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Abstract11

In this paper, the authors study many interesting properties of ideals12

and congruences of the class of a core regular double Stone algebra (briefly13

CRD-Stone algebra). We introduce and characterize the concepts of k-ideals14

and principal k-ideals of a core regular double Stone algebra with the core15

element k and establish the algebraic structures of such ideals. Also, we16

investigate k-{+}-congruences and principal k-{+}-congruences of a CRD-17

Stone algebra L which are induced by k-ideals and principal k-ideals of18

L, respectively. We obtain an isomorphism between the lattice of k-ideals19

(principal k-ideals) and the lattice of k-{+}-congruences (principal k-{+}-20

congruences) of a CRD-Stone algebra. We provide some examples to clarify21

the basic results of this article.22

Keywords: stone algebras, double Stone algebras, regular double Stone23

algebras, core regular double Stone algebras, ideals, filters.24
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1. Introduction26

The concept of psudo-complement was considered in semi-lattices and distributive27

lattices by Frink [22] and Birkhof [12], respectively. The class S of Stone algebras28

was studied and characterized by several authors, like, Badawy [1], Chain and29

1Corresponding author.
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Grätzer [18, 19], Grätzer [23], Frink [22], Balbes [13] and Katrinák [25]. Reg-30

ular double p-algebras and regular double Stone algebras are characterized by31

Katrinák [25] and Comer [21], respectively.32

The intersection of the set D(L) of dense elements and the set D(L) of33

dual dense elements of a double Stone algebra L is called the core of L and34

denoted by K(L). In a regular double Stone algebra L, the core K(L) is ei-35

ther an empty set or a singleton set, if a regular double Stone algebra L has a36

non-empty core, then such a core K(L) has exactly only one element, which is37

denoted by k. Ravi Kumar et al. [27] introduced some properties of core reg-38

ular double Stone algebra Srikanth et al. [28] and [29] studied many properties39

of ideals (filters) and congruences of a core regular double Stone algebras, re-40

spectively. Badawy et al. [9] constructed a double Stone algebra from a Stone41

quadruple. Badawy [3] constructed each core regular Stone algebra from a suit-42

able Boolean algebra B = (B;∨,∧,′ , 0, 1). The constructing CRD-Stone algebra43

(B[2];∨,∧,∗ ,+ , (0, 0), (1, 1)) with the core element (0, 1), where44

B[2] = {(x, y) ∈ B[2] : x ≤ y},45

(x, y) ∧ (x1, y1) = (x ∧ x1, y ∧ y1),46

(x, y) ∨ (x1, y1) = (x ∨ x1, y ∨ y1),47

(x, y)∗ = (y′, y′),48

(x, y)+ = (x′, x′).49

In Section 2, We list the basic concepts and important results which are50

needed throughout this paper. Also, we provide some examples of RD-Stone51

algebras with core element k and RD-Stone algebras with empty core. We refer52

the reader to [4, 7, 8, 10, 15] and [16] for filters, ideals and [2, 6, 11] for congruences53

of lattices and p-algebras.54

In Section 3, we introduce the k-ideals of a CRD-Stone algebra L and obtain55

many related properties. A set of equivalent conditions for an ideal I of a CRD-56

Stone algebra L to become a k-ideal is given. We observe that the class Ik(L) of57

all k-ideals of L forms a bounded distributive lattice.58

In Section 4, we define and characterize the concept of principal k-ideals of a59

CRD-Stone algebra L. We show that the class Ipk(L) of all principal k-ideals of60

L is a Boolean ring and so a Boolean algebra. Example 25 describes the Boolean61

algebra Ipk(L).62

In Section 5, we investigate the k-{+}-congruences via k-ideals of a CRD-63

Stone algebra L. Also, we observe that the set Con+k (L) of all k-{
+}-congruences64

forms a bounded distributive lattice which is isomorphic to the lattice Ik(L) of65

k-ideals.66

In Section 6, we investigate and charaterize the principal k-{+}-congruences67

of a CRD-Stone algebra L via principal k-ideals of L. Then, we study the68

properties and the algebraic structure of the class Conpk(L) of all principal k-{
+}-69
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congruences of L. Moreover, we show that Ipk(L) and Conpk(L) are isomorphic70

Boolean algebras. We give Example 42 to clarify the last result.71

2. Preliminaries72

In this section, we recall certain definitions and results which are used throughout73

the paper, which are taken from the references [1, 5, 14, 21, 23, 27, 28] and [30].74

Definition 1 [1]. An algebra (L;∧,∨) of type (2, 2) is said to be a lattice if75

(1) the operations ∧,∨ are idempotent, commutative and associative,76

(2) the absorption identities hold on L, that is, (a ∧ b) ∨ a = a, (a ∨ b) ∧ a = a.77

Definition 2 [14]. A lattice L is called a bounded if it has the greatest element78

1 and the smallest element 0.79

Definition 3 [1]. A lattice L is called a distributive lattice if it satisfies either80

of the following equivalent distributive laws:81

(1) a ∧ (b ∨ c) = (a ∧ b) ∨ (a ∧ c),82

(2) a ∨ (b ∧ c) = (a ∨ b) ∧ (a ∨ c), for all a, b, c ∈ L.83

Definition 4 [28]. A nonempty subset I of a lattice L is called an ideal if84

(1) x ∨ y ∈ I for all x, y ∈ I,85

(2) x ∈ I and z ∈ L be such that z ≤ x imply z ∈ I.86

Definition 5 [23]. If φ 6= A ⊆ L, then (A] is the smallest ideal of a lattice L which87

contains A, where (A] = {x ∈ L : x ≤ a1 ∨ a2 ∨ · · · ∨ an, ai ∈ A, i = 1, 2, . . . , n}.88

The case that A = {a}, we write (a] instead of ({a}] and (a] is called the89

principal ideal of L generated by a, where (a] = {x ∈ L : x ≤ a}.90

Let I(L) be the set of all ideals of a lattice L. Then (I(L);∧,∨) forms a91

lattice, where92

I ∧ J = I ∩ J and I ∨ J = {x ∈ L : x ≤ i ∨ j : i ∈ I, j ∈ J}.93

Also, algebra (Ip(L);∨,∧) of all principal ideals of L is a sublattice of the lattice94

I(L), where95

(a] ∨ (b] = (a ∨ b] and (a] ∧ (b] = (a ∧ b].96

It is known that the lattice I(L) is distributive if and only if L is distributive.97

Definition 6 [1]. For any element a of a bounded lattice L, the dual pseudo-
complement a+ (the pseudo- complement a∗) of a is defined as follows

a ∨ x = 1 ⇔ a+ ≤ x (a ∧ x = 0 ⇔ x ≤ a∗).
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Definition 7 [23]. A distributive lattice L in which every element has a pseu-98

docomplement is called a distributive pseudo-complemented lattice or a distribu-99

tive p-algebra. Dually, a distributive lattice L in which every element has a dual100

pseudocomplement is called a distributive dual pseudocomplement lattice or dual101

distributive p-algebra.102

Definition 8 [5]. A distributive p-algebra (distributive dual p-algebra) L is called103

a Stone algebra (dual Stone algebra) if x∗∨x∗∗ = 1 (x+∧x++ = 0) for all x ∈ L.104

Theorem 1 [1]. Let L be a distributive p-algebra (distributive dual p-algebra).105

Then for any two elements a, b of L, we have106

(1) 0∗∗ = 0 and 1∗∗ = 1 (0++ = 0 and 1++ = 1),107

(2) a ∧ a∗ = 0 (a ∨ a+ = 1),108

(3) a ≤ b implies b∗ ≤ a∗ (a ≥ b implies b+ ≥ a+),109

(4) a ≤ a∗∗ (a++ ≤ a),110

(5) a∗∗∗ = a∗ (a+++ = a+),111

(6) (a ∨ b)∗ = a∗ ∧ b∗ ((a ∧ b)+ = a+ ∨ b+),112

(7) (a ∧ b)∗ = a∗ ∨ b∗ ((a ∨ b)+ = a+ ∧ b+),113

(8) (a ∨ b)∗∗ = a∗∗ ∨ b∗∗ ((a ∧ b)++ = a++ ∧ b++),114

(9) (a ∧ b)∗∗ = a∗∗ ∧ b∗∗ ((a ∨ b)++ = a++ ∨ b++).115

Definition 9 [30]. A Double Stone-algebra L is an algebra 〈L,∗ ,+ 〉, where116

(i) (L,∗ ) is a Stone algebra,117

(ii) (L,+ ) is a dual Stone algebra.118

Definition 10 [21]. A regular double Stone algebra (briefly RD-Stone algebra)119

L is a double Stone such that120

x∗∗ = y∗∗ and x++ = y++ imply x = y.121

Let L be a double Stone algebra. The element a ∈ L is called a closed122

element of L if a∗∗ = a and the element a ∈ L is called a dual closed element of123

L if a++ = a. An element d ∈ L is called dense if d∗ = 0 and an element d ∈ L124

is called dual dense if d+ = 1.125

Lemma 2 [28]. Let L be a double Stone algebra. Then126

(1) the set D(L) = {a ∈ L | a∗ = 0} = {a ∨ a∗ | a ∈ L} of all dense elements of127

L is a filter of L,128

(2) the set D(L) = {a ∈ L | a+ = 1} = {a ∧ a+ | a ∈ L} of all dual dense ele-129

ments of L is an ideal of L,130
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(3) the set B(L) = {a∗ : a ∈ L} = {a+ : a ∈ L} of all closed elements of L131

forms a Boolean subalgebra of L,132

(4) the set K(L) = D(L) ∩ D(L) is called the core of L, we have two cases of133

K(L), namely, K(L) = φ or K(L) 6= φ.134

It is easy to show the proof of the following two lemmas.135

Lemma 3. The non empty core K(L) of a RD-Stone algebra L has exactly one136

element.137

Definition 11. A regular double Stone algebra with non empty core is called a138

core regular double Stone algebra (briefly CRD-Stone algebra).139

Lemma 4. Let L be a CRD-Stone algebra with the core k. Then140

(1) D(L) = [k), that is, D(L) is a principal filter of L generated by k,141

(2) D(L) = (k], that is, D(L) is a principal ideal of L generated by k.142

We use k for the core element of a CRD-Stone algebra L, that is,K(L) = {k}.143

Now, we give examples of CRD-Stone algebras and RD-Stone algebras with144

empty core.145

Example 5. (1) Let L = {0, x, y, 1 : 0 < x < y < 1} be the four element chain. It146

is clear that 〈L,∗ ,+ 〉 is a double Stone algebra, where x∗ = y∗ = 1∗ = 0, 0∗ = 1147

and 0+ = x+ = y+ = 1, 1+ = 0. Then K(L) = D(L) ∩ D(L) = {x, y, 1} ∩148

{x, y, 0} = {x, y} is a non empty core. We observe that L is not regular as149

x++ = y++ and x∗∗ = y∗∗, but x 6= y.150

(2) The double Stone algbra S3 = {0, k, 1 : 0 < k < 1} is the smallest non151

trival core regular double Stone algebra with core k, (S3 is called the discrete152

CRD-Stone algebra).153

(3) Every Boolean algebra (B;∨,∧,′ , 0, 1) can be regarded as a RD-Stone154

algebra with empty core, where x∗ = x+ = x′, for all x ∈ B and K(B) =155

{1} ∩ {0} = φ.156

Example 6. (1) Consider the bounded distributive lattice S9 in Figure 1. It157

is clear that L1 is a core regular double Stone algebra with core element k,158

where k∗ = 1∗ = y∗ = x∗ = 0, c∗ = a∗ = b, d∗ = b∗ = a, 1∗ = 0 and159

k+ = c+ = d+ = 0+ = 1, b+ = y+ = a, x+ = a+ = b, 0+ = 1.160

(2) Consider the bounded distributive lattice L1 in Figure 2. We observe that161

L1 is a regular double Stone algebra with empty core as K(L) = D(L1)∩D(L1) =162

{d, 1} ∩ {0, y} = φ, where 0∗ = d∗ = 1∗, c = x∗, x = c∗ = y∗, 1 = 0∗ and 0 = 1+,163

c = x+ = d+, x = c+, 1 = y+ = 0+.164

Lemma 7. If L is a CRD-Stone algebra with core element k, then every element165

x of L can be written by each of the following formulas:166
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Figure 1. S9 is a CRD-Stone algebra with core k.

Figure 2. L1 is a RD-Stone algebra with empty core.

(1) x = x∗∗ ∧ (x++ ∨ k) and its dual x = x++ ∨ (x∗∗ ∧ k),167

(2) x = x∗∗ ∧ (x ∨ k) and its dual x = x++ ∨ (x ∧ k).168

Definition 12 [1]. An equivalent relation θ on a lattice L is called a lattice169

congruence on L if (a, b) ∈ θ and (c, d) ∈ θ implies (a∨c, b∨d) ∈ θ and (a∧c, b∧d)170

∈ θ.171
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Theorem 8 [23]. An equivalent relation on a distributive lattice L is a lattice172

congruence on L if and only if (a, b) ∈ θ implies (a∨z, b∨z) ∈ θ and (a∧z, b∧z) ∈ θ173

for all z ∈ L.174

Definition 13. A lattice congruence θ on a dual Stone (Stone) algebra L is called175

a {+}-congruence ({∗}-congruence) if (a, b) ∈ θ implies (a+, b+) ∈ θ ((a, b) ∈ θ176

implies (a∗, b∗) ∈ θ).177

Definition 14. A lattice congruence θ on a D-Stone algebra L is called a con-178

gruence (or {∗,+ }-congruence) if (a, b) ∈ θ implies (a∗, b∗) ∈ θ and (a+, b+) ∈ θ.179

A binary relation Ψ+ defined a double Stone algebra L by180

(x, y) ∈ Ψ+ ⇔ x+ = y+181

is a {+}-congruence relation which is called the dual Glivenko congruence relation182

on L. It is known that the quotient lattice L/Ψ = {[x]Ψ : x ∈ L} is a Boolean183

algebra and L/Ψ ∼= B(L), where [x]Ψ = {y ∈ L : y+ = x+} is the congruence184

class of x modulo Ψ. Moreover, the element x++ is the smallest element of the185

congruence class [x]Ψ, [0]Ψ = D(L) and [1]Ψ = {1}.186

For a double Stone algebra L, we use Con(L) to denote the lattice of all187

congruence of L and Con+(L) to denote the lattice of all {+}-congruence of a188

dual Stone algebra (L,+ ). Also, we use ∇L and ∆L for the universal congruence189

L× L and equality congruence {(x, x) : x ∈ L} of L, respectively.190

Definition 15 [14]. A lattice congruence θ on a lattice L is called a principal con-191

gruence and is doneted by θ(a, b) if θ is the smallest congruence on L containing192

a, b on the same class.193

Theorem 9 [14]. If L is a distributive lattice and a, b ∈ L then the principal194

congruence θ(a, b) of L is given by195

(1) (x, y) ∈ θ(a, b) ⇔ x ∨ a ∨ b = y ∨ a ∨ b and x ∧ a ∧ b = y ∧ a ∧ b,196

(2) If a ≤ b, then (x, y) ∈ θ(a, b) ⇔ x ∨ b = y ∨ b and x ∧ a = y ∧ a,197

(3) (x, y) ∈ θ(0, b) ⇔ x ∨ b = y ∨ b.198

Throughout the paper, we will use L for a CRD-Stone algebra and k for the199

core element of L. For more information we refer the reader to [24, 31] for Stone200

algebras, [32] for double Stone algebras, [21] for regular double Stone algebras201

and [20, 27, 28, 29] for core regular double Stone algebras.202

3. k-ideals of CRD-Stone algebras203

In this section, we define the notion of k-ideal of a CRD-Stone algebra L and204

introduce many basic properties of such ideals. A characterization of a k-ideal205
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of a CRD-Stone algebra L is given. Also, we observe that the class Ik(L) of all206

k-ideals of L forms a bounded distributive lattice.207

Definition 16. An ideal I of a CRD-Stone algebra L with core k is called a208

k-ideal if k ∈ I.209

Let A be a non empty subset of a CRD-Stone algebra L. Consider A▽ as210

follows211

A▽ =
{

x ∈ L : x++ ≤ a++ ∨ k, for some a ∈ A
}

.212

Lemma 10. Let A be a non empty subset of a CRD-Stone algebra L, which is213

closed under ∨. Then A▽ is a k-ideal of L containing A.214

Proof. Clearly 0, k ∈ (A)▽. Let x, y ∈ (A)▽. Thus x++ ≤ a++ ∨ k, y++ ≤215

b++ ∨ k for some a, b ∈ A. Then (x ∨ y)++ ≤ (a ∨ b)++ ∨ k and a ∨ b ∈ A, imply216

x∨ y ∈ (A)▽. Now, let x ∈ L, y ∈ (A)▽ and x ≤ y. Then x++ ≤ y++ ≤ a++ ∨ k.217

So x ∈ (A)▽. Thus (A)▽ is k-ideal of L. Since, a++ ≤ a++ ∨ k, forall a ∈ A,218

then A ∈ A▽.219

Lemma 11. Let A, B be two subsets of a CRD-Stone algebra L, which are closed220

under ∨. Then221

(1) (A]▽ = A▽,222

(2) A ⊆ B ⇒ A▽ ⊆ B▽,223

(3) A▽ = (A] ∨D(L),224

(4) A▽▽ = A▽.225

Proof. (1) Since A is closed with respect to ∨, then for a ∈ (A], we have a ≤226

a1 ∨ a2 ∨ · · · ∨ an ∈ A, ai ∈ A, i = 1, 2, . . . , n. Immediately, we get227

(a]▽ = {x ∈ L : x++ ≤ a++ ∨ k, for some a ∈ (A]}

= {x ∈ L : x++ ≤ (a1 ∨ a2 ∨ · · · ∨ an)
++ ∨ k, a1 ∨ a2 ∨ · · · ∨ an ∈ A} = A▽.

(2) Suppose A ⊆ B and x ∈ A▽. Then x++ ≤ a++ ∨ k for some a ∈ A ⊆ B.228

It follows that x ∈ B▽. Thus A▽ ⊆ B▽.229

(3) Since (A] ⊆ (A]▽ = A▽ by (1) andD(L) = (k] ⊆ A▽, then (A]▽∨D(L) ⊆230

A▽. Conversely, let x ∈ A▽. Then x++ ≤ a++ ∨ k for some a ∈ A. We have231

x = x++ ∨ (x ∧ k) ≤ (a++ ∨ k) ∨ (x ∧ k) (by Lemma 7.(2))

= (a++ ∨ k ∨ x) ∧ (a++ ∨ k) (by distributivity of L)

= a++ ∨ k ≤ a ∨ k ∈ (a ∨ k]

⇒ x ∈ (a ∨ k] = (a] ∨ (k] = (a] ∨D(L) ⊆ (A] ∨D(L)

((as (a] ⊆ (A]).)
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Therefore A▽ = (A] ∨D(L).232

(4) By the definition of A▽, we have233

A▽▽ = {x ∈ L : x++ ≤ a++
1 ∨ k, for some a1 ∈ A

▽}

= {x ∈ L : x++ ≤ a++
1 ∨ k, a++

1 ≤ a++ ∨ k for some a ∈ A}

= {x ∈ L : x++ ≤ a++ ∨ k, for some a ∈ A} = A▽.
234

A characterization of k-ideals of a CRD-Stone algebra L is given in the235

following.236

Theorem 12. Let I be an ideal of a CRD-Stone algebra L with core k. Then237

the following statements are equivalent:238

(1) I is a k-ideal of L,239

(2) D(L) ⊆ I,240

(3) x ∧ x+ ∈ I, for all x ∈ L,241

(4) I = I▽.242

Proof. (1)⇒(2) Let I is a k-ideal of L. Then k ∈ I implies D(L) = (k] ⊆ I.243

(2)⇒(3) Let D(L) ⊆ I. Forall x ∈ L, we have x ∧ x+ ∈ D(L) ⊆ I.244

(3)⇒(4) By Lemma 10, I ⊆ I▽. For the converse, let y ∈ I▽. Then y++ ≤245

i++ ∨ k, for some i ∈ I. Thus y++ ≤ i++. By Lemma 7(2) y = y++ ∨ (y ∧ k) ≤246

i++ ∨ (y ∧ k). By (3), k = k ∧ k+ ∈ I, where k+ = 1. Since, i++, y ∧ k ∈ I, then247

i++ ∨ (y ∧ k) ∈ I and hence y ∈ I.248

(4)⇒(1) Since k ∈ I▽, Lemma 10. Then by (4), k ∈ I and hence I is a249

k-ideal of a CRD-Stone algebra L.250

As a consequence of Lemma 11 and Theorem 12, we invistigate the following251

Corollary 13 and Lemma 14, respectively.252

Corollary 13. For any two ideals I, J of a CRD-Stone algebra L, we have the253

following:254

(1) I ⊆ J ⇒ I▽ ⊆ J▽,255

(2) I▽▽ = I▽.256

Lemma 14. Let L be a CRD-Stone algebra L. Then257

(1) I▽ = I ∨D(L),258

(2) D(L) is the smallest k-ideal of L,259

(3) Every k-ideal of L can be expresed in the form I▽ for some I ∈ I(L).260

Let Ik(L)={I : I is a k–ideal of L}= {I▽ : I ∈ I(L)} be the set of all261

k-ideals of L.262
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Theorem 15. Let L be a CRD-Stone algebra L. Then for all I, J ∈ I(L)263

(1) (I ∨ J)▽ = I▽ ∨ J▽,264

(2) (I ∩ J)▽ = I▽ ∩ J▽.265

Proof. (1) Since I, J ⊆ I ∨ J . Then by Corollary 13(1), I▽, J▽ ⊆ (I ∨ J)▽.266

Thus, (I ∨ J)▽ is an upper bound of I▽ and J▽. Let H▽ be an upper bound of267

both I▽ and J▽ for some H ∈ Ik(L). Then I▽, J▽ ⊆ H▽ implies I, J ⊆ H▽.268

Hence, I ∨ J ⊆ H▽. Therefore, by Corollary 13(1) and (2), we get (I ∨ J)▽ ⊆269

H▽▽ = H▽. This deduce that (I ∨J)▽ is the least upper bound of both I▽ and270

J▽ in Ik(L). Then (I ∨ J)▽ = I▽ ∨ J▽.271

(2) Obviously, (I ∩ J)▽ ⊆ I▽ ∩ J▽. Conversely, let x ∈ I▽ ∩ J▽. Then272

x++ ≤ i++ ∨ k and x++ ≤ j++ ∨ k for some i ∈ I and j ∈ J . Hence x++ ≤273

(i++∨k)∧ (j++∨k) = (i++∧ j++)∨k = (i∧ j)++∨k. It yields that x ∈ (I∩J)▽274

as i ∧ j ≤ i, j imples i ∧ j ∈ I ∩ J . Therefore I▽ ∩ J▽ ⊆ (I ∩ J)▽.275

Theorem 16. The class Ik(L) of all k-ideals of a CRD-Stone algebra L forms276

a bounded distributive lattice and {1}-sublattice of I(L).277

Proof. From Theorem 15, (Ik(L);∨,∧) is a sublattice of the lattice I(L), where278

(I ∨ J)▽ = I▽ ∨ J▽ and (I ∩ J)▽ = I▽ ∩ J▽ for all I, J ∈ I(L).279

Then (Ik(L);∨,∧) is sublattice of I(L). Since I(L) is a distributive lattice,280

then Ik(L) is also distributive. Since D(L) and L are the smallest and the great-281

est members of Ik(L), respectively. Then (Ik(L);∨,∧,D(L), L) is a bounded282

distributive lattice on its own and hence a {1}-sublattice of I(L).283

4. Principal k-ideals of a CRD-Stone algebra284

In this section, we introduce the concept of principal k-ideals of a CRD-Stone285

algebra L and investigate many elegant properties of such ideals. A characteri-286

zation of a k-ideal of L is given via the principal k-ideals. It is observed the set287

of all principal k-ideals of a CRD-Stone algebra L is a Boolean ring and so a288

Boolean algebra.289

Now, let A = {a} be a subset of a CRD-Stone L. Then ready is seen that290

{a}▽ =
{

x ∈ L : x++ ≤ a++ ∨ k
}

.291

For brevity, set (a)▽ instead of {a}▽. Clearly, (0)▽ = D(L) and (1)▽ = L, are292

the smallest and the greatest k-ideals of L, respectively.293

Definition 17. A k-ideal I of a CRD-Stone algebra L is called a principal k-ideal294

of L if I is a principal ideal of L.295
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Theorem 17. Let L be a CRD-Stone algebra. Then for any x, y ∈ L, we get296

(1) y ∈ (x)▽ ⇔ y+ ∨ x = 1,297

(2) (x)▽= (x++ ∨ k] = (x++] ∨D(L), this is, (x)▽ is a principal k-ideal of L,298

(3) x ∈ D(L) ⇔ (x)▽ = D(L).299

Proof. (1) Let y ∈ (x)▽. Then, we have300

y++ ≤ x++ ∨ k ⇔ y+ ≥ x+

⇔ y+ ∨ x = 1 (by Definition 6)

(2) For all x ∈ L, we get301

(x)▽ = {y ∈ L : y++ ≤ x++ ∨ k}

= {y ∈ L : y++ ∨ (y ∧ k) ≤ x++ ∨ k ∨ (y ∧ k)}

= {y ∈ L : y ≤ x++ ∨ k} (by Lemma 7(2) and Definition 1(2))

= (x++ ∨ k]

= (x++] ∨ (k] = (x++] ∨D(L).

(3) Let x ∈ D(L). Then x+ = 1. Now,302

(x)▽ = (x++ ∨ k] (by(2))

= (0 ∨ k] = (k] = D(L).

The second implication is clear.303

More interesting properties of principal k-ideals are given in the following304

two lemmas.305

Lemma 18. Let L be a CRD-Stone algebra L. Then for any x, y ∈ L, we have306

(1) (x)▽▽ = (x)▽,307

(2) (x]▽ = (x)▽,308

(3) x ∈ (y)▽ ⇔ (x)▽ ⊆ (y)▽,309

(4) x ≤ y ⇒ (x)▽ ⊆ (y)▽.310

Lemma 19. Let L be a CRD-Stone algebra L. For any x, y ∈ L, we have311

(1) (x)▽ = (x++)▽,312

(2) (x ∧ y)▽=(x)▽ ∩ (y)▽,313

(3) (x ∨ y)▽ = (x)▽ ∨ (y)▽,314

(4) (x ∨ x+)▽ = (1)▽ = L,315
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(5) (x ∧ x+)▽ = D(L).316

Proof. (1) (x)▽ = {y ∈ L : y++ ≤ x++ ∨ k = (x++)++ ∨ k} = (x++)▽, as317

x++++ = x++.318

(2) By Theorem 17.(2), we get319

(x ∧ y)▽ = ((x ∧ y)++] ∨D(L)

= ((x++ ∧ y++)] ∨D(L)

= ((x++] ∩ (y++]) ∨D(L)

= ((x++] ∨D(L)) ∩ ((y++)] ∨D(L)) (by distributivity of I(L))

= (x)▽ ∩ (y)▽.

(3) By Theorem 17(2), we get320

(x ∨ y)▽ = ((x ∨ y)++] ∨D(L)

= ((x+ ∧ y+)+] ∨D(L)

= (x++ ∨ y++] ∨D(L)

= ((x++] ∨ (y++]) ∨D(L)

= ((x++] ∨D(L)) ∨ ((y++)] ∨D(L)) (by distributivity of I(L))

= (x)▽ ∨ (y)▽.

(4) Since x ∨ x+, we get (x ∨ x+)▽ = (1] = L.321

(5) Since x ∧ x+ ∈ D(L), then by Theorem 17(3), (x ∧ x+)▽ = D(L).322

Lemma 20. Let L be a CRD-Stone algebra L. For any x, y ∈ L, we have323

(1) (x)▽ = (y)▽ ⇔ x++ = y++⇔ x+ = y+,324

(2) (x)▽ = (y)▽ ⇒ (x ∧ z)▽ = (y ∧ z)▽, ∀z ∈ L,325

(3) (x)▽ = (y)▽ ⇒ (x ∨ z)▽ = (y ∨ z)▽, ∀z ∈ L.326

Now, we introduce the following important result.327

Theorem 21. Every principal k-ideal of L can be expressed as (x)▽ for some328

x ∈ L.329

Proof. Let (x] be a principal k-ideal of L. We claim that (x] = (x)▽. Since330

x ∈ (x)▽ then (x] ⊆ (x)▽. For the converse, let y ∈ (x)▽. Then331

y ∈ (x)▽ ⇒ y++ ≤ x++ ∨ k

⇒ y++ ∨ (y ∧ k) ≤ (x++ ∨ k) ∨ (y ∧ k) = (x++ ∨ k ∨ y) ∧ (x++ ∨ k)

= x++ ∨ k ≤ x ∨ k

⇒ y ≤ x ∨ k as y = y++ ∨ (y ∧ k)

⇒ y ∈ (x ∨ k] ⊆ (x] as k ≤ x.
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Therefore (x)▽ ⊆ (x] and hence (x)▽ = (x].332

A characterization of a k-ideal via the principal k-ideal is given in the follow-333

ing theorem.334

Theorem 22. Let I be an ideal of a CRD-Stone algebra L. Then the following335

statements are equivalent:336

(1) I is a k-ideal,337

(2) x++ ∈ I ⇒ x ∈ I,338

(3) for all x, y ∈ L, (x)▽ = (y)▽ and y ∈ I ⇒ x ∈ I,339

(4) I =
⋃

x∈I(x)
▽,340

(5) x ∈ I ⇒ (x)▽ ⊆ I.341

Proof. (1)⇒(2) Let I be a k-ideal of L and x++ ∈ I. Then k ∈ I implies342

x ∧ k ∈ I. Now, x++, x ∧ k ∈ I imply that x = x++ ∨ (x ∧ k) ∈ I.343

(2)⇒(3) Let (x)▽ = (y)▽, y ∈ I. Thus x ∈ (y)▽. Then, x++ ≤ y++ ∨ k344

implies x++ ≤ y++ ≤ y ∈ I. Thus, x++ ∈ I. By (2), we get x ∈ I.345

(3)⇒(4) For any x ∈ I, we have x ∈ (x)▽ ⊆
⋃

x∈I(x)
▽. Then I ⊆

⋃

x∈I(x)
▽.346

Conversely, let y ∈
⋃

x∈I(x)
▽. Then y ∈ (z)▽ for some z ∈ I. Hence, (y)▽ ⊆347

(z)▽, by Lemma 18(3). It follows that (y)▽ = (y)▽ ∩ (z)▽ = (y ∧ z)▽. Since348

y ∧ z ∈ I, then by (3), we get y ∈ I. Therefore,
⋃

x∈I(x)
▽ ⊆ I and hence349

⋃

x∈I(x)
▽ = I.350

(4)⇒(5) Assume (4). Let x ∈ I. Then by (4), we get x ∈ (i)▽ for some351

i ∈ I. Suppose t ∈ (x)▽. Then it concludes t ∈ (x)▽ ⊆ (i)▽with i ∈ I. Then352

t ∈
⋃

i∈I(i)
▽ = I and hence (x)▽ ⊆ I.353

(5)⇒(1) Assume (5). Since k ∈ (x)▽, ∀x ∈ I, then by (5), k ∈ (x)▽ ⊆ I.354

This proves that I is a k-ideal of L.355

Let Ipk(L) = {(x)▽ : x ∈ L} be the set of all principal k-ideal of a CRD-Stone356

algebra L.357

Theorem 23. Let L be a CRD-Stone algebra. Then (Ipk(L);+, •, (0)
▽, (1)▽)358

forms a Boolean ring, where + the addition operation and • the multiplication359

operation are defined as follows:360

(x)▽ + (y)▽ = ((x ∧ y+) ∨ (y ∧ x+))▽,361

(x)▽ • (y)▽ = (x ∧ y)▽.362

Proof. Let (x)▽, (y)▽, (z)▽ ∈ Ipk(L). Then we deduce the following properties:363
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(i) Associativity of +,364

(x)▽ + ((y)▽ + (z)▽)

= (x)▽ + ((y ∧ z+) ∨ (z ∧ y+))▽

= ((x ∧ {(y ∧ z+) ∨ (z ∧ y+)}+) ∨ (x+ ∧ {(y ∧ z+) ∨ (z ∧ y+)}))▽

= ({x ∧ y+ ∧ z+} ∨ {x ∧ z++ ∧ y++} ∨ {x+ ∧ y ∧ z+} ∨ {x+ ∧ z ∧ y+})▽

where365

(x ∧ {(y ∧ z+) ∨ (z ∧ y+)}+)

= (x ∧ {(y ∧ z+)+ ∧ (z ∧ y+)+}) (by Theorem 1(7))

= x ∧ {(y+ ∨ z++) ∧ (z+ ∨ y++)} (by Theorem 1(6))

= {(x ∧ y+) ∨ (x ∧ z++)} ∧ (z+ ∨ y++) (by distributivity of L)

= {(x ∧ y+) ∧ (z+ ∨ y++)} ∨ {(x ∧ z++) ∧ (z+ ∨ y++)} (by distributivity of L)

= (x ∧ y+ ∧ z+) ∨ (x ∧ y+ ∧ y++) ∨ (x ∧ z++ ∧ z+) ∨ (x ∧ z++ ∧ y++)

= (x ∧ y+ ∧ z+) ∨ (x ∧ z++ ∧ y++) as x+ ∧ x++ = 0, ∀x ∈ L.

On the other hand, we have366

((x)▽ + (y)▽) + (z)▽

= (((x ∧ y+) ∨ (y ∧ x+))▽ + z▽)

= (({(x ∧ y+) ∨ (y ∧ x+)} ∧ z+) ∨ ({(x ∧ y+) ∨ (y ∧ x+)}+ ∧ z))▽

= ({x ∧ y+ ∧ z+} ∨ {x+ ∧ y ∧ z+} ∨ {x++ ∧ y++ ∧ z} ∨ {x+ ∧ y+ ∧ z})▽

where367

({(x ∧ y+) ∨ (y ∧ x+)}+ ∧ z)

= ({(x ∧ y+)+ ∧ (y ∧ x+)+} ∧ z) (by Theorem 1(7))

= ({(x+ ∨ y++) ∧ (y+ ∨ x++)} ∧ z) (by Theorem 1(6))

= ({((x+ ∨ y++) ∧ y+) ∨ ((x+ ∨ y++) ∧ x++)} ∧ z) (by distributivity of L)

= {(x+ ∨ y++) ∧ y+ ∧ z} ∨ {(x+ ∨ y++) ∧ x++ ∧ z} (by distributivity of L)

= (x+ ∧ y+ ∧ z) ∨ (y++ ∧ y+ ∧ z) ∨ (x+ ∧ x++ ∧ z) ∨ (y++ ∧ x++ ∧ z)

= (x+ ∧ y+ ∧ z) ∨ (y++ ∧ x++ ∧ z) as x+ ∧ x++ = 0, ∀x ∈ L.

Now, we use the fact (x)▽ = (y)▽ ⇔ x++ = y++⇔ x+ = y+, see Lemma 20(1).
It is easy to check that

{{x ∧ y+ ∧ z+} ∨ {x ∧ z++ ∧ y++} ∨ {x+ ∧ y ∧ z+} ∨ {x+ ∧ z ∧ y+}}+

= {{x ∧ y+ ∧ z+} ∨ {x+ ∧ y ∧ z+} ∨ {x++ ∧ y++ ∧ z} ∨ {x+ ∧ y+ ∧ z}}+

= {x+ ∨ y++ ∨ z++} ∧ {x+ ∨ z+ ∨ y+} ∧ {x++ ∨ y+ ∨ z++} ∧ {x++ ∨ z+ ∨ y++}.
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Therefore, ({x∧y+∧z+}∨{x∧z++∧y++}∨{x+∧y∧z+}∨{x+∧z∧y+})▽=({x∧368

y+ ∧ z+} ∨ {x+ ∧ y ∧ z+} ∨ {x++ ∧ y++ ∧ z} ∨ {x+ ∧ y+ ∧ z})▽ implies ((x)▽ +369

(y)▽) + (z)▽ =(x)▽ + ((y)▽ + (z)▽).370

(ii) Since (x)▽ +(0)▽ = ((x∧ 0+)∨ (x+ ∧ 0))▽ = (x∨ 0)▽ = (x)▽,then (0)▽371

is the additive identity on Ipk(L).372

(iii) Commutativity of + and •,373

(x)▽ + (y)▽ = (x ∧ y+) ∨ (y ∧ x+)▽

= (y ∧ x+) ∨ (y+ ∧ x)▽

= (y)▽ + (x)▽,

(x)▽ • (y)▽ = (x ∧ y)▽

= (y ∧ x)▽

= (y)▽ • (x)▽.

(iv) It is clear that the additive inverse of (x)▽ ∈ IpK(L) is (x)▽ itself, that374

is, −(x)▽ = (x)▽.375

(v) The multiplicative identity of Ipk(L) is (1)
▽.376

(vii) The distributive law on Ipk(L),377

(x)▽ • {(y)▽ + (z)▽} = (x)▽ • ((y ∧ z+) ∨ (z ∧ y+))▽

= (x ∧ {(y ∧ z+) ∨ (z ∧ y+)})▽

= ({x ∧ y ∧ z+} ∨ {x ∧ z ∧ y+})▽,

and378

{(x)▽ • (y)▽}+ {(x)▽ • (z)▽}

= (x ∧ y)▽ + (x ∧ z)▽

= ({(x ∧ y) ∧ (x ∧ z)+} ∨ {(x ∧ y)+ ∧ (x ∧ z)})▽

= ({(x ∧ y) ∧ (x+ ∨ z+)} ∨ {(x+ ∨ y+) ∧ (x ∧ z)})▽

= ({x ∧ y ∧ x+} ∨ {x ∧ y ∧ z+} ∨ {x+ ∧ x ∧ z} ∨ {y+ ∧ x ∧ z})▽.

Then by Lemma 20(1), we get ({x ∧ y ∧ z+} ∨ {x ∧ z ∧ y+})▽ = ({x ∧ y ∧ x+} ∨379

{x ∧ y ∧ z+} ∨ {x+ ∧ x ∧ z} ∨ {y+ ∧ x ∧ z})▽.380

Therefore, (x)▽ • {(y)▽ + (z)▽} = {(x)▽ • (y)▽}+ {(x)▽ • (z)▽}.381

(viii) (x)▽ • (x)▽ = (x ∧ x)▽ = (x)▽. Consequently (Ipk(L);+, •, (0)
▽, (1)▽)382

is a Boolean ring.383

It is known that there is a one-to-one correspondence between Boolean alge-384

bras and Boolean rings (see [17]). Then we can convert the Boolean ring Ipk(L)385

into a Boolean algebra as follows.386



16 S. El-Assar, A. Badawy, T. El-Sheikh and E. Gomaa

Corollary 24. Let (Ipk (L);+, •, (0)
▽, (1)▽) be a Boolean ring of all principal k-387

ideals of a CRD-Stone algebra L. Then (Ipk(L);∨,∧,
′ , (0)▽, (1)▽) is a Boolean388

algebra, where389

(x)▽ ∨ (y)▽ = (x)▽ + (y)▽ + {(x)▽ • (y)▽} = (x ∧ y)▽,390

(x)▽ ∩ (y)▽ = (x)▽ • (y)▽ = (x ∧ y)▽,391

(x)▽′ = (x+)▽.392

Now, we give an example to clarify the basic properties of the class of all393

principal k-ideals of a certain CRD-Stone algebra L.394

Example 25. Consider the CRD-Stone algebra S9 which is given in Example395

6(1) (see Figure 1). The principal k-ideals of S9 are given as follows.396

(0)▽ = (c)▽ = (d)▽ = (k)▽ = (k], (a)▽ = (x)▽ = (x], (b)▽ = (y)▽ = (y]397

and (1)▽ = L = (1]. We determine the algebras (Ipk(L),+) and (Ipk (L), •) as in398

the following tables.399

+ (0)▽ (a)▽ (b)▽ (1)▽

(0)▽ (0)▽ (a)▽ (b)▽ (1)▽

(a)▽ (a)▽ (0)▽ (b)▽ (1)▽

(b)▽ (b)▽ (1)▽ (0)▽ (a)▽

(1)▽ (1)▽ (b)▽ (a)▽ (0)▽

• (0)▽ (a)▽ (b)▽ (1)▽

(0)▽ (0)▽ (0)▽ (0)▽ (0)▽

(a)▽ (0)▽ (a)▽ (0)▽ (a)▽

(b)▽ (0)▽ (0)▽ (b)▽ (b)▽

(1)▽ (0)▽ (a)▽ (b)▽ (1)▽

From the above tables, we abserve that (Ipk(L);+, •) forms a Boolean ring.400

Also, Figure 3. Shows that (Ipk(L);∨,∧,
′ , (0)▽, (1)▽) forms a Boolean algebra401

which is isomorphic to B(L), where ′ is given as, (0)▽′ = (1)▽, (a)▽′ = (b)▽,402

(b)▽′ = (a)▽, (1)▽′ = (0)▽.403

Theorem 26. Let L be a CRD-Stone algebra. Then404

(1) (Ik(L);∨,∧,D(L), L) is a {1}-sublattice of I(L),405

(2) (Ipk (L);∨,∧, (0)
▽, (1)▽) is a bounded sublattice of Ik(L),406

(3) B(L) is isomorphic to Ipk(L).407

Proof. (1) Let I, J ∈ Ik(L). Since k ∈ I, J , then I ∩ J and I ∨ J are k-ideals.408

Since k ∈ L = (1], then L is the greatest k-ideal of L, but D(L) = (k] is the409

smallest k-ideal of L. Then Ik(L) is a {1}-sublattice of the lattice I(L).410
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Figure 3. Ipk (L) and B(L) are isomorphic Boolean algebras.

(2) We have (x ∨ y)▽ = (x)▽ ∨ (y)▽ and (x ∧ y)▽ = (x)▽ ∧ (y)▽ for all411

(x)▽, (y)▽ ∈ Ipk(L). It is observed that (0)▽ = D(L), (1)▽ = L are the smallest412

and the greatest members of Ipk(L), respectively. Therefore, (I
p
k(L);∨,∧, (0)

▽, (1)▽)413

is a bounded sublattice of the lattice Ik(L).414

(3) Define mapping: f : B(L) −→ Ipk(L) by f(x) = (x)▽, for all x ∈ B(L).415

To prove that f is a homomorphism, let x, y ∈ B(L),416

f(x ∨ y) = (x ∨ y)▽

= (x)▽ ∨ (y)▽ (by Lemma 19(3))

= f(x) ∨ f(y)

Thus f(x ∨ y) = f(x) ∨ f(y). Similarly, we can get f(x ∧ y) = f(x) ∧ f(y).417

Then f is homomorphism. Let f(x) = f(y). Then (x)▽ = (y)▽ and hence418

x = x++ = y++ = y. Then f is an injective map. For all (x)▽ ∈ Ipk(L), we have419

(x)▽ = (x++)▽ = f(x++), x++ ∈ B(L). Then f is a surjective map. Therefore420

f is an isomorphism and B(L) ∼= Ipk(L).421

5. k-{+}-congruences on a CRD-Stone algebra422

In this section, we study the relationships between k-ideals and k-{+}-congruences423

of a CRD-Stone algebra L. Also, we describe the lattice Con+k (L) of all k-{
+}-424

congruences of L.425

Definition 18. A {+}-congruence θ on a CRD-Stone algebra L is called a k-426

{+}-congruence if k ∈ Ker θ, where Ker θ = {x ∈ L : (x, 0) ∈ θ} = [0]θ427
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Proposition 27. Define a binary relation θ on a core regular double Stone L as428

follows:429

(x, y) ∈ θ ⇔ (x)▽ = (y)▽.430

Then θ is a k-{+}-congruence on L. Moreover, θ = ψ+.431

Let I be a k-ideal of CRD-Stone algebra L. Define a binary relation θI on432

L as follows:433

θI = {(a, b) ∈ L× L : a ∨ i ∨ k = b ∨ i ∨ k, for some i ∈ I} .434

Theorem 28. Let I be a k-ideal of CRD-Stone algebra L. Then θI is a k-{+}-435

congerence on L such that Ker θI = I.436

Proof. It is Clear that θI is an equivalent relation on L. Let (a, b) ∈ θI . Then
a ∨ i ∨ k = b ∨ i ∨ k for some i ∈ I. Now for all c ∈ L, then by distributivity of
L, we get

(a ∧ c) ∨ i ∨ k = (b ∧ c) ∨ i ∨ k,

(a ∨ c) ∨ i ∨ k = (b ∨ c) ∨ i ∨ k.

Therefore (a ∧ c, b ∧ c), (a ∨ c, b ∨ c) ∈ θI . So by Theorem 8, θI is a lattice437

congruence on L. It remains to show that (a, b) ∈ θI implies (a+, b+) ∈ θI .438

(a, b) ∈ θI ⇒ a ∨ i ∨ k = b ∨ i ∨ k

⇒ a+ ∧ i+ ∧ k+ = b+ ∧ i+ ∧ k+

⇒ a+ ∧ i+ = b+ ∧ i+ as k+ = 1

⇒
(

a+ ∧ i+
)

∨ i =
(

b+ ∧ i+
)

∨ i

⇒
(

a+ ∨ i
)

∧
(

i+ ∨ i
)

=
(

b+ ∨ i
)

∧
(

i+ ∨ i
)

(by distributivity of L)

⇒
(

a+ ∨ i
)

∧ 1 =
(

b+ ∨ i
)

∧ 1 (by Theorem 1(2))

⇒ a+ ∨ i = b+ ∨ i

⇒
(

a+, b+
)

∈ θI

Then θI is a {+}-congruence on L.439

Now, we prove that Ker θI = I.440

Ker θI = {x ∈ L : (0, x) ∈ θI}

= {x ∈ L : 0 ∨ i ∨ k = x ∨ i ∨ k, i ∈ I}

= {x ∈ L : i ∨ k = x ∨ i ∨ k}

= {x ∈ L : x ≤ i ∨ k}

= {x ∈ L : x++ ≤ i++ ≤ i++ ∨ k}

= {x : x ∈ I▽ = I} = I.

Since k ∈ I = Ker θI , then θI is a a k-{+}-congruence on L.441
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Theorem 29. For any k-ideals I, J of a CRD-Stone algebra L, we have442

(1) I ⊆ J ⇔ θI ⊆ θJ ,443

(2) ψ+ ⊆ θI , where ψ
+ is the dual Glivenko congruence on L,444

(3) θ
D(L) = ψ+,445

(4) θL = ∇L,446

(5) the quotient lattice L/θI forms a Boolean algebra.447

Proof. (1) Suppose I ⊆ J and (a, b) ∈ θI . Then there exists i ∈ I such that448

a ∨ i ∨ k = b ∨ i ∨ k. Since I ⊆ J , then (a, b) ∈ θJ . Thus θI ⊆ θJ . Conversely, let449

θI ⊆ θJ . Then by the above Theorem 28, I = Ker θI ⊆ Ker θJ = J .450

(2) Let (a, b) ∈ ψ+. Then a+ = b+ implies a++ = b++. Now, we have451

a ∨ i ∨ k = (a++ ∨ (a ∧ k)) ∨ i ∨ k (by Lemma 7(2))

= a++ ∨ i ∨ ((a ∧ k) ∨ k)

= a++ ∨ i ∨ k (by Definition 1(2))

= b++ ∨ i ∨ k

= b++ ∨ i ∨ ((b ∧ k) ∨ k)

= (b++ ∨ (b ∧ k)) ∨ i ∨ k

= b ∨ i ∨ k.

Thus (a, b) ∈ θI and hence ψ+ ⊆ θI .452

(3) Since, i+ = 1, for all i ∈ D(L), we get

θ
D(L) = {(a, b) ∈ L× L : a ∨ i ∨ k = b ∨ i ∨ k, i ∈ D(L)}

= {(a, b) ∈ L× L : a+ ∧ i+ ∧ k+ = b+ ∧ i+ ∧ k+}

= {(a, b) ∈ L× L : a+ = b+} = ψ+ (as i+ = k+ = 1).

(4) Since a ∨ 1 ∨ k = b ∨ 1 ∨ k for all a, b ∈ L, then (a, b) ∈ θL and hence453

θL = ∇L.454

(5) The quotient set L/θI is {[a]θI : a ∈ L}, where [a]θI is the congruence455

class of an element a ∈ L modulo θI . It is known that L/θI = (L/θI ;∨,∧, [1]θI ,456

[0]θI) is a bounded distributive lattice, where [0]I = I, [1]θI are the bounds of457

L/θI and [a]θI ∧ [b]θI = [a∧ b]θI , [a]θI ∨ [b]θI = [a∨ b]θI . Define L/θI by [a]′θI =458

[a+]θI , since [a]θI ∧ [a+] θI = [a∧a+]θI = [0]θI , [a]θI ∨ [a+]θI = [a∨a+]θI = [1]θI459

and [a]′′θI = [a+]′θI = [a++]θI = [a]θI . Then (L/θI ;∨,∧,
′ , [0]θI , [1]θI) is a460

Boolean algebra.461

Let Con+k (L) ={θI : I ∈ Ik(L)} be the set of all k-{+}-congruences on L462

which are induced by the k-ideals of L. Using Theorem 29. We can show the463

following results.464
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Theorem 30. For any θI and θJ of Con+k (L), we have the following:465

(1) θI ∩ θJ = θ(I∩J),466

(2) θI ∨ θJ = θ(I∨J),467

(3)
(

Con+k (L);∨,∧, θD(L)
, θL

)

forms a bounded lattice and a sublattice of468

Con+(L).469

Proof. (1) Since I ∩ J ⊆ I, J , by Theorem 29 θ(I∩J) ⊆ θI , θJ implies θ(I∩J) ⊆
θI ∩ θJ . Conversely, let (a, b) ∈ θI ∩ θJ . We get

(a, b) ∈ θI ∩ θJ ⇒ (a, b) ∈ θI and (a, b) ∈ θJ

⇒ a ∨ i ∨ k = b ∨ i ∨ k for some i ∈ I and a ∨ j ∨ k = b ∨ j ∨

k for some j ∈ J

⇒ (a ∨ i ∨ k) ∧ (a ∨ j ∨ k) = (b ∨ i ∨ k) ∧ (a ∨ j ∨ k)

⇒ (a ∨ k ∨ i) ∧ (a ∨ k ∨ j) = (b ∨ k ∨ i) ∧ (a ∨ k ∨ j)

⇒ a ∨ k ∨ (i ∧ j) = b ∨ k ∨ (i ∧ j)

⇒ (a, b) ∈ θ(I∩J) as (i ∧ j) ∈ (I ∩ J).

Then θI ∩ θJ ⊆ θ(I∩J) and hence θI ∩ θJ = θ(I∩J).470

(2) Since I, J ⊆ I ∨ J , then by Theorem 29, θI , θJ ⊆ θ(I∨J). Thus, θ(I∨J) is471

an upper bound of θI ,θJ . Conversely, let θk be an upper bound of θI and θJ , for472

k ∈ Ik(L). Then θI , θJ⊆ θk. Hence I, J ⊆ k as I ∨ J is the least upper bound of473

I, J on Ik(L). By Theorem 29, θI , θJ⊆ θk. Therefore θ(I∨J) is the least upper474

bound of θI ,θJ . This proves that θI ∨ θJ = θ(I∨J).475

(3) From (1) and (2), it is clear that (Con+k (L);∨,∧) forms a sublattice of476

Con+(L). Since θ
D(L)

and θL are the smallest and the greatest members of477

Con+k (L), respectively. Then (Con+k (L);∨,∧, θD(L), θL) is a bounded lattice.478

Now, we introduce the following interesting results.479

Theorem 31. For every k-{+}-congruence θ on a CRD-Stone algebra L, we480

have481

(1) [0] θ is a k-ideal of L,482

(2) θ can be expressed as θI for some k-ideal I of L.483

Proof. (1) It is clear that [0]θ = {x ∈ L : (x, 0) ∈ θ)} = Ker θ. It is known484

that the Ker θ is an ideal of L. Since θ is a k-{+}-congruence, then k ∈ Ker θ.485

Therefore [0]θ is a k-ideal of L.486

(2) We claim that θ = θ[0]θ. Let (x, y) ∈ θ. Since (k, k) ∈ θ hence487

(x ∧ k, y ∧ k) ∈ θ. Since [0]θ is a k-ideal of L, then x ∧ k, y ∧ k ∈ [0]θ. Hence488
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(x ∧ k, y ∧ k) ∈ θ[0]θ. Now, we prove that (x++, y++) ∈ θ[0]θ.489

(

x+, y+
)

∈ θ ⇒
(

x+ ∧ x++, y+ ∧ x++
)

∈ θ and
(

x+ ∧ y++, y+ ∧ y++
)

∈ θ

⇒
(

0, y+ ∧ x++
)

∈ θ and
(

x+ ∧ y++, 0
)

∈ θ (by Definition 8)

⇒ x+ ∧ y++, y+ ∧ x++ ∈ [0]θ

⇒
(

x+ ∧ y++, y+ ∧ x++
)

∈ θ[0]θ

⇒
(

x+ ∨
(

x+ ∧ y++
)

, x+ ∨
(

y+ ∧ x++
))

=
(

x+, x+ ∨ y+
)

θ[0]θ

(by Definition 1(2))

and
(

y+ ∨
(

x+ ∧ y++
)

, y+ ∨
(

y+ ∧ x++
))

=
(

x+ ∨ y+, y+
)

∈ θ[0]θ

⇒
(

x+, y+
)

∈ θ[0]θ

⇒
(

x++, y++
)

∈ θ[0]θ.

Now, (x++, y++) ∈ θ[0]θ and (x ∧ k, y ∧ k) ∈ θ[0]θ imply that (x, y) = (x++ ∨490

(x ∧ k) , y++ ∨ (y ∧ k)) = (x++, y++) ∨ (x ∧ k, y ∧ k) ∈ θ[0]θ. Then θ ⊆ θ[0]θ. For491

the converse, let (x, y) ∈ θ[0]θ. Then (x ∧ k, y ∧ k) ∈ θ[0]θ. Since x∧k, y∧k ∈ [0]θ,492

then (x ∧ k, y ∧ k) ∈ θ.493

Now, we prove that (x++, y++) ∈ θ for all (x, y) ∈ θ[0]θ494

(x, y) ∈ θ[0]θ

⇒
(

x+, y+
)

∈ θ[0]θ

⇒
(

x+ ∧ x++, y+ ∧ x++
)

,
(

x+ ∧ y++, y+ ∧ y++
)

∈ θ[0]θ

⇒
(

0, y+ ∧ x++
)

,
(

x+ ∧ y++, 0
)

∈ θ[0]θ as x+ ∧ x++ = 0, y+ ∧ y++ = 0

⇒ x+ ∧ y++, y+ ∧ x++ ∈ [0]θ

⇒
(

x+ ∧ y++, y+ ∧ x++
)

∈ [0]θ

⇒
(

x+∨
(

x+∧y++
)

, x+∨
(

y+∧ x++
))

,
(

y+∨
(

x+∧ y++
)

, y+∨
(

y+∧ x++
))

∈ θ

⇒
(

x+,
(

x+ ∨ y+
)

∧
(

x+ ∨ x++
))

,
((

y+ ∨ x+
)

∧
(

y+ ∨ y++
)

, y+
)

∈ θ

(by Definition 1(2))

⇒
(

x+, x+ ∨ y+
)

,
(

x+ ∨ y+, y+
)

∈ θ (by Definition 8)

⇒
(

x+, y+
)

∈ θ

⇒
(

x++, y++
)

∈ [0]θ.

Now, (x++, y++) ∈ θ and (x ∧ k, y ∧ k) ∈ [0]θ imply that (x, y) = (x++, y++)495

∨ (x ∧ k, y ∧ k) ∈ θ. Therefore θ[0]θ ⊆ θ and θ = θ[0]θ.496

According to Theorem 30 and Theorem 31, we observe that there is a one497

to one correspondence between the elements of the lattice Ik(L) of all k-ideals of498

a CRD-Stone algebra L and the elements of the lattice Con+k (L) of all k-{+}-499

500
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Congruences of L. In fact, this deduces that the lattices Ik(L) and Con
+
k (L) are501

isomorphic and hence the lattice Con+k (L) is a distributive lattice.502

Theorem 32. Let L be a CRD-Stone algebra. Then the lattices Ik(L) and503

Con+k (L) are isomorphic and hence Con+k (L) is a distributive lattice.504

Proof. Define a map h: Ik(L) −→ Con+k (L) by h(I) = θI , for all I ∈ Ik(L).505

From Theorem 30, for I, J ∈ Ik(L), we have506

h(I ∨ J) = θI ∨ θJ = θ(I∨J) = h(I) ∨ h(J),507

h(I ∩ J) = θI ∩ θJ = θ(I∩J) = h(I) ∩ h(J),508

h(D(L)) = θ
D(L)

= ψ+,509

h(L) = θL = ∇L.510

Then h is (0,1)-lattice homomorphism. Let h(I) = h(J). Then θI = θJ implies511

I = J . Thus h is an injective map. For each θ ∈ Con+k (L), by Theorem 31(2),512

we have θ = θI for some I ∈ Ik(L). Then h(I) = θI = θ implies that h is a513

surjective. Therefore, h is an isomorphism and hence Ik(L) and Con+k (L) are514

isomorphic lattices. Since Ik(L) is a distributive lattice (see Theorem 16), then515

also, Con+k (L) a distributive lattice.516

6. Principal k-{+}-Congruences on a CRD-Stone algebra517

In this section, we describe the principal k-{+}-Congruences on a CRD-Stone518

algebra L which are induced by the principal k-ideals of L. Also, we describe the519

algebraic structure of the class Conpk(L) all principal k-{
+}-ideals of L.520

Proposition 33. Let L be a CRD-Stone algebra L and I = (x)▽. Then θ(x)▽521

is given as follows:522

θ(x)▽ = {(a, b) ∈ L× L : a ∨ x ∨ k = b ∨ x ∨ k} and Ker θ(x)▽ = (x)▽.523

Proof. Let I = (x)▽. Then

θI = θ(x)▽ =
{

(a, b) ∈ L× L : a ∨ i ∨ k = b ∨ i ∨ k, for some i ∈ (x)▽
}

.

Let (a, b) ∈ θI . Since I = (x)▽, thus a ∨ i ∨ k = b ∨ i ∨ k, for some i ∈ (x)▽ and524

hence a++ ∨ i++ = b++ ∨ i++. Since i ∈ (x)▽, then i++ ≤ x++ ∨ k and we have525

i++ ≤ x++.526
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a ∨ x ∨ k = (a++ ∨ (a ∧ k)) ∨ (x++ ∨ (x ∧ k)) ∨ k (by Lemma 7(2))

= (a++ ∨ (a ∧ k)) ∨ x++ ∨ ((x ∧ k) ∨ k)

= (a++ ∨ (a ∧ k)) ∨ x++ ∨ k (by Definition 1(2))

= a++ ∨ x++ ∨ ((a ∧ k) ∨ k)

= a++ ∨ x++ ∨ k (by Definition 1(2))

= b++ ∨ x++ ∨ k

= b++ ∨ x++ ∨ (x ∧ k) ∨ (b ∧ k) ∨ k

= (b++ ∨ (b ∧ k)) ∨ (x++ ∨ (x ∧ k)) ∨ k

= b ∨ x ∨ k.

Then, we have (a, b) ∈ θ(x)▽ if and only if a∨x∨ k = b∨x∨ k and hence θ(x)▽ =527

{(a, b) ∈ L× L : a ∨ x ∨ k = b ∨ x ∨ k}. From Theorem 28, Ker θ(x)▽ = (x)▽.528

Definition 19. A k-{+}-congruence θ on a CRD-Stone algebra L is called a529

principal k-{+}-congruence if θ is a principal {+}-congruence on L.530

Proposition 34. For any element x of a CRD-Stone algebra L, define θ(0, x++
531

∨ k) on L as follows532

θ(0, x++ ∨ k) = {(a, b) ∈ L× L : a ∨ x++ ∨ k = b ∨ x++ ∨ k}.533

Then θ(0, x++∨k) is a principal k-{+}-congruence on L and Ker θ(0, x++∨k) =534

(x++ ∨ k] = (x)▽.535

Proof. It is known that θ(0, x++ ∨ k) is a principal lattice congruence on L (see536

Theorem 9(3)).537

Let (a, b) ∈ θ(0, x++ ∨ k). Then, we get538

a ∨ x++ ∨ k = b ∨ x++ ∨ k

⇒ a+ ∧ x+ ∧ k+ = b+ ∧ x+ ∧ k+

⇒ a+ ∧ x+ = b+ ∧ x+ as k+ = 1

⇒ (a+ ∧ x+) ∨ (x++ ∨ k) = (b+ ∧ x+) ∨ (x++ ∨ k)

⇒ (a+ ∨ x++ ∨ k) ∧ (x+ ∨ x++ ∨ k) = (b+ ∨ x++ ∨ k) ∧ (x+ ∨ x++ ∨ k)

⇒ a+ ∨ x++ ∨ k = b+ ∨ x++ ∨ k as x+ ∨ x++ = 1.

Then (a+, b+) ∈ θ(0, x++ ∨ k). Thus θ(0, x++ ∨ k) a principal {+}-congruence539

on L. Since 0 ∨ x++ ∨ k = k ∨ x++ ∨ k, then (0, k) ∈ θ(0, x++ ∨ k). Then540

k ∈ Ker θ(0, x++ ∨ k) and hence θ is a principal k-{+}-congruence on L.541
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Now, for every for all x ∈ L, we prove Ker θ(0, x++ ∨ k) = (x++ ∨ k].

Ker θ(0, x++ ∨ k) =
{

y ∈ L : (0, y) ∈ θ(0, x++ ∨ k)
}

=
{

y ∈ L : x++ ∨ k = y ∨ x++ ∨ k
}

=
{

y ∈ L : y ≤ x++ ∨ k
}

= (x++ ∨ k]

= (x)▽.
542

Theorem 35. Let x be an element of a CRD-Stone algebra L. Then543

θ(0, x++ ∨ k) = θ(x)▽ .544

Proof. Let (a, b) ∈ θ(0, x++ ∨ k). Then

a ∨ x++ ∨ k = b ∨ x++ ∨ k ⇒ a ∨ x++ ∨ x ∨ k = b ∨ x++ ∨ x ∨ k

⇒ a ∨ x ∨ k = b ∨ x ∨ k

⇒ (a, b) ∈ θ(x)▽ .

Thus θ(0, x++ ∨ k) ⊆ θ(x)▽ . Conversely, let (a, b) ∈ θ(x)▽ . Then we get545

a ∨ x ∨ k = b ∨ x ∨ k

⇒ a ∨ (x++ ∨ (x ∧ k)) ∨ x ∨ k = b ∨ (x++ ∨ (x ∧ k)) ∨ x ∨ k (by Lemma 7(2))

⇒ a ∨ x++ ∨ ((x ∧ k) ∨ k) = b ∨ x++ ∨ ((x ∧ k) ∨ k) (by Definition 1(2))

⇒ a ∨ x++ ∨ k = b ∨ x++ ∨ k

⇒ (a, b) ∈ θ(0, x++ ∨ k).

Then θ(x)▽ ⊆ θ(0, x++ ∨ k) and hence θ(x)▽ = θ(0, x++ ∨ k).546

Corollary 36. Let L be a CRD-Stone algebra. Then547

Ker θ(x)▽ = Ker θ(0, x++ ∨ k) = (x++ ∨ k] = (x)▽.548

A charclerization of a principle k-{+}-congruence on a CRD-Stone algebra549

L is given in the following two theorems.550

Theorem 37. Let θ be a principle {+}-congruence of L. Then θ(0, a) is principle551

k-{+}-congruence if and only if k ≤ a.552

Proof. If θ is a principle k-{+}-congruence, then k ∈ Ker θ(0, a) implies (k, 0) ∈553

θ(0, a) and hence k∨a = 0∨a = a. Thus k ≤ a. Conversely, let k ≤ a and θ(0, a)554

is a principal k-{+}-congruence. Then (k, 0) ∈ θ(0, a). Since k ∈ Ker θ(0, a),555

thus θ(0, a) is a k-{+}-congruence on L.556
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Theorem 38. Let θ(0, a) be principle k-{+}-congruence on L. Then θ(0, a) =557

θ(a)▽ if and only if k ≤ a.558

Proof. Let θ(a, b) be a k-{+}-congruence on L and θ(0, a) = θ(a)559

θ(0, a) = θ(a)▽ ⇒ k ∈ Ker θ(0, a) = Ker θ(a)▽

⇒ (k, 0) = θ(0, a)

⇒ k ∨ a = 0 ∨ a = a

⇒ k ≤ a.

Conversely, let k ≤ a and (x, y) ∈ θ(0, a).560

(x, y) ∈ θ(0, a) ⇒ x ∨ a = y ∨ a

⇒ x ∨ a ∨ k = y ∨ a ∨ k

⇒ (x, y) ∈ θ(a)▽ .

Then θ(0, a) ⊆ θ(a)▽ . Let (x, y) ∈ θ(a)▽ . Then we have561

(x, y) ∈ θ(a)▽ ⇒ x ∨ a ∨ k = y ∨ a ∨ k

⇒ x ∨ a = y ∨ a

⇒ (x, y) ∈ θ(0, a).

Then θ(a)▽ ⊆ θ(0, a) and hence θ(a)▽ = θ(0, a).562

Corollary 39. Every principle k-{+}-congruence θ(0, a) on CRD-Stone algebra563

L can be expressed as θ(0, a++ ∨ k).564

Let Conpk(L) =
{

θ(x)▽ : x ∈ L
}

be the class of all principal k-{+}-congerences565

which are induced by the principal k-ideals of L. Theorem 40 shows that the class566

Conpk(L) forms a Boolean ring which is isomorphic to the Boolean ring Ipk(L).567

Theorem 40. Let L be a CRD-Stone algebra. Then (Conpk(L);⊕,⊙, θ(1)▽ , θ(0)▽)
forms a Boolean ring, where

θ(x)▽ ⊕ θ(y)▽ = θ(x)▽+(y)▽ ,

θ(x)▽ ⊙ θ(y)▽ = θ(x)▽•(y)▽.

Moreover, Conpk(L) and I
p
k(L) are isomorphic Boolean rings.568

Proof. According to Theorem 23,
(

Ipk(L);+, •, (0)
▽, (1)▽

)

is a Boolean ring.569

Consequently, for any θ(x)▽ , θ(y)▽ , θ(z)▽ ∈ Con▽k (L), we use the properties of the570

ring
(

Ipk(L),+, •
)

to show the following properties.571
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(i) The associativity of ⊕ and ⊙.

θ(x)▽ ⊕
{

θ(y)▽ ⊕ θ(z)▽
}

= θ(x)▽ ⊕ θ(y)▽+(z)▽

= θ(x)▽+{(y)▽+(z)▽}

= θ{(x)▽+(y)▽}+(z)▽ by associativity of +

= θ(x)▽+(y)▽ ⊕ θ(z)▽

=
{

θ(x)▽ ⊕ θ(y)▽
}

⊕ θ(z)▽ ,

and
θ(x)▽ ⊙

{

θ(y)▽ ⊙ θ(z)▽
}

= θ(x)▽ ⊙ θ(y)▽•(z)▽

= θ(x)▽•{(y)▽•(z)▽}

= θ{(x)▽•(y)▽}•(z)▽ by associativity of •

= θ(x)▽•(y)▽ ⊙ θ(z)▽

=
{

θ(x)▽ ⊙ θ(y)▽
}

⊙ θ(z)▽ .

(ii) The additive identity and the multiplicative identity in Conpk(L) are θ(1)▽572

and θ(0)▽ , respectively.573

(iii) The commutativity of ⊕ and ⊙.574

θ(x)▽ ⊕ θ(y)▽ = θ(x)▽+(y)▽

= θ(y)▽+(x)▽ as + is commutative in Ipk(L)

= θ(y)▽ ⊕ θ(x)▽ ,

θ(x)▽ ⊙ θ(y)▽ = θ(b)▽•(y)▽

= θ(y)▽•(x)▽ as • is commutative in Ipk(L)

= θ(y)▽ ⊙ θ(x)▽ .

(iv) The additive inverse of θ(x)▽ is θ(x)▽ itself.575

(v) The distributive law holds as576

θ(x)▽ ⊙
{

θ(y)▽ ⊕ θ(z)▽
}

= θ(x)▽ ⊙ θ{(y)▽+(z)▽}

= θ(x)▽•{(y)▽+(z)▽}

= θ{(x)▽•(y)▽}+{(x)▽•(z)▽} by distributivity of Ipk(L)

= θ{(x)▽•(y)▽} ⊕ θ{(x)▽•(z)▽}

=
{

θ(x)▽ ⊙ θ(y)▽
}

⊕
{

θ(x)▽ ⊙ θ(z)▽
}

.
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(vii)
[

θ(x)▽
]2

= θ(x)▽ ⊙ θ(x)▽ = θ(x)▽•(x)▽ = θ(x)▽ .577

Therefore (Conpk(L);⊕,⊙, θ(1)▽ , θ(0)▽) is a Boolean ring. It is observed that the578

two rings Ipk(L) and Conpk(L) are isomorphic under the isomorphism (x)▽ 7→579

θ(x)▽ .580

Combining the above Theorem 40 and Corollary 24, we will investigate the581

following interesting result.582

Corollary 41. Let (Conpk(L);⊕,⊙, θ(1)▽ , θ(0)▽) be the Boolean ring of all princi-

pal k-{+}-congerences on a CRD-Stone algebra L. Then (Conpk(L);∨,∩,
′, θ(1)▽ ,

θ(0)▽) is a Boolean algebra, where

θ(x)▽ ∨ θ(y)▽ = θ(x∨y)▽ ,

θ(x)▽ ∩ θ(y)▽ = θ(x∧y)▽ ,

θ′(x)▽ = θ
(x+)▽.

Example 42. Consider the CRD-Stone algebra S9 as in Figure 1. The principal583

k-{+}-congerences of S9 are gives as follows:584

θ(0, 0) = θ(0, c) = θ(0, d) = θ(0, k) = △L,

θ(0, a) = θ(0, x) = {{0, d, c, k, a, x}, {b, y, 1}},

θ(0, b) = θ(0, y) = {{0, d, c, k, b, y}, {a, x, 1}},

θ(0, 1) = ▽L.

Then the following two tables show that (Conpk(L);⊕,⊙) is a Boolean ring, where585

Conpk(L) = {θ(0, 0), θ(0, a), θ(0, b), θ(0, 1)} = {θ(0)▽ , θ(a)▽ , θ(b)▽ , θ(1)▽}.586

587

⊕ θ(0, 0) θ(0, a) θ(0, b) θ(0, 1)

θ(0, 0) θ(0, 0) θ(0, a) θ(0, b) θ(0, 1)

θ(0, a) θ(0, a) θ(0, 0) θ(0, 1) θ(0, b)

θ(0, b) θ(0, b) θ(0, 1) θ(0, 0) θ(0, a)

θ(0, 1) θ(0, 1) θ(0, b) θ(0, a) θ(0, 0)

⊙ θ(0, 0) θ(0, a) θ(0, b) θ(0, 1)

θ(0, 0) θ(0, 0) θ(0, 0) θ(0, 0) θ(0, 0)

θ(0, a) θ(0, 0) θ(0, a) θ(0, 0) θ(0, a)

θ(0, b) θ(0, 0) θ(0, 0) θ(0, b) θ(0, b)

θ(0, 1) θ(0, 0) θ(0, a) θ(0, b) θ(0, 1)

Figure 4. Shows that (Conpk(L);⊕,⊙, θ(1)▽ , θ(0)▽) forms a Boolean algebra which is588

isomorphic to the Boolean algebra Ipk (L).589
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Figure 4. Conpk(L) and I
p

k (L) are isomorphic Boolean algebras.
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