ∨ b) → c)) = 1.(23)126

Notation. Let 〈X,≤〉 a poset and S ⊆ X. Then (S] := {x ∈ X : x ≤ s, some127

s ∈ S} and [S) := {x ∈ X : s ≤ x, some s ∈ S}.128

Definition 1 ([4], Definition 3.1). A Hilbert space or H-space is a ordered topo-129

logical space X := 〈X,≤, τK〉 such that130

(i) K is a base of compact-open and decreasing subsets of X for the topology131

τK on X;132

(ii) For every A,B ∈ K, (A ∩B∁] ∈ K. So, ∅ ∈ K;133
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(iii) For x, y ∈ X, x � y implies that there exists U ∈ K such that x /∈ U and134

y ∈ U ;135

(iv) If Y is a closed subset and L ⊆ K is dually directed set (i.e., for any A,B ∈136

L,∃ C ∈ L such that C ⊆ A and C ⊆ B) such that Y ∩U 6= ∅ for all U ∈ L137

then
⋂

{U : U ∈ L} ∩ Y 6= ∅.138

Definition 2. X is called a H∨-space if X is a H-space such that139

(v) U ∩ V ∈ K for all U, V ∈ K.140

Definition 3. A boundedH∨-space or H∨
0
-space is a H∨-space such that X ∈ K.141

The set of increasing subsets of X(A) ordered by inclusion (including there142

the empty set) is denoted by Pi(X(A)).143

It is shown in [8] (see also [6]) that144

Pi(X(A)) := 〈Pi(X(A));→,∪,X〉,145

where the operation → is defined by the rule146

U → V :=
(

U ∩ V ∁
]∁

(24)147

is a H∨
0
-algebra and, if A is a H∨

0
-algebra, then the mapping ϕ : A −→ Pi(X(A))148

given by149

ϕ(a) =
{

P ∈ X(A) : a ∈ P
}

(25)150

is an injective homomorphism of H∨
0
-algebras ([4], Lemma 5.1). Moreover,151

KA :=
{

ϕ(a)∁ : a ∈ A
}

(26)152

is a basis for a topology τKA
on X(A) and X(A) := 〈X(A),⊆, τKA

〉 is a H∨-space153

([4], Theorem 5.6).154

If X := 〈X,≤, τK〉 is an H∨
0
-space then D(X) := 〈D(X);→,∪,X〉, where155

D(X) :=
{

U ∁ : U ∈ K
}

156

and the operation → given by the formula (24) is a H∨
0
-algebra (see [4], Propo-157

sition 5.3). The image of the mapping ϕ given by the equality (25) is D(X(A))158

so that159

ϕ : A ∼= D(X(A)).160

Observe that if A ∈ H∨
0
, ϕ(0) = {P ∈ X(A) : 0 ∈ P} = ∅ = X∁ ∈ D(X(A)). As161

a consequence of the preceding discussion we have the following theorem.162
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Theorem 2 ([6], Theorem 2.8). Let A ∈ H∨
0
. Then, there exists a poset X :=163

〈X,≤〉 with maximum such that A is isomorphic to a subalgebra of164

Pi(X) := 〈Pi(X);→,∪,X〉.165

Lemma 3 ([7], Lemma 9). Let A ∈ H∨
0
and P ∈ Ds(A). Then, the following166

conditions are equivalent:167

(i) P is maximal.168

(ii) ∀ a ∈ A, (a 6∈ P =⇒ ¬a ∈ P ).169

(iii) ∀ a ∈ A, (a 6∈ P =⇒ ¬¬a 6∈ P ).170

(iv) P ∈ X(A) and D(A) ⊆ P .171

Diego in [8] proves that if A ∈ H, P ∈ X(A) iff for every a, b ∈ A such that172

a, b 6∈ P there exists c 6∈ P such that a, b ≤ c. From this, the following result173

follows easily.174

Proposition 4. Let A ∈ H∨
0
and P ∈ Ds(A). Then, P ∈ X(A) iff ∀ a, b ∈ A,175

a ∨ b ∈ P =⇒ a ∈ P or b ∈ P .176

Let A ∈ H∨
0
. A is said to be an Stone H∨

0
-algebra if it satisfies the Stone177

identity178

¬a ∨ ¬¬a = 1.(27)179

Stone H∨
0

algebras are called in [20], Stonean Hilbert algebras. It follows from180

Proposition 1 that a local bounded Hilbert algebra with supremum is necessarily181

a Stonean Hilbert algebra.182

Several characterizations of this kind of H∨
0
-algebras are given in [7]; for our183

purpose, we mention next two of them.184

Proposition 5 ([7], Theorem 26). Let A ∈ H∨
0
. Then A is a Stone H∨

0
-algebra185

iff for increasing subsets U, V of X(A), we have (U ] ∩ (V ] = (U ∩ V ] iff each186

irreducible deductive system of A is contained in a unique maximal deductive187

system.188

3. Sub-directly irreducible Stonean Hilbert algebras189

Proposition 6. For A ∈ H∨
0
and a ∈ A, the relation x ∼a y iff a → x = a → y190

is a congruence relation on A.191

Proof. It is proved in [15] that ∼a is a equivalence relation on A that preserves192

→, i.e., ∼a is a congruence relation on 〈A,→, 1〉. Next we prove that ∼a also193
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preserves ∨: suppose that x ∼a y and z ∼a w, i.e., a → x = a → y and194

a → z = a → w. It follows that a ≤ x → y, y → x, z → w,w → z. We want195

a → (x ∨ z) = a → (y ∨ w). We show first that (a → (x ∨ z) ≤ a → (y ∨ w). Set196

c = y ∨ w. By (23) we have197

(x → c) → ((z → c) → ((x ∨ z) → c)) = 1.198

As y ≤ c, we have x → y ≤ x → c. Then we have199

(x → y) → ((z → c) → ((x ∨ z) → c)) = 1200

or, equivalently,201

(z → c) → ((x → y) → ((x ∨ z) → c)) = 1.202

As w ≤ c, we have z → w ≤ z → c and therefore we obtain203

(z → w) → ((x → y) → ((x ∨ z) → c)) = 1.204

It follows from a ≤ z → w and the above equation that205

a → ((x → y) → ((x ∨ z) → c)) = 1206

or, equivalently,207

(x → y) → (a → ((x ∨ z) → c)) = 1208

and, finally, since a ≤ x → y we obtain209

a → ((x ∨ z) → c)) = a → (a → ((x ∨ z) → c)) = 1210

and, from this, we get a → (x ∨ z) ≤ a → c = a → (y ∨ w). In a similar way we211

obtain the reverse inequality. So, a → (x ∨ z) = a → (y ∨ w).212

Proposition 7. A ∈ H∨
0
is sub-directly irreducible iff A has a unique co-atom,213

i.e., there exists e ∈ A such that e < 1 and for all x ∈ A, if x 6= 1 then x ≤ e.214

Proof. Suppose that A is sub-directly irreducible and let Υ be the monolith215

of A. First we observe that ∼x= ∆ iff x = 1. Clearly, Υ = Cg(e, b) (the216

smallest congruence containing the pair (e, f)) for some e, b ∈ A. If ∆ 6∈ {∼e,∼b}217

then Υ = Cg(e, b) ⊆∼e ∩ ∼b. But this means that 1 = e → e = e → b and218

1 = b → b = b → e, i.e., e = b, a contradiction. Then, say ∼b= ∆, i.e., b = 1,219

so Υ = Cg(e, 1). Let x ∈ A r {1}. As Υ ⊆∼x we have that (e, 1) ∈∼x, i.e.,220

x → e = x → 1 = 1 and this means that x ≤ e.221

Conversely, suppose that A has a unique co-atom e. Let θ ∈ Con(A)r {∆}.222

Let x, y, x 6= y in A such that (x, y) ∈ θ. As x 6= y we have that, say, x → y < 1 so223

that (x → y) → e = 1. Observe now that (x → x = 1, x → y) ∈ θ; consequently,224

(1 → e = e, (x → y) → e = 1) ∈ θ. Then, as θ ∈ Cong(A) r {∆} was arbitrary,225

we have proved that Cg(e, 1) is the monolith of A and, consequently, A is sub-226

directly irreducible.227
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The set of congruences of A ∈ H∨ is denoted by Con(A). If θ ∈ Con(A),228

[1]θ ∈ Ds(A) ([1]θ denote the congruence class of 1). If D ∈ Ds(A) then θ(D) =229

{(a, b) ∈ A2 : a → b, b → a ∈ D} ∈ Con(A). If θ1, θ2 ∈ Con(A), θ1 ⊆ θ2 =⇒230

[1]θ1 ⊆ [1]θ2 and if D1,D2 ∈ Ds(A), D1 ⊆ D2 =⇒ θ(D1) ⊆ θ(D1) (see [3]).231

In the previous proposition, it is evident that {e, 1} is a irreducible deductive232

system. Indeed, {e, 1} is the smallest irreducible deductive system which, at the233

same time, is the smallest non-trivial deductive system of A; then, having in234

mind Proposition 1 and Proposition 5 we have the following corollary.235

Corollary 8. A Stonean Hilbert algebra is sub-directly irreducible iff it is a local236

bounded Hilbert algebra with supremum that has a smallest non-trivial deductive237

system which is also the smallest irreducible deductive system.238

From a result of Idziak (see [16]) it follows that the class of Hilbert algebras239

with supremum is a variety. Here, we need to consider the class of Stone H∨
0
-240

algebras as a variety. Indeed, this class of Hilbert algebras with supremum is241

closed under the formation of homomorphic images and direct product but it is242

not closed under the formation of sub-algebras, as the Stonean Hilbert algebra243

A0 (taking from [20]) shows:244

A0:=

→ 0 a b c d e f g 1

0 1 1 1 1 1 1 1 1 1
a f 1 1 f 1 1 f 1 1
b f g 1 f g 1 f g 1
c b b b 1 1 1 1 1 1
d 0 b b f 1 1 f 1 1
e 0 a b f g 1 f g 1
f b b b e e e 1 1 1
g 0 b b c e e f 1 1
1 0 a b c d e f g 1 .

245

We see that {a, b, c, d, e, f, g, 1} is a subalgebra of such a bounded Hilbert algebra246

with supremum which is not even Stonean since it does not have a minimum.247

So, in order to consider the class of Stonean Hilbert algebra as a variety, the248

minimum 0 has to be considered as a nullary operation. This automatically im-249

plies that the unary operation ¬ is preserved by Hilbert algebra homomorphisms250

which, by the way, being them order preserving maps, have to send minimums251

to minimums, i.e., they have to preserve the least element (see [10]). Now, since252

there is a one to one an onto correspondence between congruences and homo-253

morphic images then any sub-directly irreducible Stonean Hilbert algebra is also254

sub-directly irreducible as a Hilbert algebra.255
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Figure 1. The natural order of A0.

4. Examples258

Example I.259

A1:=

→ 0 1 2 3 4 5

0 5 5 5 5 5 5
1 0 5 5 5 5 5
2 0 3 5 3 5 5
3 0 2 2 5 5 5
4 0 1 2 3 5 5
5 0 1 2 3 4 5

260
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Figure 2. The natural order of A1.
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∅

[[5))

[[2), [3))

Pi(X(A1)) :=

Figure 3. The order of the irreducible deductive systems of A1.
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Observe that A1
∼= Pi(X(A1))). Observe also that B := {0, 2, 3, 4, 5} is a subuni-261

verse of A1 and that X(A1) = X(B), B being a proper subalgebra of Pi(X(B)).262

Notice that A1 as well as B are local sub-directly irreducible Stonean Hilbert263

algebras.264

Example II.265

A2:=

→ 0 1 2 3

0 3 3 3 3
1 2 3 2 3
2 1 1 3 3
3 0 1 2 3

266

r

r

r r

@@ ��
�� @@

0

1 2

3

Figure 4. The natural order of A2.

X(A2) =
{

(1]∁, (2]∁
}

= {[2), [1)}. In this example, X(A2) is an anti-chain, does267

not have a maximum and does not have a minimum.268

r r[1) [2)X(A2) :=

r

r

r r

@@ ��
�� @@

∅)

[[1)) [[2))

[[1), [2))

Pi(X(A2)) :=

Figure 5. The order of the irreducible deductive systems of A2.

Observe that A2 is a Stonean Hilbert algebra, neither local nor subdirectly269

irreducible.270

Example III.271

A3:=

→ 0 1 2 3 4

0 4 4 4 4 4
1 0 4 4 4 4
2 0 3 4 3 4
3 0 2 2 4 4
4 0 1 2 3 4

272
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r

r

r

r r

@@ ��
�� @@

1

2 3

0

4

Figure 6. The natural order of A3.

X(A3) =
{

(0]∁, (2]∁, (3]∁
}

= {[1), [3), [2)}. In this example, X(A3) has a maxi-273

mum but it does not have a minimum.274

r

r r�� @@
[2) [3)

[1)

X(A3) :=

r

r

r

r r

@@ ��
�� @@

[[1))

[[2)) [[3))

∅

[[2), [3))

Pi(X(A3)) :=

Figure 7. The order of X(A3).

Example IV. A bounded Hilbert algebra with supremum which is not Stonean.275

A4:=

→ 0 1 2 3 4 5

0 5 5 5 5 5 5
1 2 5 2 5 5 5
2 1 1 5 3 5 5
3 0 1 2 5 5 5
4 0 1 2 3 5 5
5 0 1 2 3 4 5

276

r

r

r r

@@ ��
�� @@

r

r

0

1 2

3

4

5

r

r

r r

@@ ��

[5)

[1) [2)
[4)

Figure 8. The natural order of A4 and X(A4).
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5. Dual space of a Stonean Hilbert algebra277

Next we characterize Stone H∨
0
-algebra in terms of its dual H∨

0
-space, more pre-278

cisely, in terms of the inclusion order of its irreducible deductive systems.279

Theorem 9. The dual H∨
0
-algebra of a H∨

0
-space X := 〈X,≤, τK〉 is a Stone280

H∨
0
-algebra iff in case X has a minimum then it has a maximum and, in case X281

does not have a minimum then the poset X r {m} (m, if any, is the top element282

of X) is a direct sum of a family {Xi : i ∈ I} of disjoint posets (Xi ∩Xj = ∅ for283

i, j ∈ I with i 6= j) such that each Xi has a maximum mi. This means that for284

x, y ∈ X to be comparable, they have to belong to the same Xi. In symbols,285

X =
˙⋃

i∈I
Xi, X :=

⊕

i∈I

Xi.286

Proof. For the sufficiency part, based on Theorem 2, it is enough to prove the287

result for the H∨
0
-algebra Pi(X). So let U ∈ Pi(X). We consider two cases:288

Case 1. X does not have a top element. Clearly,289

U =
˙⋃

j∈J
(U ∩Xj) some J ⊆ I.290

Then291

¬U = U → ∅ =
(

U ∩ ∅∁
]∁

= (U ∩X]∁ = (U ]∁ =

(

˙⋃

j∈J
(U ∩Xj)

]∁

=
˙⋃

j 6∈J
Xj292

and293

¬¬U = ¬U → ∅ =

(

˙⋃

j 6∈J
Xj

]∁

=

(

˙⋃

j 6∈J
Xj

)∁

=
˙⋃

j∈J
Xj .294

So, ¬U ∪ ¬¬U = ˙⋃
i∈IXi = X.295

Case 2. X has a top element m. In this case it is enough to observe that, as296

m ∈ U ∈ Pi(X) then ¬U = U → ∅ = (U ∩ ∅∁]∁ = (U ]∁ = X∁ = ∅ and obviously,297

¬¬U = X so, ¬U ∪ ¬¬U = ∅ ∪X = X.298

For the necessity we have into account Proposition 5. Just observe that if299

the order on X(A) does not look like the direct sum just described then there300

exist two distinct co-atoms x, y ∈ X(A) and a third element z ∈ X(A) such that301

z ≤ x, y. Then, ([x) ∩ [y)] = ∅ whereas ∅ 6= (z] ⊆ ([x)] ∩ ([y)].302

Corollary 10. The H∨-space described in the previous theorem has a top element303

m iff the corresponding Stone H∨
0
-algebra is local.304

Corollary 11. Let A ∈ H∨
0
. Then A is Stonean iff, ∀P ∈ X(A) one of the305

following things occurs:306
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(i) P * D(A),307

(ii) P ⊆ D(A).308

In the first case, A is not a local Hilbert algebra. In the second case, A is a local309

Hilbert algebra.310

Proof. It is known that D(A) =
⋂

Max(A) where Max(A) denotes the set of311

all maximal filters of A (see [1]). If A is local, it is off course Stonean and in this312

case, D(A) is the unique maximal filter of A.313

Proposition 12. A Stone H∨
0
-algebra A is sub-directly irreducible iff its dual314

space X has a minimum and consequently, | I |= 1.315

Proof. It follows at once from Theorem 9 and Corollary 8.316

Proposition 13. Any sub-directly irreducible Stonean Hilbert algebra A is local.317

Proof. By Proposition 7, A has a co-atom, name it e. If A is not local, then318

D(A) 6= A r {0}. Choose a 6∈ D(A) such that a 6= 0. Note that ¬a = 1 =⇒319

a ≤ ¬¬a = 0 =⇒ a = 0. So ¬a ≤ e. Note also that ¬¬a = 1 =⇒ ¬a = 0. So320

1 = ¬a ∨ ¬¬a ≤ e, a contradiction.321

Remark. The converse of the previous proposition is not true, the Stone-H∨
0

322

algebra A3 of example III is local but not sub-directly irreducible.323

It is clear that Stonean Hilbert algebras form a subvariety of the variety324

of bounded Hilbert algebra with supremum. We call the H∨
0
-spaces referred in325

Theorem 9, Stone H-spaces and we denote this class of H-spaces by Hst-spaces.326

Summing up, we have that the Hst-space that corresponds to a local Stonean327

Hilbert algebra has to have a maximum and if it corresponds to a sub-directly328

irreducible Stonean Hilbert algebra must have a minimum. The Hst-space of a329

non-local Stonean Hilbert algebra must be the disjoint union (direct sum) of at330

least two Hst-spaces corresponding to local Stonean Hilbert algebras. In partic-331

ular, it possesses neither maximum nor minimum. In case it possess minimum332

but not maximum, it does not even correspond to a Stonean Hilbert algebra.333

6. H-partial functions334

We begin this section extending the concept of H-partial function for H∨-spaces335

given in [4] to H∨
0
-spaces. Let X1 := 〈X1;≤, τK1

〉 and X2 := 〈X2;≤, τK2
〉 be two336

H∨
0
-spaces.337

Definition 4. A partial map f : X1 −→ X2 with domain denoted by dom(f) is338

said to be an H0-partial function if the following conditions are satisfied:339
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(i) [f(x)) = f([x)) for each x ∈ dom(f);340

(ii) [x) ∩ dom(f) = ∅ for each x 6∈ dom(f) and (x] ⊆ dom(f) if x ∈ dom(f);341

(iii) (f−1(U)] ∈ K1 for each U ∈ K2 r {X2};342

(iv) f−1(X2) = X1.343

Conditions (i) and (iii) of this definition are conditions (1) and (3) of Definition344

6.1 in [4]; our condition (ii) make more precise condition (2) of the mentioned345

definition.346

The variety H∨
0
may be viewed as the category with objects the H∨

0
-algebras347

and morphisms the algebraic homomorphisms (they must preserve 0). Following348

the ideas of Celani and Montangie in [4], it is easy to show that this category and349

the category with objects the H∨
0
-spaces and morphisms the H0-partial functions350

are dually equivalent. The details of this duality can be consulted in [4]. Here351

we will describe the dual space of a given H∨
0
-algebra and the dual algebra of a352

given H∨
0
-space.353

Let A ∈ H∨
0
. For a ∈ A define354

ϕ(a) := {P ∈ X(A) : a ∈ P}.355

It has been shown that KA := {ϕ(a)∁ : a ∈ A} is a basis for a topology τKA
on356

X(A) and X(A) := 〈X(A);⊆,KA〉 is an H∨
0
-space called the dual space of A.357

For a given H∨
0
-space X = 〈X;≤,K〉 consider the set D(X) := {U ∁ : U ∈ K}.358

Then, D(X) := 〈D(X);⇒,∪,X〉 with the operation ⇒ given by the formula359

U ⇒ V :=
(

U ∩ V ∁
]∁

= {x ∈ X : [x) ∩ U ⊆ V }360

is an H∨
0
-algebra which is called the dual H∨

0
-algebra of X.361

Let h : A1 −→ A2 be an homomorphism of H∨
0
-algebras. Then, the map362

hX : X(A2) −→ X(A1) given by the formula363

hX(P ) = h−1(P )364

is an H0-partial function with domain {P ∈ X(A2) : h−1(P ) ∈ X(A1)} called365

the dual H0-partial function of h.366

Let f : X1 −→ X2 be an H0-partial function. Then, the map fD : D(X2) −→367

D(X1) given by the formula368

fD(U) =
(

f−1

(

U ∁
)]∁

369

is a homomorphism of H∨
0
-algebras called the dual homomorphism of f .370

The following results were proved in [14] for X a H∨-space; they remain valid371

when considering X to be a H∨
0
-space.372
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Proposition 14 (Proposition 8, [14]). Let X := 〈X;≤, τK〉 be a H∨
0
-space. Then,373

the image im(g) of an H0-partial endomorphism g of X is an increasing set and374

if g is idempotent then its domain, dom(g), is equal to (im(g)]. Consequently, if375

t ∈ dom(g), t ≤ g(t).376

Corollary 15 (Corollary 9, [14]). Let X := 〈X;≤, τK〉 be a H∨
0
-space. Let f and377

g be idempotent H0-partial endomorphisms of X. Then f = g iff im(f) = im(g).378

Proposition 16. Let X = 〈X,≤ τK〉 be a Stone H-space (Hst-space) and let379

U ∈ K. For x ∈ X such that U ∁ ∩ [x) 6= ∅, define fU(x) = m where m the unique380

maximal element of X \ {u} (u is the maximum of X if any) above x. Then fU381

is an idempotent H0-partial endomorphism.382

Proof. To see that fU is well defined we recall that U ∁ is an increasing set and383

since U ∁∩ [x) 6= ∅, then taking into account the order structure of X described in384

Theorem 9, there is a unique maximal element m of X such that x ≤ m. Clearly,385

fU is idempotent and if x ∈ dom(fU ), fU ([x)) = [fu(x)) = {m}. Let x 6∈ dom(fU )386

and t ∈ [x). Then [t) ∩ U ∁ ⊆ [x) ∩ U ∁ = ∅ which means that t 6∈ dom(fU ). This387

shows that [x) ∩ dom(fU ) = ∅. Finally, it is easy to check that if V ∈ K then388

f−1

U (V ) = (U ∁ ∩ V ] ∈ K.389

Conclusion and future research. In this paper we have characterized the390

sub-directly irreducible Stonean Hilbert algebras and we have described the dual391

H∨
0
-space of a Stonean Hilbert algebra. The relation between a universal algebra392

and the monoid of its endomorphisms was considered first in [19]. A bounded393

Hilbert algebra with supremum generated by finite chains is determined by the394

monoid of their endomorphisms (see [14]). In achieving such a result, the equiva-395

lence between the category of H∨-spaces with morphismsH-partial functions and396

the category of bounded Hilbert algebras with morphisms the algebraic homo-397

morphisms was a powerful tool. It follows from Theorem 9 that Hilbert algebras398

generated by finite chains are Stonean Hilbert algebras. The class of H0-partial399

endomorphisms of Stone H-spaces exhibited in Proposition 16 we think will be400

very useful to determine up to what extent a Stonean Hilbert algebra is deter-401

mined by the monoid of its endomorphisms; for instance, it follows from Proposi-402

tion 14 and Corollary 15 that if A is a Stonean Hilbert algebra, the constant map403

with image {1} is an (idempotent) endomorphism iff A is subdirectly irreducible.404
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