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1 Abstract

12 In this paper, the authors study many interesting properties of ideals
13 and congruences of the class of a core regular double Stone algebra (briefly
14 CRD-Stone algebra). We introduce and characterize the concepts of k-ideals
15 and principal k-ideals of a core regular double Stone algebra with the core
16 element k£ and establish the algebraic structures of such ideals. Also, we
17 investigate k-{*}-congruences and principal k-{*}-congruences of a C RD-
18 Stone algebra L which are induced by k-ideals and principal k-ideals of
19 L, respectively. We obtain an isomorphism between the lattice of k-ideals
20 (principal k-ideals) and the lattice of k-{*}-congruences (principal k-{*}-
21 congruences) of a C RD-Stone algebra. We provide some examples to clarify
22 the basic results of this article.

23 Keywords: stone algebras, double Stone algebras, regular double Stone
2 algebras, core regular double Stone algebras, ideals, filters.

25 2020 Mathematics Subject Classification: 06D99, 03G10, 06D15.

2 1. INTRODUCTION

27 The concept of psudo-complement was considered in semi-lattices and distributive
s lattices by Frink [22] and Birkhof [12], respectively. The class S of Stone algebras
o was studied and characterized by several authors, like, Badawy [1], Chain and
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Griatzer [18, 19], Gratzer [23], Frink [22], Balbes [13] and Katrindk [25]. Reg-
ular double p-algebras and regular double Stone algebras are characterized by
Katrindk [25] and Comer [21], respectively.

The intersection of the set D(L) of dense elements and the set D(L) of
dual dense elements of a double Stone algebra L is called the core of L and
denoted by K(L). In a regular double Stone algebra L, the core K (L) is ei-
ther an empty set or a singleton set, if a regular double Stone algebra L has a
non-empty core, then such a core K (L) has exactly only one element, which is
denoted by k. Ravi Kumar et al. [27] introduced some properties of core reg-
ular double Stone algebra Srikanth et al. [28] and [29] studied many properties
of ideals (filters) and congruences of a core regular double Stone algebras, re-
spectively. Badawy et al. [9] constructed a double Stone algebra from a Stone
quadruple. Badawy [3] constructed each core regular Stone algebra from a suit-
able Boolean algebra B = (B;V,A,’,0,1). The constructing C RD-Stone algebra
(B2 v, A1 ,(0,0),(1,1)) with the core element (0,1), where

BPl = {(z,y) € BP: z <y},
(z,y) A (z1,1) = (96 A1,y Ayr),
(@, y) V (z1,51) = ($ Var,y V),

(z,9)" =y,
(z,y)" = (a',2).

In Section 2, We list the basic concepts and important results which are
needed throughout this paper. Also, we provide some examples of RD-Stone
algebras with core element k and RD-Stone algebras with empty core. We refer
the reader to [4, 7, 8, 10, 15] and [16] for filters, ideals and [2, 6, 11] for congruences
of lattices and p-algebras.

In Section 3, we introduce the k-ideals of a C RD-Stone algebra L and obtain
many related properties. A set of equivalent conditions for an ideal I of a CRD-
Stone algebra L to become a k-ideal is given. We observe that the class I (L) of
all k-ideals of L forms a bounded distributive lattice.

In Section 4, we define and characterize the concept of principal k-ideals of a
CRD-Stone algebra L. We show that the class [ ,f (L) of all principal k-ideals of
L is a Boolean ring and so a Boolean algebra. Example 25 describes the Boolean
algebra I} (L).

In Section 5, we investigate the k-{*}-congruences via k-ideals of a C'RD-
Stone algebra L. Also, we observe that the set Con; (L) of all k-{T}-congruences
forms a bounded distributive lattice which is isomorphic to the lattice I} (L) of
k-ideals.

In Section 6, we investigate and charaterize the principal k-{* }-congruences
of a CRD-Stone algebra L via principal k-ideals of L. Then, we study the
properties and the algebraic structure of the class Conf (L) of all principal k-{*}-
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congruences of L. Moreover, we show that I} (L) and Con} (L) are isomorphic
Boolean algebras. We give Example 42 to clarify the last result.

2. PRELIMINARIES

In this section, we recall certain definitions and results which are used throughout
the paper, which are taken from the references [1, 5, 14, 21, 23, 27, 28] and [30].

Definition 1 [1]. An algebra (L; A, V) of type (2,2) is said to be a lattice if
(1) the operations A,V are idempotent, commutative and associative,

(2) the absorption identities hold on L, that is, (a Ab) Va =a,(aVb)Aa=a.

Definition 2 [14]. A lattice L is called a bounded if it has the greatest element
1 and the smallest element 0.

Definition 3 [1]. A lattice L is called a distributive lattice if it satisfies either
of the following equivalent distributive laws:

(1) an(dVe)=(aNb)V (aAc),

(2) aVv(bAc)=(aVb)A(aVec), forall a,b,c € L.

Definition 4 [28]. A nonempty subset I of a lattice L is called an ideal if
(1) xvy el forall xz,y €I,

(2) z € I and z € L be such that z < z imply z € I.

Definition 5 [23]. If  # A C L, then (A] is the smallest ideal of a lattice L which
contains A, where (A]={x € L:z<a;VaaV---Vay,, a; €A, i=1,2,...,n}.

The case that A = {a}, we write (a] instead of ({a}] and (a] is called the
principal ideal of L generated by a, where (a] = {x € L : z < a}.

Let I(L) be the set of all ideals of a lattice L. Then (I(L);A,V) forms a
lattice, where

INJ=INnJandIVJ={xe€L:z<iVj:icl,jeJ}

Also, algebra (IP(L);V, A) of all principal ideals of L is a sublattice of the lattice
I(L), where

(a] V (b] = (a Vv b] and (a] A (b] = (a A b].
It is known that the lattice I(L) is distributive if and only if L is distributive.

Definition 6 [1]. For any element a of a bounded lattice L, the dual pseudo-
complement a* (the pseudo- complement a*) of a is defined as follows

aVr=1ea <z (aANz=0&2<a").
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Definition 7 [23]. A distributive lattice L in which every element has a pseu-
docomplement is called a distributive pseudo-complemented lattice or a distribu-
tive p-algebra. Dually, a distributive lattice L in which every element has a dual
pseudocomplement is called a distributive dual pseudocomplement lattice or dual
distributive p-algebra.

Definition 8 [5]. A distributive p-algebra (distributive dual p-algebra) L is called
a Stone algebra (dual Stone algebra) if *Vz** =1 (zT Axztt =0) for all z € L.

Theorem 1 [1]. Let L be a distributive p-algebra (distributive dual p-algebra).
Then for any two elements a,b of L, we have

1) 0*=0and 1™ =1 (0" =0and 17" =1),
aNa*=0 (aVat=1),

*=a* Ab* ((aAD)T =aT VbT),
*=a* Vb ((aVb)T =at AbT),
=gV ((aAb)TT =atT ADTT),
=g A ((aVh)TT =attvbtt).

(

(2)

(3)

(4)

(5) a™ =a” (™" =a¥),
(6)

(7)

(8)

9)

Definition 9 [30]. A Double Stone-algebra L is an algebra (L,* ;) where

(i) (L,*) is a Stone algebra,
(i) (L,") is a dual Stone algebra.

Definition 10 [21]. A regular double Stone algebra (briefly RD-Stone algebra)
L is a double Stone such that

* =y and 27T =y imply z = v.

Let L be a double Stone algebra. The element a € L is called a closed
element of L if a** = a and the element a € L is called a dual closed element of
L if a™ = a. An element d € L is called dense if d* = 0 and an element d € L
is called dual dense if d* = 1.

Lemma 2 [28]. Let L be a double Stone algebra. Then

(1) the set D(L) = {a € L|a*=0} ={aVa*|a€ L} of all dense elements of
L is a filter of L,

(2) the set D(L) = {a € L|a™ =1} = {aAa™ |a € L} of all dual dense ele-
ments of L is an ideal of L,
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(3) the set B(L) = {a* : a € L} = {at : a € L} of all closed elements of L

forms a Boolean subalgebra of L,

(4) the set K(L) = D(L)N D(L) is called the core of L, we have two cases of
K(L), namely, K(L) = ¢ or K(L) # ¢.

It is easy to show the proof of the following two lemmas.

Lemma 3. The non empty core K(L) of a RD-Stone algebra L has exactly one
element.

Definition 11. A regular double Stone algebra with non empty core is called a
core regular double Stone algebra (briefly C' RD-Stone algebra).

Lemma 4. Let L be a CRD-Stone algebra with the core k. Then
(1) D(L) = [k), that is, D(L) is a principal filter of L generated by k,

(2) D(L) = (k], that is, D(L) is a principal ideal of L generated by k.

We use k for the core element of a C RD-Stone algebra L, that is, K (L) = {k}.
Now, we give examples of CRD-Stone algebras and RD-Stone algebras with
empty core.

Example 5. (1) Let L = {0,z,y,1: 0 < x <y < 1} be the four element chain. It
is clear that (L,*,7) is a double Stone algebra, where z* = y* = 1* =0, 0* = 1
and 07 = 27 = y* =1, 1T = 0. Then K(L) = D(L)N D(L) = {z,y,1} N
{z,y,0} = {z,y} is a non empty core. We observe that L is not regular as
2t =yt and ¥ = y**, but = # v.

(2) The double Stone algbra S3 = {0,k,1 : 0 < k < 1} is the smallest non
trival core regular double Stone algebra with core k, (Ss3 is called the discrete
CRD-Stone algebra).

(3) Every Boolean algebra (B;V,A,,0,1) can be regarded as a RD-Stone
algebra with empty core, where z* = 2t = 2/, for all z € B and K(B) =

{1} n{0} = ¢.

Example 6. (1) Consider the bounded distributive lattice Sg in Figure 1. It
is clear that L; is a core regular double Stone algebra with core element k,
where k* = 1" = ¢y* = 2" =0, ¢ =a* =0, d =b* =a, 1* = 0 and
kt=ct=d"=0"=1,b"=y" =a, 27 =a" =b, 0" = 1.

(2) Consider the bounded distributive lattice L; in Figure 2. We observe that
L is a regular double Stone algebra with empty core as K(L) = D(L1)ND(Ly) =
{d,1} n{0,y} = ¢, where 0* =d* =1*, c=z*, 2 =c* =y*, 1=0*and 0 = 17,
c=axt=d",z=c",1=y" =0".

Lemma 7. If L is a CRD-Stone algebra with core element k, then every element
x of L can be written by each of the following formulas:
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Figure 1. Sy is a C RD-Stone algebra with core k.

0

Figure 2. L; is a RD-Stone algebra with empty core.

* A (Tt V k) and its dual x = 2TV (2 A k),
*A(zVEk) and its dual x = 27TV (x A k).
Definition 12 [1]. An equivalent relation 6 on a lattice L is called a lattice

congruence on L if (a,b) € 6 and (¢, d) € 6 implies (aVe,bVd) € 0 and (aAc,bAd)
€.
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Theorem 8 [23]. An equivalent relation on a distributive lattice L is a lattice
congruence on L if and only if (a,b) € 0 implies (aVz,bVz) € 0 and (aNz,bAz) € 0
for all z € L.

Definition 13. A lattice congruence 6 on a dual Stone (Stone) algebra L is called
a {T}-congruence ({*}-congruence) if (a,b) € 6 implies (a™,b") € 0 ((a,b) € 0
implies (a*,b*) € 0).

Definition 14. A lattice congruence 6 on a D-Stone algebra L is called a con-
gruence (or {*,7 }-congruence) if (a,b) € 0 implies (a*,b*) € § and (a™,b") € 6.

A binary relation U defined a double Stone algebra L by
(r,y) €Ut & at =yT

is a {1 }-congruence relation which is called the dual Glivenko congruence relation
on L. It is known that the quotient lattice L/¥ = {[z]¥ : z € L} is a Boolean
algebra and L/¥ = B(L), where [x]¥ = {y € L:y" =2"} is the congruence
class of £ modulo ¥. Moreover, the element ™1 is the smallest element of the
congruence class [z]¥, [0]¥ = D(L) and [1]¥ = {1}.

For a double Stone algebra L, we use Con(L) to denote the lattice of all
congruence of L and Con™*(L) to denote the lattice of all {*}-congruence of a
dual Stone algebra (L,* ). Also, we use V, and Ay, for the universal congruence

L x L and equality congruence {(z,z) : x € L} of L, respectively.

Definition 15 [14]. A lattice congruence 6 on a lattice L is called a principal con-
gruence and is doneted by 6(a,b) if 0 is the smallest congruence on L containing
a,b on the same class.

Theorem 9 [14]. If L is a distributive lattice and a,b € L then the principal
congruence 0(a,b) of L is given by
(1) (z,y) €0(a,b) & zVaVb=yVaVbandxNaNb=yANaAb,
(2) If a < b, then (z,y) € O(a,b) & zVb=yVbandx Na=yAa,
(3) (z,y) €0(0,b) & xVb=yVb.

Throughout the paper, we will use L for a C RD-Stone algebra and k for the
core element of L. For more information we refer the reader to [24, 31] for Stone

algebras, [32] for double Stone algebras, [21] for regular double Stone algebras
and [20, 27, 28, 29] for core regular double Stone algebras.

3. k-IDEALS OF CRD-STONE ALGEBRAS

In this section, we define the notion of k-ideal of a C'RD-Stone algebra L and
introduce many basic properties of such ideals. A characterization of a k-ideal
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of a CRD-Stone algebra L is given. Also, we observe that the class I} (L) of all
k-ideals of L forms a bounded distributive lattice.

Definition 16. An ideal I of a CRD-Stone algebra L with core k is called a
k-ideal if k € I.

Let A be a non empty subset of a C' RD-Stone algebra L. Consider AV as
follows

AV:{xGL:x++§a++\/kz, forsomeaEA}.

Lemma 10. Let A be a non empty subset of a CRD-Stone algebra L, which is
closed under V. Then AV is a k-ideal of L containing A.

Proof. Clearly 0,k € (A)V. Let x,y € (A)V. Thus 27" < o™t VE, y™F <
bt+ V k for some a,b € A. Then (zVy)™ < (aVb)T™ VEkand aVbe A, imply
zVy € (A)V. Now, let z € L,y € (A)V and x < y. Then 2zt <yt <attVE.
So x € (A)V. Thus (A)V is k-ideal of L. Since, a™ < a™" V k, forall a € A,
then A € AV. |

Lemma 11. Let A, B be two subsets of a C RD-Stone algebra L, which are closed
under V. Then

(1) (A)Y =AY,

(2) ACB= AV C BV,

(3) AV = (A]V D(L),

(4) AVV = AV,

Proof. (1) Since A is closed with respect to V, then for a € (A], we have a <
aiVasV---Va, € A, a; € A, 1=1,2,...,n. Immediately, we get

(aV ={zxeL:ax™" <a"" VE, for some a € (A]}

={zeLl:2t" <(ayVaaV---Va,)""VEk aVayVv---Va, c A} = AV.

(2) Suppose A C B and x € AV. Then 27+ < a™" V k for some a € A C B.
It follows that x € BY. Thus AV C BV.

(3) Since (A] C (A]Y = AV by (1) and D(L) = (k] € AV, then (A]VVD(L) C
AV. Conversely, let € AV. Then 27 < a't V k for some a € A. We have
r=zttVv(@Ak) < (a"TVE)V(zAk) (by Lemma 7.(2))
=(attVEVZ)A(atT VE) (by distributivity of L)
=a"tVvk<aVke (aVk]
= ze(aVkl=(aV (k] =(a)vD(L) C (A VvV D(L)
((as (a] € (A]).)
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Therefore AV = (A] VvV D(L).
(4) By the definition of AV, we have

AVV ={zx € L:a™ <afT Vk, for some a; € AV}
={zel:x"" <afTVka]T <a™ VEfor some a € A}

={reL:z"" <att VEk, forsomeac A} = AV. -

A characterization of k-ideals of a CRD-Stone algebra L is given in the
following.

Theorem 12. Let I be an ideal of a CRD-Stone algebra L with core k. Then
the following statements are equivalent:

(1) I is a k-ideal of L,

(2) D(L) <1,

(3) x ANzt €1, forallx € L,

(4) I=1V.

Proof. (1)=(2) Let I is a k-ideal of L. Then k € I implies D(L) = (k] C I.
(2)=(3) Let D(L) C I. Forall z € L, we have z Azt € D(L) C 1.

(3)=(4) By Lemma 10, I C IV. For the converse, let y € IV. Then y*+ <
itT V k, for some i € I. Thus yt+ <it*. By Lemma 7(2) y =yt vV (y A k) <
itV (yAk). By (3), k=kAkT €I, where kT = 1. Since, i*", y Ak € I, then
itV (yAk) €T and hence y € I.

(4)=(1) Since k € IV, Lemma 10. Then by (4), ¥ € I and hence [ is a
k-ideal of a C RD-Stone algebra L. [

As a consequence of Lemma 11 and Theorem 12, we invistigate the following
Corollary 13 and Lemma 14, respectively.

Corollary 13. For any two ideals I,J of a CRD-Stone algebra L, we have the
following:

(1) ICT=1IVCJY,

(2) IVV =1V,

Lemma 14. Let L be a CRD-Stone algebra L. Then

(1) IV =1vD(L),

(2) D(L) is the smallest k-ideal of L,

(3) Every k-ideal of L can be expresed in the form IV for some I € I(L).

Let I(L)={I : I is a k—ideal of L}= {IV : I € I(L)} be the set of all
k-ideals of L.
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Theorem 15. Let L be a CRD-Stone algebra L. Then for all I,J € I(L)
(1) IVvJ)V=IVVJY,
(2) INnJ)V=IVNJV.

Proof. (1) Since I,J C IV J. Then by Corollary 13(1), IV,JV C (I V J)V.
Thus, (I V J)V is an upper bound of IV and JV. Let HV be an upper bound of
both IV and JV for some H € Iy(L). Then IV,JV C HV implies I,J C HV.
Hence, IV J C HV. Therefore, by Corollary 13(1) and (2), we get (I V J)V C
HYVY = HV. This deduce that (I vV J)V is the least upper bound of both I'V and
JV in Ix(L). Then (I V J)V =1V VvV JV.

(2) Obviously, (I NJ)V C IV NJV. Conversely, let x € IV N JV. Then
T < i Vvkand 27" < jTT VvV k for some i € [ and j € J. Hence 27 <
(@TTVE)AGTTVE) = (TP A T VE = (iA§)TT VE. Tt yields that z € (INJ)V
as i Aj <i,jimplesi A j € INJ. Therefore IVNJV C (INJ)V. |

Theorem 16. The class Ix(L) of all k-ideals of a C RD-Stone algebra L forms
a bounded distributive lattice and {1}-sublattice of I(L).

Proof. From Theorem 15, (I(L);V,A) is a sublattice of the lattice I(L), where
(IVI)V=IVVJVand (INJ)V=IVNJV foral I,J € I(L).

Then (I;(L);V,A) is sublattice of I(L). Since I(L) is a distributive lattice,
then I (L) is also distributive. Since D(L) and L are the smallest and the great-

est members of I;(L), respectively. Then (Ix(L);V,A,D(L),L) is a bounded
distributive lattice on its own and hence a {1}-sublattice of I(L). |

4. PRINCIPAL k-IDEALS OF A C RD-STONE ALGEBRA

In this section, we introduce the concept of principal k-ideals of a C'RD-Stone
algebra L and investigate many elegant properties of such ideals. A characteri-
zation of a k-ideal of L is given via the principal k-ideals. It is observed the set
of all principal k-ideals of a C'RD-Stone algebra L is a Boolean ring and so a
Boolean algebra.

Now, let A = {a} be a subset of a CRD-Stone L. Then ready is seen that

{a}V={zeL:a™ <a™tVk}.

For brevity, set (a)V instead of {a}V. Clearly, (0)V = D(L) and (1)V = L, are
the smallest and the greatest k-ideals of L, respectively.

Definition 17. A k-ideal I of a C RD-Stone algebra L is called a principal k-ideal
of L if I is a principal ideal of L.
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Theorem 17. Let L be a CRD-Stone algebra. Then for any x,y € L, we get
1) ye @)V eytve=1,

(2) (z)V= (2t VE] = («t) v D(L), this is, (x)V is a principal k-ideal of L,
(3) z€ D(L) & (z)V = D(L).

Proof. (1) Let y € (x)V. Then, we have

gttt <att vk eyt >t
sytvr= (by Definition 6)

(2) For all = € L, we get

(z)V ={yeL:y"™ <a™"Vik}
={yeL:y"tVvynk)<zTTVEV(yArk)}
={yeL:y<ztt vk} (by Lemma 7(2) and Definition 1(2))
= (zTF Vi
= (&*F] Vv (k] = (="*] v D(L).

(3) Let © € D(L). Then 2 = 1. Now,

(@)V = (&7 Vi (by(2))
= (0V k] = (K = D(L).

The second implication is clear. [ |

More interesting properties of principal k-ideals are given in the following
two lemmas.

Lemma 18. Let L be a CRD-Stone algebra L. Then for any x,y € L, we have

1) (@)VV = (2)V,
(2) ]V = (2)V
3) €V e (@)Y SV,

4) z<y=(2)V C ().

Lemma 19. Let L be a CRD-Stone algebra L. For any x,y € L, we have
1) (@)V = (@=")V

(2) (@Ay)Y=(@)V N (Y)Y,

B) vy =(@)VV(yY,

(4) ( ;

4) (zvah)V=(1)V =

X

Q’\“
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(5) (z Aa™)V = D(L).

Proof. (1) (z)V ={y € L:y"™" <att vk = ()Tt VEk} = (zT1)V, as
A

(2) By Theorem 17.

(x Ay)Y

(2), we get
z Ay)*F]v D(L)
e Ayt v D(L)

(
(
: .
(

N (") v D(L)
v D(L) N ((y™)] v D(L)) (by distributivity of I(L))
z)¥ N (y)Y
(3) By Theorem 17(2), we get
(xVy)Y

(
(
(
(
= (

(ytH] VD))  (by distributivity of I(L))

(4) Since z V x, we get (x V2T)V = (1] = L.
(5) Since z A T € D(L), then by Theorem 17(3), (z A 1)V = D(L). ]
Lemma 20. Let L be a CRD-Stone algebra L. For any x,y € L, we have
1) @)V =@V & =yTreat =y",
(2) @)V =)V = (@Az)V=(yN2)V, VzelL,
3) (z)V=wV=@VvVz)V=_yVz)V, Vz€ L.
Now, we introduce the following important result.

Theorem 21. Every principal k-ideal of L can be expressed as (x)V for some
x € L.

Proof. Let (z] be a principal k-ideal of L. We claim that (z] = (z)V. Since
x € (x)V then (x] C (x)V. For the converse, let y € (2)V. Then
ye @)V =yt <zTtvik
=yttTV(yAk) < (@TTVE)V(yAR)=(@TTVEVY) AT VE)
=zt VvEk<zVk
=y<aVk asy=yTTV(yAk)
=ye(xVEklC(z] ask <.
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Therefore (z)V C (z] and hence (z)V = (z]. |

A characterization of a k-ideal via the principal k-ideal is given in the follow-
ing theorem.

Theorem 22. Let I be an ideal of a CRD-Stone algebra L. Then the following
statements are equivalent:

(1) I is a k-ideal,

(2) zttel=uzel,

(3) forallz,ye L, (x)V=(y)V andyecl = zecl,
4) I= Uxel(x)v:

(5) zel= (2)V CI.

Proof. (1)=(2) Let I be a k-ideal of L and 27 € I. Then k € I implies
Ak el Now, 2zt x Ak el imply that z =2tV (x Ak) € 1.

(2)=(3) Let (z)V = (y)V, y € I. Thus z € (y)V. Then, zt+ < ytt Vv k
implies 1+ < y*™ <y e I. Thus, 27 € I. By (2), we get = € I.

(3)=(4) For any x € I, we have z € (x)V C |J,c;(2)V. Then I C J ;(2)V.
Conversely, let y € ,e;(7)V. Then y € (2)V for some z € I. Hence, (y)V C
(2)V, by Lemma 18(3). It follows that (y)V = (y)V N (2)V = (y A 2)V. Since
y Az € I, then by (3), we get y € I. Therefore, |J,c;(z)V C I and hence
Uxel(x)v =1

(4)=(5) Assume (4). Let x € I. Then by (4), we get z € (¢)V for some
i € I. Suppose t € (z)V. Then it concludes ¢t € (z)V C (i)Vwith ¢ € I. Then
t € Uje;(9)V = I and hence (z)V C I.

(5)=(1) Assume (5). Since k € (z)V, Vz € I, then by (5), k € (x)V C I.
This proves that I is a k-ideal of L. [ |

Let I} (L) = {(z)V : « € L} be the set of all principal k-ideal of a C RD-Stone
algebra L.

Theorem 23. Let L be a CRD-Stone algebra. Then (I} (L);+,e,(0)V,(1)V)
forms a Boolean ring, where + the addition operation and e the multiplication
operation are defined as follows:

@)V + @)V =((zAyt)V(yrat))V,
(x)Ve(y)V = (zAy)V.

Proof. Let (z)V,(y)V,(2)V € I;(L). Then we deduce the following properties:
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s (1) Associativity of +,
(@)Y + (W)Y +(2)Y)
= @Y+ (A2 Vv EAy))Y
= (@A {ly A=)V Ay )V ETA{y ATV (A
={z Ayt Az} v{zAatT AyTTIV et AyAZTIV{zT AzAyTHY

365  Wwhere
(A {lyAzT)V(zAyT)HT)
=(@A{yAzD)TA(AYyDT) (by Theorem 1(7))
=z A {(yTVvzT) AT vyTT)} (by Theorem 1(6))

={(zAy)V(EAzT)IA(TVY™) (by distributivity of L)
={xAyD)ACETVY™IV{(AzTT) AT VvyTT)} (by distributivity of L)
=@AyT Az V@AyT Ay V(EAZTTAZ) V(AT AYTT)
=@AyT Az V(@A Ayt ) asat ATt =0, Vo e L.
366 On the other hand, we have
(@)Y +®)Y) + ()Y
(zAy) V(ALY +2Y)
@Ay ) vy Aa) Az ) v {@AyT) vy At} Az)Y
{xAyt Azt v et AyAzT vzt Ayt Az} Vet Ayt AZD)Y

67 Wwhere
{@AyT)Vyra)T Az)
={xAyH)TAAzH)TIA2) (by Theorem 1(7))
={@" vyt AT vaTHIAz2) (by Theorem 1(6))

={(zTvy™ Ay v(@@tvyT) Azt Az)  (by distributivity of L)
={(@" vyt Ayt Az} v{@at vy ) AxtT Az} (by distributivity of L)
TAyTAIV (T Ayt AV (@T AT AZ) V(T AT A )

T Ayt AV (T AT AZ) as 2t AT =0, Vo e L.

X

= (
= (
Now, we use the fact (2)V = (y)V & 27t =yTte 2t = yT, see Lemma 20(1).
It is easy to check that

Hex Ayt Azt v{zAzTTAyTTIv{at AyAztv{zT AzAyT}T

={{z Ayt AztIVv{at AyAzT}Vv{zTT AyTT Az} V{zt AyT AT

={ztvyttvzttia{zt vzt vytia{ztt vyt vzt A{ztt vt vytt)
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Therefore, ({z Ayt AzTIV{zAzTTAyTTIV{zT AyAzTIV{zT AzAYyTHV=({zA
yT Az RV {zt AyAztiv{zTT AyTT Az} v{zT Ayt A2}V implies ((z)V +
W)V) + (2)V =)V + (W)Y + (2)V).

(i) Since (z)V 4+ (0)V = ((x A0T)V (zT A0))Y = (zV0)V = (z)V,then (0)V
is the additive identity on I} (L).

(iii) Commutativity of 4+ and e,

(iv) It is clear that the additive inverse of (z)V € I}, (L) is (z)V itself, that
is, —(x)V = (x)V.
(v) The multiplicative identity of I} (L) is (1)V.
(vii) The distributive law on I% (L),
@)V o {m)V + ()} = (@)V e ((yr2") V(2 Ay"))Y
= @A {yAz")V(zAy)HY
=({znynzTyvi{zanznythY,
and
{(2)V e (y)V}+{(x)Y o (2)V}
zAy)V 4+ (zN2)V
{@Ay A@nz)}v{EAy)T Al@az)}Y
{@ry) AtV v{ET vy ) Al@az})Y
{enynztyv{zAaynztyv{zt Azanz}v{yT Az nazp)V.

= (
= (
= (
= (

Then by Lemma 20(1), we get {z AyAzT}V{zAzAyTHY = ({zAyAzT}V
{xAyAzTIv{zt AzAz}V{yT Az Az})V.

Therefore, (2)V e {(y)V + (2)V} = {(2)V ¢ (y)V} + {(z)V @ (2)V}.

(viil) (z)V o (2)V = (z Az)V = (z)V. Consequently (I} (L);+,e,(0)V,(1)V)
is a Boolean ring. n

It is known that there is a one-to-one correspondence between Boolean alge-
bras and Boolean rings (see [17]). Then we can convert the Boolean ring I} (L)
into a Boolean algebra as follows.
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Corollary 24. Let (I} (L);+,e,(0)V,(1)V) be a Boolean ring of all principal k-
ideals of a CRD-Stone algebra L. Then (IL(L);V,A,,(0)V,(1)V) is a Boolean
algebra, where

@)V V(Y)Y = @)V + @V +{x)Vey)V}=(xAry)Y,
(@)VN(y)V =(x)Ve(y)V =(xAy)Y,
()V' = (zh)V.

Now, we give an example to clarify the basic properties of the class of all
principal k-ideals of a certain C'RD-Stone algebra L.

Example 25. Consider the C RD-Stone algebra Sg which is given in Example
6(1) (see Figure 1). The principal k-ideals of Sy are given as follows.

OV = ()Y = (d)V = (k)Y = (K], (a)V = (2)V = (z], (0)Y = ()Y = (4]
and (1)V = L = (1]. We determine the algebras (I} (L),+) and (I (L), e) as in
the following tables.

From the above tables, we abserve that (I} (L);+,e) forms a Boolean ring.
Also, Figure 3. Shows that (III;(L);\/ AL (0)V,(1)V) forms a Boolean algebra
which is isomorphic to B(L), where ’ is given as, (0)V' = (1)V, (a)V' = (b)V,
OV = (a)V, (V' = (0)V.

Theorem 26. Let L be a CRD-Stone algebra. Then

(1) (Ix(L);V,A,D(L),L) is a {1}-sublattice of I(L),

(2) (IY(L); V, A, (0)V,(1)V) is a bounded sublattice of I (L),

(3) B(L) is isomorphic to I} (L).

Proof. (1) Let I,J € I;(L). Since k € I,J, then I NJ and I V J are k-ideals.

Since k € L = (1], then L is the greatest k-ideal of L, but D(L) = (k] is the
smallest k-ideal of L. Then Iy (L) is a {1}-sublattice of the lattice I(L).
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1Y 1
(@)" (b)Y a b
(0)Y 0
(L) B(L)

Figure 3. I} (L) and B(L) are isomorphic Boolean algebras.

(2) We have (z Vy)V = (z)V V (y)V and (z Ay)V = (2)V A (y)V for all
(z)V,(y)V € I(L). It is observed that (0)V = D(L), (1)V = L are the smallest
and the greatest members of I} (L), respectively. Therefore, (1 (L); V, A, (0)V, (1)V)
is a bounded sublattice of the lattice It (L).

(3) Define mapping: f : B(L) — I.(L) by f(z) = (z)V, for all z € B(L).
To prove that f is a homomorphism, let z,y € B(L),

flxvy) = (zVy)V
V'V (y

(
(x)V V (y)V (by Lemma 19(3))
f@) Vv fy)

Thus f(z Vy) = f(x)V f(y). Similarly, we can get f(z Ay) = f(x) A f(y).
Then f is homomorphism. Let f(z) = f(y). Then (z)V = (y)V and hence
=2+t =y™" =y. Then f is an injective map. For all (z)V € I} (L), we have
(x)V = ()Y = f(z*™F), 2T € B(L). Then f is a surjective map. Therefore
f is an isomorphism and B(L) = I¥(L). ]

5. k-{T}-CONGRUENCES ON A C RD-STONE ALGEBRA

In this section, we study the relationships between k-ideals and k-{* }-congruences
of a CRD-Stone algebra L. Also, we describe the lattice Con; (L) of all k-{T}-

congruences of L.

Definition 18. A {*}-congruence 6 on a C RD-Stone algebra L is called a k-
{*}-congruence if k € Ker 0, where Ker 0 = {zx € L : (2,0) € 0} = [0]g
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Proposition 27. Define a binary relation 8 on a core regular double Stone L as
follows:

(z,y) €0 = (z)V = (y)V.
Then 0 is a k-{*}-congruence on L. Moreover, 0 = ™.

Let I be a k-ideal of C RD-Stone algebra L. Define a binary relation 6; on
L as follows:

0 ={(a,b) e LxL:aViVk=bViVk, for somei€l}.

Theorem 28. Let I be a k-ideal of CRD-Stone algebra L. Then 0 is a k-{*}-
congerence on L such that Ker 07 = 1.

Proof. 1t is Clear that 6; is an equivalent relation on L. Let (a,b) € 6;. Then
aViVk=0bViVkfor somei € I. Now for all ¢ € L, then by distributivity of
L, we get

(anc)ViVkE=(bAc)ViVk,

(aVe)VivVk=(bVe)ViVk.

Therefore (a A ¢,b A c),(aVe,bVe) € 0. So by Theorem 8, 6 is a lattice
congruence on L. It remains to show that (a,b) € 67 implies (a™,b") € ;.

(a,b) €y =aVivVk=bViVk

=at AT ART =0T AT AKT
=at Nt =bT AT as kT =1
= (at Ait)vi=(b" AiT) Vi
= (a" Vi) A (it Vi) = (b" Vi) A (iT Vi) (by distributivity of L)
= (aTVvi)Al=(b"Vi)Al (by Theorem 1(2))
=atVvi=b"Vvi
= (a™,b7) €0;

Then 67 is a { }-congruence on L.

Now, we prove that Ker 0y = 1.

Ker Oy ={zx € L:(0,z) €6}
={rel:0ViVk=xzViVkicl}
={rel:ivVk=xViVk}
={rel:x<iVk}
={reL:zt <itt <itt vk}
={zx:zxelV=I}=1

Since k € I = Ker 07, then 07 is a a k-{* }-congruence on L. |
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Theorem 29. For any k-ideals I,J of a CRD-Stone algebra L, we have
(1) ICJ< 0 CHy,
(2) 1/1+ C 01, where ¥* is the dual Glivenko congruence on L,
(3) bpy ="
(4) 9L = VL,
(5) the quotient lattice L/0; forms a Boolean algebra.

Proof. (1) Suppose I C J and (a,b) € 0;. Then there exists ¢ € I such that

aViVk=bViVk. Since I C J, then (a,b) € ;. Thus §; C ;. Conversely, let
0r C 05. Then by the above Theorem 28, [ = Ker 0; C Ker 05 = J.

(2) Let (a,b) € ¥*. Then a™ = b* implies a™ = b+, Now, we have

aVivk=(a"TV(ank)ViVvk (by Lemma 7(2))
=attVviv((ank)VEk)
attVvivk (by Definition 1(2))
=bttVvivk

=0Tt Viv((bAk)VE)
=BTV OAR)VIVE
=bViVk.

Thus (a,b) € 07 and hence ¢ C 0.
(3) Since, it =1, for all i € D(L), we get

O = {(ab) € Lx L:aVvivk=bViVk, icD(L)}

={(a,b) e LxL:a™ Nit AET =bT Adt AETY
:{(a,b)€L><L:a+:b+}:¢Jr (a3i+:k+:1).

(4) Since aV1VEk =bV1VEkforall a,b € L, then (a,b) € 61 and hence
HL - VL-

(5) The quotient set L/0; is {[a)fr : a € L}, where [a]0; is the congruence
class of an element @ € L modulo ;. It is known that L/0; = (L/0r;V, A, [1]0;,
[0]6;) is a bounded distributive lattice, where [0]; = I, [1]0; are the bounds of
L/6; and [a]0; A [b)0r = [a A b)Or, [a]0r V [b]6r = [aV b]0;. Define L/0; by [a)' 0 =
[a™]07, since [a]0; A[at]) 0 = [aAaT]0; = (00, [a0r V [at]0r = [aVaT)0r = [1]6;
and [a]"0; = [a™)'0; = [a™1])0; = [a]0;. Then (L/0;;V,A,,[0]0r,[1]0r) is a
Boolean algebra. n

Let Conj (L) ={0; : I € I;(L)} be the set of all k-{T}-congruences on L
which are induced by the k-ideals of L. Using Theorem 29. We can show the
following results.
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Theorem 30. For any 07 and 05 of Con;(L), we have the following:

(1) 0rn0 0 =0un,

(2) 01V 05 =0y,

(3) (Conlj(L);\/,/\,HW,QL) forms a bounded lattice and a sublattice of
Con™(L).

Proof. (1) Since I'NJ C I,.J, by Theorem 29 0y C 61,0, implies 0~y C
0r N 0;. Conversely, let (a,b) € Oy N6O;. We get

(a,b) € 01N 0Oy = (a,b) € 07 and (a,b) € 0;
=aViVk=bViVkforsomeielandaVjVk=bVjV
k for some j € J
= (aViVE)A(aVjVk)=(bViVk)A(aVjVEk)
= (aVEVi)A(@VEV])=bVEViI)A@VEV))
=aVkV(GEAN])=bVEV (A
= (a,b) € Oy as (iNG) € (I NJ).

Then 6; N0y C 017y and hence 07 N0 = 01 7).

(2) Since I,J C IV J, then by Theorem 29, 07,05 C 0(7y5). Thus, 07y is
an upper bound of 67,0;. Conversely, let 8 be an upper bound of §; and 6, for
k € Ix(L). Then 05, 0;C 0. Hence I, J C k as IV J is the least upper bound of
I, J on Ii(L). By Theorem 29, 0y, 6;C 0. Therefore 0, ) is the least upper
bound of 07,0;. This proves that 67V 05 = 61y

(3) From (1) and (2), it is clear that (Con; (L);V,A) forms a sublattice of
Con™(L). Since QW and 6y are the smallest and the greatest members of

Conj (L), respectively. Then (Con; (L);V, A, HW’ 01) is a bounded lattice. m

Now, we introduce the following interesting results.

Theorem 31. For every k-{*}-congruence 6 on a CRD-Stone algebra L, we
have

(1) [0]8 is a k-ideal of L,
(2) 0 can be expressed as O for some k-ideal I of L.

Proof. (1) It is clear that [0]0 = {z € L : (z,0) € )} = Ker 6. It is known
that the Ker 6 is an ideal of L. Since 0 is a k-{* }-congruence, then k € Ker 0.
Therefore [0]0 is a k-ideal of L.

(2) We claim that 6 = 09. Let (z,y) € 6. Since (k,k) € ¢ hence
(x Nk,y Nk) € 6. Since [0]0 is a k-ideal of L, then =z Ak, y Ak € [0]f. Hence
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(x Ak, y Nk) € Og9. Now, we prove that (z+F,y7") € 0.

(m+,y+) €= (a:+ Azt gyt A x++) € 0 and (a:+ Ayt yT A y++) €l
= (0,y" Aztt) €efand (z7 Ay'T,0) € 6 (by Definition 8)
=zt Ayt yt Azt €]0]0
= (x+ Ayt oyt A x++) € Ooj
= (x+ V (x+ A y++) ,w+ V (gfL A\ w++)) = (w+,x+ V y+) 0[0}9
(by Definition 1(2))
and (y+ \Y (x+ A y++) Lyt v (y+ A m++)) = (m+ \Y% y+,y+) SN
= (2%,y") € 0o
= (x++,y++) € O[g)0-
Now, (z*F,y"*) € g and (z Ak,y Ak) € Bgg imply that (z,y) = (z*V
(xANk),yTTV(YyAEk) = (T, ytT) V(e ARy AE) € Ojg. Then 6 C 9. For
the converse, let (z,y) € Ojgjg. Then (z A k,y A k) € Ojgp. Since x Ak, y Ak € [0]0,

then (x ANk, y N k) € 6.
Now, we prove that (z*F,y™*) € 6 for all (z,y) € O

(z,y) € O
= (=77 € fopp
= (@t Aoty ATt (@t Ayt Ay € 0
= (O,gfL A x++) (x+ A y++,0) € Ojgj9 as gt Azttt =0yt Ayt =0
=zt Ayt yt ATt €[00
(x+ Ayt oyt Azt e [0)o
( ( +/\y++) +\/ (y+/\w++))7(y+\/ (x+/\y++)7y+\/ (y+/\w++)) co
(3: (x Vy ) (m+ \/x++)) , ((y+ \/x+) A (y+ \/y++) ,y+) €l
(by Deﬁmtlon 1(2))
= (z",2 ) (z* vy*,y") € 0 (by Definition 8)
= (z%.y )
= (@ ++ ++) € [0]6.

Now, (27T, y*") € 0 and (x A k,y A k) € [0]0 imply that (z,y) = (27T, y"T)
V(z Ak,y Ak) € 6. Therefore gy C 0 and 6 = 0)g). [ ]

According to Theorem 30 and Theorem 31, we observe that there is a one
to one correspondence between the elements of the lattice I (L) of all k-ideals of
a CRD-Stone algebra L and the elements of the lattice Con; (L) of all k-{T}-
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Congruences of L. In fact, this deduces that the lattices Ix(L) and Con; (L) are
isomorphic and hence the lattice C’on;(L) is a distributive lattice.

Theorem 32. Let L be a CRD-Stone algebra. Then the lattices Ii,(L) and
Con;f (L) are isomorphic and hence Conj (L) is a distributive lattice.

Proof. Define a map h: Iy(L) — Con (L) by h(I) = 6y, for all I € I(L).
From Theorem 30, for I, J € I;(L), we have

h(IVJ)=0;V0;="0¢.5=nhI)Vh(J]),
h(IﬂJ) :Hjmej:a(jﬁj) :h([)ﬂh(J),

h(D(D) = Oy =
h(L) =0, =V,.

Then h is (0,1)-lattice homomorphism. Let h(I) = h(J). Then 6; = 6; implies
I = J. Thus h is an injective map. For each 6 € Cong(L), by Theorem 31(2),
we have 0 = 07 for some I € I;(L). Then h(I) = 0y = 6 implies that h is a
surjective. Therefore, h is an isomorphism and hence Ix(L) and Con} (L) are
isomorphic lattices. Since Iy(L) is a distributive lattice (see Theorem 16), then
also, Conj (L) a distributive lattice. ]

6. PRINCIPAL k-{*}-CONGRUENCES ON A C'RD-STONE ALGEBRA
In this section, we describe the principal k-{*}-Congruences on a C'RD-Stone
algebra L which are induced by the principal k-ideals of L. Also, we describe the
algebraic structure of the class Conj (L) all principal k-{ }-ideals of L.

Proposition 33. Let L be a CRD-Stone algebra L and I = (x)V. Then 6,y
s given as follows:

Oy ={(a,b) e Lx L:aVaVk=bVaVk} and Ker 0,y = (z)V.
Proof. Let I = (z)V. Then
0r = 0yv = {(a,b) €LxL:aViVk=bViVk, for some i€ (x)v}

Let (a,b) € ;. Since I = (z)V, thusaViVk=>bViVk, for some i € (z)V and
hence att v itT = bt vitT. Since i € (z)V, then itT < 2™+ Vv k and we have
ittt < gt
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aVaeVk=(a"TV(ark)V(@TTV(@Ak)VEk (by Lemma 7(2))
=(atTV(enk)VvaTtv((xAk)VE)
=(attV(ank)VvaTtvk (by Definition 1(2))
=atT vzt Vv ((ank)VE)
=attvattvik (by Definition 1(2))

=bttvattvik
=btvattv@Ak)vV(bAk)VE
=0T VOAR)V(@EtTTV(eAk)VE
=bVvVzVk.

T

s Then, we have (a,b) € 0,)v if and only if aVa Vk=0bVzVEk and hence 0,y =
28 {(a,b) € Lx L:aVaVk=>bVazVk} From Theorem 28, Ker 0(,)v = (z)V.

520 Definition 19. A k-{T}-congruence § on a CRD-Stone algebra L is called a
s30 principal k-{*}-congruence if  is a principal {*}-congruence on L.

51 Proposition 34. For any element x of a C RD-Stone algebra L, define 0(0,z*
s2 V k) on L as follows

533 00, zttVEk)={(a,b) e LxL:aVattVk=bVvattVk}

s3a  Then 0(0,21 TV k) is a principal k-{* }-congruence on L and Ker 6(0,z7TVk) =
535 ($++ VEk]=(x)V.

s3  Proof. It is known that (0,27 \V k) is a principal lattice congruence on L (see
537 Theorem 9(3)).
Let (a,b) € (0,z*+ V k). Then, we get

5

@
©

avrttvk=bvattvik

=a" Azt AkT =0T AT AKT

=Sat Azt =bT Azt as kT =1

= (atAat)v@TtvE)=0TAxT) Vv (2T VE)

= (atvattVvi)A(@TvatTvE) =BT vatT VE)A (et vzt vE)
=a"VvaeTtTVvk=btVvaetTVvkasazt vt =1.

s Then (a™,b") € 0(0,z7F V k). Thus 6(0,z%" V k) a principal {*}-congruence
s90 on L. Since 0V ztT VEk =kVattVk, then (0,k) € 0(0,27 VvV k). Then
s k€ Ker 0(0,27T V k) and hence 6 is a principal k-{ }-congruence on L.
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Now, for every for all x € L, we prove Ker (0,27t V k) = (z7F V k.

Ker 00,27 VE)={yeL:(0,y) €00,z vVk)}
:{yEL:w++vk:ny++vk}
:{yEL:y§x++\/kz}
= (zTF Vv k|

= @Y.
Theorem 35. Let x be an element of a CRD-Stone algebra L. Then
0(0, 1’++ V k) = Q(I,)v .
Proof. Let (a,b) € 0(0,z%" V k). Then

aVztTvk=bvaTtVvk=avaTTvaevk=bvzTTvaVvk
=aVzVk=bVzVEk
= (a, b) EHMV

Thus 6(0,2%* V k) C 6,)v. Conversely, let (a,b) € 6,)v. Then we get

avVzVk=bVaVk

=aV(@TV(@Ak)VaVvk=bV (zTtV(zAk))VaVEk (by Lemma 7(2))
=aVaTTV((@Ak)VEk)=bVaTT Vv ((xAk)VEk) (by Definition 1(2))
=aVa'tVk=bvaTtVk

= (a,b) € 00,27 V k).

Then 0,y C 0(0,27" V k) and hence 0,y = 6(0,27 V k). |
Corollary 36. Let L be a CRD-Stone algebra. Then
Ker 0,yv = Ker 0(0,277 V k) = (a7 VE] = (2)V.

A charclerization of a principle k-{*}-congruence on a C RD-Stone algebra
L is given in the following two theorems.

Theorem 37. Let 6 be a principle {T }-congruence of L. Then 0(0,a) is principle
k-{*}-congruence if and only if k < a.

Proof. 1f 0 is a principle k-{ T }-congruence, then k € Ker 6(0,a) implies (k,0) €
0(0,a) and hence kVa =0V a = a. Thus k < a. Conversely, let £k < a and (0, a)
is a principal k-{*}-congruence. Then (k,0) € 6(0,a). Since k € Ker 6(0,a),
thus 6(0,a) is a k-{* }-congruence on L. |
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Theorem 38. Let 0(0,a) be principle k-{*}-congruence on L. Then 6(0,a) =
O(ayv if and only if k < a.

Proof. Let 6(a,b) be a k-{*}-congruence on L and 6(0,a) = 6,

0(0,a) = 0a)v = k € Ker 0(0,a) = Ker 0(a)v
= (k,0) = 6(0,a)
=kVa=0Va=a
=k <a.

Conversely, let k < a and (x,y) € 6(0,a).

(x,y) € 0(0,a) =xVa=yVa
=zVaVk=yVaVk
= (.Z',y) € H(Q)v-

Then 0(0,a) C 0(,yv. Let (z,y) € 04)v. Then we have

(z,y) €byyv = xVaVk=yVaVk
=xzVa=yVa
= (z,y) € 0(0,a).

Then 6(,yv C 0(0,a) and hence 0,y = (0, a). |

Corollary 39. Ewvery principle k-{*}-congruence 0(0,a) on C RD-Stone algebra
L can be expressed as 6(0,a™t V k).

Let Con} (L) = {H(x)v s L} be the class of all principal k-{ T }-congerences

which are induced by the principal k-ideals of L. Theorem 40 shows that the class
Con} (L) forms a Boolean ring which is isomorphic to the Boolean ring I} (L).

Theorem 40. Let L be a CRD-Stone algebra. Then (Cony(L); ©,®,001)v,0)v)
forms a Boolean ring, where

O0yv © 0w = Oy 1)

Oyv ©01)v = Owyvew)v.

Moreover, Con} (L) and I} (L) are isomorphic Boolean rings.

Proof. According to Theorem 23, (III;(L);—F,O, (O)V,(l)v) is a Boolean ring.
Consequently, for any Q(x)v , e(y)v,a(z)v € C’onkv (L), we use the properties of the
ring (I ,’; (L), +, o) to show the following properties.
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(i) The associativity of @ and ©.

Oayv @ {%)v ® %W} = O@)v D O)vi(o)v

= 0w)yv i {)v +(x)v)}

= 9{(m)v+(y)v}+(z)v by associativity of +
= 0(2)v+(m)v DO()v
= {H(I)v & Q(y)v} ) Q(Z)v,
and
Oy @ {0y @0y | =0y @ Bgyvaae
= 0{(x)V.(y)V}.(z)V by associativity of e
= 0)vey)v © 0w

= {%v © %w} © 09

(ii) The additive identity and the multiplicative identity in Conj (L) are 6;y
s3 and 0y, respectively.
574 (iii) The commutativity of @ and ©.

5

J
N

J
w

Oy © 01w = Owyv(yyv
= 0(y)v+(x)v & + is commutative in [} (L)
= 0y)v © 0wy
Oyv ©0)v = Ow)very”
= 0(y)ve(z)v @S @ is commutative in I}'(L)
= Oy)v © 0y
575 (iv) The additive inverse of 6,)v is 0, itself.
576 (v) The distributive law holds as
O(a)v © {%)v ® 9(z>V} = 0@yv © 0 ()v1()v}
= O)ve{w)v+()v}
= 9{(x)v.(y)v}+{(m)v.(z)v} by distributivity of I} (L)

= (@707} DV @)70(2)7}
= {%)v © 9<y>v} ® {H(mw © %W} :
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. 2
(i) [0yv]” = 0y © Oayw = Oa)ve@)vy = Oayv-
Therefore (Con (L); &, ®,0(1)v:0(0)v) is a Boolean ring. It is observed that the
two rings I} (L) and Conf (L) are isomorphic under the isomorphism (z)V
0w - |
(2)v

Combining the above Theorem 40 and Corollary 24, we will investigate the
following interesting result.

Corollary 41. Let (Con} (L); ®, ®, 01yv,0(0)v) be the Boolean ring of all princi-
pal k-{*}-congerences on a CRD-Stone algebra L. Then (Conf(L);V, ﬂ,/,H(l)v,
0(0yv) is a Boolean algebra, where

Owyv V Ouyv = Oavyyvs
O@yv NOy)v = bany)vs

(@)yv =0

@h)v.

Example 42. Consider the C RD-Stone algebra Sg as in Figure 1. The principal
k-{ }-congerences of Sy are gives as follows:

6(0,0) = 6(0,¢) = 6(0,d) = 6(0,k) = AL,
0(0,a) =0(0,z) = {{0,d, ¢, k,a,z},{b,y,1}},
0(0,b) = 6(0,y) = {{0,d, ¢, k,b,y}, {a,z, 1}},
0(0,1) = L.

Then the following two tables show that (Conf (L); &, ®) is a Boolean ring, where
CODk( ) —{9(0,0),9(0,&),9( ) ( )} { V79(a V79(b Va V}

@ | 0(0,0) 0(0,a) 0(0,6)| 6(0,1)] | ® | 6(0,0) 6(0,a) 6(0,b)| 6(0,1)

6(0,0)| 6(0,0)| 6(0,a)| 6(0,b)| 6(0,1)] | 6(0,0)| 6(0,0)| 6(0,0)| 6(0,0)| 6(0,0)

0(0,a) 6(0,a) 6(0,0)| (0,1)| 6(0,b) | 6(0,a) 6(0,0)| 6(0,a) 6(0,0)| 6(0,a)

6(0,b)| 6(0,b)| 6(0,1)| 6(0,0) 6(0,a)| | 6(0,b)| 6(0,0)| 6(0,0)| 6(0,b)| 6(0,b)

0(0,1) 6(0,1) 6(0,5)| (0, a)| 6(0,0)| | 6(0,1) 6(0,0)| 6(0,a) 6(0,)| 6(0,1)

Figure 4. Shows that (Conﬁ(L);@,@,9(1)v,9(0)v) forms a Boolean algebra which is
isomorphic to the Boolean algebra It (L).
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8(0,1) (1Y
0(0,a) 8(0.b)  (a)" (b)Y
Conj(L) ()

Figure 4. Conf (L) and I} (L) are isomorphic Boolean algebras.
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