- ¹ Discussiones Mathematicae
- ² General Algebra and Applications xx (xxxx) 1–30
- 3

4

5

11

26

k-IDEALS AND k-{+}-CONGRUENCES OF CORE REGULAR DOUBLE STONE ALGEBRAS

SANAA EL-ASSAR, ABD EL-MOHSEN BADAWY TAHANY EL-SHEIKH AND EMAN GOMAA¹ *Department of Mathematics Faculty of Science, Tanta University, Egypt* e-mail: sanaa.elassar@science.tanta.edu.eg abdel-mohsen.mohamed@science.tanta.edu.eg tahany.elshaikh@science.tanta.edu.eg

Abstract

In this paper, the authors study many interesting properties of ideals 12 and congruences of the class of a core regular double Stone algebra (briefly 13 CRD-Stone algebra). We introduce and characterize the concepts of k-ideals 14 15 and principal k-ideals of a core regular double Stone algebra with the core element k and establish the algebraic structures of such ideals. Also, we 16 investigate k-{+}-congruences and principal k-{+}-congruences of a CRD-17 Stone algebra L which are induced by k-ideals and principal k-ideals of 18 L, respectively. We obtain an isomorphism between the lattice of k-ideals 19 (principal k-ideals) and the lattice of k-{+}-congruences (principal k-{+}-20 congruences) of a CRD-Stone algebra. We provide some examples to clarify 21 the basic results of this article. 22

Keywords: stone algebras, double Stone algebras, regular double Stone
 algebras, core regular double Stone algebras, ideals, filters.

25 **2020** Mathematics Subject Classification: 06D99, 03G10, 06D15.

1. INTRODUCTION

The concept of psudo-complement was considered in semi-lattices and distributive
lattices by Frink [22] and Birkhof [12], respectively. The class S of Stone algebras

²⁹ was studied and characterized by several authors, like, Badawy [1], Chain and

¹Corresponding author.

Grätzer [18, 19], Grätzer [23], Frink [22], Balbes [13] and Katrinák [25]. Reg-30 ular double *p*-algebras and regular double Stone algebras are characterized by 31 Katrinák [25] and Comer [21], respectively. 32

The intersection of the set D(L) of dense elements and the set D(L) of 33 dual dense elements of a double Stone algebra L is called the core of L and 34 denoted by K(L). In a regular double Stone algebra L, the core K(L) is ei-35 ther an empty set or a singleton set, if a regular double Stone algebra L has a 36 non-empty core, then such a core K(L) has exactly only one element, which is 37 denoted by k. Ravi Kumar et al. [27] introduced some properties of core reg-38 ular double Stone algebra Srikanth et al. [28] and [29] studied many properties 39 of ideals (filters) and congruences of a core regular double Stone algebras, re-40 spectively. Badawy et al. [9] constructed a double Stone algebra from a Stone 41 quadruple. Badawy [3] constructed each core regular Stone algebra from a suit-42 able Boolean algebra $B = (B; \forall, \land, ', 0, 1)$. The constructing *CRD*-Stone algebra 43 $(B^{[2]}; \vee, \wedge, *, +, (0, 0), (1, 1))$ with the core element (0, 1), where 44

- $B^{[2]} = \{ (x, y) \in B^{[2]} : x \le y \},\$ 45 $(x, y) \land (x_1, y_1) = (x \land x_1, y \land y_1),$ 46 $(x, y) \lor (x_1, y_1) = (x \lor x_1, y \lor y_1),$ 47 $(x, y)^* = (y', y'),$ $(x, y)^+ = (x', x').$ 48
- 49

In Section 2, We list the basic concepts and important results which are 50 needed throughout this paper. Also, we provide some examples of RD-Stone 51 algebras with core element k and RD-Stone algebras with empty core. We refer 52 the reader to [4, 7, 8, 10, 15] and [16] for filters, ideals and [2, 6, 11] for congruences 53 of lattices and *p*-algebras. 54

In Section 3, we introduce the k-ideals of a CRD-Stone algebra L and obtain 55 many related properties. A set of equivalent conditions for an ideal I of a CRD-56 Stone algebra L to become a k-ideal is given. We observe that the class $I_k(L)$ of 57 all k-ideals of L forms a bounded distributive lattice. 58

In Section 4, we define and characterize the concept of principal k-ideals of a 59 *CRD*-Stone algebra *L*. We show that the class $I_k^p(L)$ of all principal k-ideals of 60 L is a Boolean ring and so a Boolean algebra. Example 25 describes the Boolean 61 algebra $I_k^p(L)$. 62

In Section 5, we investigate the k-{+}-congruences via k-ideals of a CRD-63 Stone algebra L. Also, we observe that the set $Con_k^+(L)$ of all k-{+}-congruences 64 forms a bounded distributive lattice which is isomorphic to the lattice $I_k(L)$ of 65 k-ideals. 66

In Section 6, we investigate and characterize the principal $k - \{+\}$ -congruences 67 of a CRD-Stone algebra L via principal k-ideals of L. Then, we study the 68 properties and the algebraic structure of the class $Con_k^p(L)$ of all principal $k - \{+\}$ -69

⁷⁰ congruences of L. Moreover, we show that $I_k^p(L)$ and $Con_k^p(L)$ are isomorphic ⁷¹ Boolean algebras. We give Example 42 to clarify the last result.

2. Preliminaries

- ⁷³ In this section, we recall certain definitions and results which are used throughout
- the paper, which are taken from the references [1, 5, 14, 21, 23, 27, 28] and [30].
- **Definition 1** [1]. An algebra $(L; \land, \lor)$ of type (2, 2) is said to be a lattice if
- 76 (1) the operations \wedge, \vee are idempotent, commutative and associative,
- 77 (2) the absorption identities hold on L, that is, $(a \wedge b) \vee a = a, (a \vee b) \wedge a = a$.
- Definition 2 [14]. A lattice L is called a bounded if it has the greatest element
 1 and the smallest element 0.
- **Definition 3** [1]. A lattice L is called a distributive lattice if it satisfies either of the following equivalent distributive laws:
- $a \wedge (b \vee c) = (a \wedge b) \vee (a \wedge c),$
- $(2) \ a \lor (b \land c) = (a \lor b) \land (a \lor c), \text{ for all } a, b, c \in L.$
- **Definition 4** [28]. A nonempty subset I of a lattice L is called an ideal if
- $(1) \ x \lor y \in I \text{ for all } x, y \in I,$
- (2) $x \in I$ and $z \in L$ be such that $z \leq x$ imply $z \in I$.
- **Definition 5** [23]. If $\phi \neq A \subseteq L$, then (A] is the smallest ideal of a lattice L which contains A, where $(A] = \{x \in L : x \leq a_1 \lor a_2 \lor \cdots \lor a_n, a_i \in A, i = 1, 2, \dots, n\}$. The case that $A = \{a\}$, we write (a] instead of $(\{a\}]$ and (a] is called the principal ideal of L generated by a, where $(a] = \{x \in L : x \leq a\}$.

Let I(L) be the set of all ideals of a lattice L. Then $(I(L); \land, \lor)$ forms a lattice, where

9

72

$$I \wedge J = I \cap J$$
 and $I \vee J = \{x \in L : x \le i \lor j : i \in I, j \in J\}.$

Also, algebra $(I^p(L); \lor, \land)$ of all principal ideals of L is a sublattice of the lattice ⁹⁵ I(L), where

$$(a] \lor (b] = (a \lor b] \text{ and } (a] \land (b] = (a \land b]$$

97 It is known that the lattice I(L) is distributive if and only if L is distributive.

Definition 6 [1]. For any element a of a bounded lattice L, the dual pseudocomplement a^+ (the pseudo- complement a^*) of a is defined as follows

$$a \lor x = 1 \Leftrightarrow a^+ \le x \ (a \land x = 0 \Leftrightarrow x \le a^*).$$

Definition 7 [23]. A distributive lattice L in which every element has a pseudocomplement is called a distributive pseudo-complemented lattice or a distributive p-algebra. Dually, a distributive lattice L in which every element has a dual pseudocomplement is called a distributive dual pseudocomplement lattice or dual distributive p-algebra.

Definition 8 [5]. A distributive *p*-algebra (distributive dual *p*-algebra) *L* is called a Stone algebra (dual Stone algebra) if $x^* \vee x^{**} = 1$ ($x^+ \wedge x^{++} = 0$) for all $x \in L$.

Theorem 1 [1]. Let L be a distributive p-algebra (distributive dual p-algebra).
 Then for any two elements a, b of L, we have

107 (1) $0^{**} = 0$ and $1^{**} = 1$ $(0^{++} = 0$ and $1^{++} = 1)$,

108 (2)
$$a \wedge a^* = 0 \ (a \lor a^+ = 1),$$

- 109 (3) $a \leq b$ implies $b^* \leq a^*$ $(a \geq b$ implies $b^+ \geq a^+)$,
- 110 (4) $a \le a^{**} (a^{++} \le a),$
- 111 (5) $a^{***} = a^* (a^{+++} = a^+),$
- 112 (6) $(a \lor b)^* = a^* \land b^* ((a \land b)^+ = a^+ \lor b^+),$
- 113 (7) $(a \wedge b)^* = a^* \vee b^* ((a \vee b)^+ = a^+ \wedge b^+),$

114 (8)
$$(a \lor b)^{**} = a^{**} \lor b^{**} ((a \land b)^{++} = a^{++} \land b^{++}),$$

115 (9)
$$(a \wedge b)^{**} = a^{**} \wedge b^{**} ((a \vee b)^{++} = a^{++} \vee b^{++}).$$

- **Definition 9** [30]. A Double Stone-algebra L is an algebra $\langle L, *, + \rangle$, where
- 117 (i) $(L,^*)$ is a Stone algebra,
- 118 (ii) $(L,^+)$ is a dual Stone algebra.

¹¹⁹ **Definition 10** [21]. A regular double Stone algebra (briefly RD-Stone algebra) ¹²⁰ L is a double Stone such that

121
$$x^{**} = y^{**}$$
 and $x^{++} = y^{++}$ imply $x = y$.

Let L be a double Stone algebra. The element $a \in L$ is called a closed element of L if $a^{**} = a$ and the element $a \in L$ is called a dual closed element of L if $a^{++} = a$. An element $d \in L$ is called dense if $d^* = 0$ and an element $d \in L$ is called dual dense if $d^+ = 1$.

126 Lemma 2 [28]. Let L be a double Stone algebra. Then

127 (1) the set $D(L) = \{a \in L \mid a^* = 0\} = \{a \lor a^* \mid a \in L\}$ of all dense elements of 128 L is a filter of L,

(2) the set $\overline{D(L)} = \{a \in L \mid a^+ = 1\} = \{a \land a^+ \mid a \in L\}$ of all dual dense elements of L is an ideal of L,

- (3) the set $B(L) = \{a^* : a \in L\} = \{a^+ : a \in L\}$ of all closed elements of L forms a Boolean subalgebra of L,
- (4) the set $K(L) = D(L) \cap \overline{D(L)}$ is called the core of L, we have two cases of K(L), namely, $K(L) = \phi$ or $K(L) \neq \phi$.

135 It is easy to show the proof of the following two lemmas.

Lemma 3. The non empty core K(L) of a RD-Stone algebra L has exactly one element.

Definition 11. A regular double Stone algebra with non empty core is called a
core regular double Stone algebra (briefly *CRD*-Stone algebra).

140 Lemma 4. Let L be a CRD-Stone algebra with the core k. Then

- (1) D(L) = [k), that is, D(L) is a principal filter of L generated by k,
- 142 (2) $\overline{D(L)} = (k]$, that is, $\overline{D(L)}$ is a principal ideal of L generated by k.

¹⁴³ We use k for the core element of a CRD-Stone algebra L, that is, $K(L) = \{k\}$. ¹⁴⁴ Now, we give examples of CRD-Stone algebras and RD-Stone algebras with ¹⁴⁵ empty core.

Example 5. (1) Let $L = \{0, x, y, 1 : 0 < x < y < 1\}$ be the four element chain. It is clear that $\langle L, *, + \rangle$ is a double Stone algebra, where $x^* = y^* = 1^* = 0$, $0^* = 1$ and $0^+ = x^+ = y^+ = 1$, $1^+ = 0$. Then $K(L) = D(L) \cap \overline{D(L)} = \{x, y, 1\} \cap \{x, y, 0\} = \{x, y\}$ is a non empty core. We observe that L is not regular as $x^{++} = y^{++}$ and $x^{**} = y^{**}$, but $x \neq y$.

(2) The double Stone algbra $S_3 = \{0, k, 1 : 0 < k < 1\}$ is the smallest non trival core regular double Stone algebra with core k, $(S_3$ is called the discrete CRD-Stone algebra).

(3) Every Boolean algebra $(B; \lor, \land, ', 0, 1)$ can be regarded as a *RD*-Stone algebra with empty core, where $x^* = x^+ = x'$, for all $x \in B$ and $K(B) = \{1\} \cap \{0\} = \phi$.

Example 6. (1) Consider the bounded distributive lattice S_9 in Figure 1. It is clear that L_1 is a core regular double Stone algebra with core element k, where $k^* = 1^* = y^* = x^* = 0$, $c^* = a^* = b$, $d^* = b^* = a$, $1^* = 0$ and $k^+ = c^+ = d^+ = 0^+ = 1$, $b^+ = y^+ = a$, $x^+ = a^+ = b$, $0^+ = 1$.

(2) Consider the bounded distributive lattice L_1 in Figure 2. We observe that L_1 is a regular double Stone algebra with empty core as $K(L) = D(L_1) \cap \overline{D(L_1)} = \{d, 1\} \cap \{0, y\} = \phi$, where $0^* = d^* = 1^*$, $c = x^*$, $x = c^* = y^*$, $1 = 0^*$ and $0 = 1^+$, $c = x^+ = d^+$, $x = c^+$, $1 = y^+ = 0^+$.

Lemma 7. If L is a CRD-Stone algebra with core element k, then every element to x of L can be written by each of the following formulas:

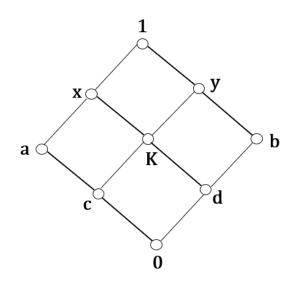


Figure 1. S_9 is a *CRD*-Stone algebra with core k.

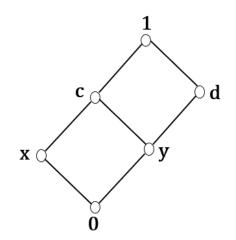


Figure 2. L_1 is a *RD*-Stone algebra with empty core.

- 167 (1) $x = x^{**} \wedge (x^{++} \vee k)$ and its dual $x = x^{++} \vee (x^{**} \wedge k)$,
- 168 (2) $x = x^{**} \land (x \lor k)$ and its dual $x = x^{++} \lor (x \land k)$.

Definition 12 [1]. An equivalent relation θ on a lattice L is called a lattice congruence on L if $(a, b) \in \theta$ and $(c, d) \in \theta$ implies $(a \lor c, b \lor d) \in \theta$ and $(a \land c, b \land d)$ $t \in \theta$. **Theorem 8** [23]. An equivalent relation on a distributive lattice L is a lattice congruence on L if and only if $(a, b) \in \theta$ implies $(a \lor z, b \lor z) \in \theta$ and $(a \land z, b \land z) \in \theta$ for all $z \in L$.

Definition 13. A lattice congruence θ on a dual Stone (Stone) algebra L is called a $\{^+\}$ -congruence ($\{^*\}$ -congruence) if $(a, b) \in \theta$ implies $(a^+, b^+) \in \theta$ ($(a, b) \in \theta$ implies $(a^*, b^*) \in \theta$).

Definition 14. A lattice congruence θ on a *D*-Stone algebra *L* is called a congruence (or $\{*, +\}$ -congruence) if $(a, b) \in \theta$ implies $(a^*, b^*) \in \theta$ and $(a^+, b^+) \in \theta$.

A binary relation Ψ^+ defined a double Stone algebra L by

181
$$(x,y) \in \Psi^+ \Leftrightarrow x^+ = y^-$$

is a $\{^+\}$ -congruence relation which is called the dual Glivenko congruence relation on L. It is known that the quotient lattice $L/\Psi = \{[x]\Psi : x \in L\}$ is a Boolean algebra and $L/\Psi \cong B(L)$, where $[x]\Psi = \{y \in L : y^+ = x^+\}$ is the congruence class of x modulo Ψ . Moreover, the element x^{++} is the smallest element of the congruence class $[x]\Psi$, $[0]\Psi = \overline{D(L)}$ and $[1]\Psi = \{1\}$.

For a double Stone algebra L, we use Con(L) to denote the lattice of all congruence of L and $Con^+(L)$ to denote the lattice of all $\{^+\}$ -congruence of a dual Stone algebra $(L,^+)$. Also, we use ∇_L and Δ_L for the universal congruence $L \times L$ and equality congruence $\{(x, x) : x \in L\}$ of L, respectively.

Definition 15 [14]. A lattice congruence θ on a lattice L is called a principal congruence and is doneted by $\theta(a, b)$ if θ is the smallest congruence on L containing a, b on the same class.

Theorem 9 [14]. If L is a distributive lattice and $a, b \in L$ then the principal congruence $\theta(a, b)$ of L is given by

196 (1) $(x,y) \in \theta(a,b) \Leftrightarrow x \lor a \lor b = y \lor a \lor b \text{ and } x \land a \land b = y \land a \land b,$

197 (2) If
$$a \leq b$$
, then $(x, y) \in \theta(a, b) \Leftrightarrow x \lor b = y \lor b$ and $x \land a = y \land a$,

198 (3) $(x, y) \in \theta(0, b) \Leftrightarrow x \lor b = y \lor b.$

Throughout the paper, we will use L for a CRD-Stone algebra and k for the core element of L. For more information we refer the reader to [24, 31] for Stone algebras, [32] for double Stone algebras, [21] for regular double Stone algebras and [20, 27, 28, 29] for core regular double Stone algebras.

3. k-ideals of CRD-Stone algebras

In this section, we define the notion of k-ideal of a CRD-Stone algebra L and introduce many basic properties of such ideals. A characterization of a k-ideal of a *CRD*-Stone algebra *L* is given. Also, we observe that the class $I_k(L)$ of all *k*-ideals of *L* forms a bounded distributive lattice.

Definition 16. An ideal I of a CRD-Stone algebra L with core k is called a k-ideal if $k \in I$.

Let A be a non empty subset of a CRD-Stone algebra L. Consider A^{\bigtriangledown} as follows

$$A^{\nabla} = \{ x \in L : x^{++} \le a^{++} \lor k, \text{ for some } a \in A \}.$$

Lemma 10. Let A be a non empty subset of a CRD-Stone algebra L, which is closed under \lor . Then A^{\bigtriangledown} is a k-ideal of L containing A.

Proof. Clearly $0, k \in (A)^{\bigtriangledown}$. Let $x, y \in (A)^{\bigtriangledown}$. Thus $x^{++} \leq a^{++} \lor k, y^{++} \leq b^{++} \lor k$ for some $a, b \in A$. Then $(x \lor y)^{++} \leq (a \lor b)^{++} \lor k$ and $a \lor b \in A$, imply $x \lor y \in (A)^{\bigtriangledown}$. Now, let $x \in L, y \in (A)^{\bigtriangledown}$ and $x \leq y$. Then $x^{++} \leq y^{++} \leq a^{++} \lor k$. So $x \in (A)^{\bigtriangledown}$. Thus $(A)^{\bigtriangledown}$ is k-ideal of L. Since, $a^{++} \leq a^{++} \lor k$, forall $a \in A$, then $A \in A^{\bigtriangledown}$.

Lemma 11. Let A, B be two subsets of a CRD-Stone algebra L, which are closed under \lor . Then

222 (1)
$$(A] \nabla = A \nabla$$

- $_{223} \quad (2) \ A \subseteq B \Rightarrow A^{\bigtriangledown} \subseteq B^{\bigtriangledown},$
- 224 (3) $A^{\bigtriangledown} = (A] \vee \overline{D(L)},$
- 225 (4) $A^{\bigtriangledown \bigtriangledown} = A^{\bigtriangledown}.$

Proof. (1) Since A is closed with respect to \lor , then for $a \in (A]$, we have $a \leq a_1 \lor a_2 \lor \cdots \lor a_n \in A$, $a_i \in A$, i = 1, 2, ..., n. Immediately, we get

$$(a]^{\bigtriangledown} = \{x \in L : x^{++} \le a^{++} \lor k, \text{ for some } a \in (A]\}$$
$$= \{x \in L : x^{++} \le (a_1 \lor a_2 \lor \cdots \lor a_n)^{++} \lor k, a_1 \lor a_2 \lor \cdots \lor a_n \in A\} = A^{\bigtriangledown}.$$

(2) Suppose $A \subseteq B$ and $x \in A^{\bigtriangledown}$. Then $x^{++} \leq a^{++} \lor k$ for some $a \in A \subseteq B$. It follows that $x \in B^{\bigtriangledown}$. Thus $A^{\bigtriangledown} \subseteq B^{\bigtriangledown}$.

(3) Since $(A] \subseteq (A]^{\bigtriangledown} = A^{\bigtriangledown}$ by (1) and $\overline{D(L)} = (k] \subseteq A^{\bigtriangledown}$, then $(A]^{\bigtriangledown} \vee \overline{D(L)} \subseteq A^{\bigtriangledown}$. Conversely, let $x \in A^{\bigtriangledown}$. Then $x^{++} \leq a^{++} \vee k$ for some $a \in A$. We have

$$x = x^{++} \lor (x \land k) \le (a^{++} \lor k) \lor (x \land k)$$
 (by Lemma 7.(2))
$$= (a^{++} \lor k \lor x) \land (a^{++} \lor k)$$
 (by distributivity of L)
$$= a^{++} \lor k \le a \lor k \in (a \lor k]$$

$$\Rightarrow x \in (a \lor k] = (a] \lor (k] = (a] \lor \overline{D(L)} \subseteq (A] \lor \overline{D(L)}$$
((as $(a] \subseteq (A])$.)

212

Therefore $A^{\bigtriangledown} = (A] \vee \overline{D(L)}$. 232 233

(4) By the definition of A^{\bigtriangledown} , we have

$$A^{\nabla \nabla} = \{ x \in L : x^{++} \le a_1^{++} \lor k, \text{ for some } a_1 \in A^{\nabla} \}$$

= $\{ x \in L : x^{++} \le a_1^{++} \lor k, a_1^{++} \le a^{++} \lor k \text{ for some } a \in A \}$
= $\{ x \in L : x^{++} \le a^{++} \lor k, \text{ for some } a \in A \} = A^{\nabla}.$

A characterization of k-ideals of a CRD-Stone algebra L is given in the 235 following. 236

Theorem 12. Let I be an ideal of a CRD-Stone algebra L with core k. Then 237 the following statements are equivalent: 238

(1) I is a k-ideal of L, 239

240 (2)
$$D(L) \subseteq I$$

234

- (3) $x \wedge x^+ \in I$, for all $x \in L$, 241
- (4) $I = I \nabla$. 242

Proof. (1) \Rightarrow (2) Let I is a k-ideal of L. Then $k \in I$ implies $\overline{D(L)} = (k] \subseteq I$. 243 $(2) \Rightarrow (3)$ Let $\overline{D(L)} \subseteq I$. Forall $x \in L$, we have $x \wedge x^+ \in \overline{D(L)} \subseteq I$. 244

 $(3) \Rightarrow (4)$ By Lemma 10, $I \subseteq I^{\bigtriangledown}$. For the converse, let $y \in I^{\bigtriangledown}$. Then $y^{++} \leq I^{\frown}$. 245 $i^{++} \vee k$, for some $i \in I$. Thus $y^{++} \leq i^{++}$. By Lemma 7(2) $y = y^{++} \vee (y \wedge k) \leq i^{++}$ 246 $i^{++} \lor (y \land k)$. By (3), $k = k \land k^+ \in I$, where $k^+ = 1$. Since, i^{++} , $y \land k \in I$, then 247 $i^{++} \lor (y \land k) \in I$ and hence $y \in I$. 248

 $(4) \Rightarrow (1)$ Since $k \in I^{\bigtriangledown}$, Lemma 10. Then by (4), $k \in I$ and hence I is a 249 k-ideal of a CRD-Stone algebra L. 250

As a consequence of Lemma 11 and Theorem 12, we invistigate the following 251 Corollary 13 and Lemma 14, respectively. 252

Corollary 13. For any two ideals I, J of a CRD-Stone algebra L, we have the 253 following: 254

- (1) $I \subseteq J \Rightarrow I^{\bigtriangledown} \subseteq J^{\bigtriangledown}$, 255
- (2) $I \nabla \nabla = I \nabla$. 256

$$_{258} (1) I^{\bigtriangledown} = I \vee \overline{D(L)},$$

- (2) $\overline{D(L)}$ is the smallest k-ideal of L, 259
- (3) Every k-ideal of L can be expressed in the form I^{\bigtriangledown} for some $I \in I(L)$. 260

Let $I_k(L) = \{I : I \text{ is a } k \text{-ideal of } L\} = \{I^{\nabla} : I \in I(L)\}$ be the set of all 261 k-ideals of L. 262

Theorem 15. Let L be a CRD-Stone algebra L. Then for all $I, J \in I(L)$

- $_{\mathbf{264}}\quad (1)\ (I\vee J)^{\bigtriangledown}=I^{\bigtriangledown}\vee J^{\bigtriangledown},$
- 265 (2) $(I \cap J)^{\bigtriangledown} = I^{\bigtriangledown} \cap J^{\bigtriangledown}.$

Proof. (1) Since $I, J \subseteq I \lor J$. Then by Corollary 13(1), $I^{\bigtriangledown}, J^{\bigtriangledown} \subseteq (I \lor J)^{\bigtriangledown}$. Thus, $(I \lor J)^{\bigtriangledown}$ is an upper bound of I^{\bigtriangledown} and J^{\bigtriangledown} . Let H^{\bigtriangledown} be an upper bound of both I^{\bigtriangledown} and J^{\bigtriangledown} for some $H \in I_k(L)$. Then $I^{\bigtriangledown}, J^{\bigtriangledown} \subseteq H^{\bigtriangledown}$ implies $I, J \subseteq H^{\bigtriangledown}$. Hence, $I \lor J \subseteq H^{\bigtriangledown}$. Therefore, by Corollary 13(1) and (2), we get $(I \lor J)^{\bigtriangledown} \subseteq$ $H^{\heartsuit} = H^{\bigtriangledown}$. This deduce that $(I \lor J)^{\bigtriangledown}$ is the least upper bound of both I^{\bigtriangledown} and J^{\bigtriangledown} in $I_k(L)$. Then $(I \lor J)^{\bigtriangledown} = I^{\heartsuit} \lor J^{\bigtriangledown}$.

272 (2) Obviously, $(I \cap J)^{\bigtriangledown} \subseteq I^{\bigtriangledown} \cap J^{\bigtriangledown}$. Conversely, let $x \in I^{\bigtriangledown} \cap J^{\bigtriangledown}$. Then 273 $x^{++} \leq i^{++} \lor k$ and $x^{++} \leq j^{++} \lor k$ for some $i \in I$ and $j \in J$. Hence $x^{++} \leq$ 274 $(i^{++} \lor k) \land (j^{++} \lor k) = (i^{++} \land j^{++}) \lor k = (i \land j)^{++} \lor k$. It yields that $x \in (I \cap J)^{\bigtriangledown}$ 275 as $i \land j \leq i, j$ imples $i \land j \in I \cap J$. Therefore $I^{\bigtriangledown} \cap J^{\bigtriangledown} \subseteq (I \cap J)^{\bigtriangledown}$.

Theorem 16. The class $I_k(L)$ of all k-ideals of a CRD-Stone algebra L forms a bounded distributive lattice and $\{1\}$ -sublattice of I(L).

Proof. From Theorem 15, $(I_k(L); \lor, \land)$ is a sublattice of the lattice I(L), where

$$(I \lor J)^{\nabla} = I^{\nabla} \lor J^{\nabla} \text{ and } (I \cap J)^{\nabla} = I^{\nabla} \cap J^{\nabla} \text{ for all } I, J \in I(L).$$

Then $(I_k(L); \lor, \land)$ is sublattice of I(L). Since I(L) is a distributive lattice, then $I_k(L)$ is also distributive. Since $\overline{D(L)}$ and L are the smallest and the greatest members of $I_k(L)$, respectively. Then $(I_k(L); \lor, \land, \overline{D(L)}, L)$ is a bounded distributive lattice on its own and hence a $\{1\}$ -sublattice of I(L).

284

291

4. Principal k-ideals of a CRD-Stone algebra

In this section, we introduce the concept of principal k-ideals of a CRD-Stone algebra L and investigate many elegant properties of such ideals. A characterization of a k-ideal of L is given via the principal k-ideals. It is observed the set of all principal k-ideals of a CRD-Stone algebra L is a Boolean ring and so a Boolean algebra.

Now, let $A = \{a\}$ be a subset of a *CRD*-Stone *L*. Then ready is seen that

$$\{a\}^{\nabla} = \{x \in L : x^{++} \le a^{++} \lor k\}.$$

For brevity, set $(a)^{\bigtriangledown}$ instead of $\{a\}^{\bigtriangledown}$. Clearly, $(0)^{\bigtriangledown} = \overline{D(L)}$ and $(1)^{\bigtriangledown} = L$, are the smallest and the greatest k-ideals of L, respectively.

Definition 17. A k-ideal I of a CRD-Stone algebra L is called a principal k-ideal of L if I is a principal ideal of L. **Theorem 17.** Let L be a CRD-Stone algebra. Then for any $x, y \in L$, we get (1) $y \in (x)^{\bigtriangledown} \Leftrightarrow y^+ \lor x = 1$, (2) $(x)^{\bigtriangledown} = (x^{++} \lor k] = (x^{++}] \lor \overline{D(L)}$, this is, $(x)^{\bigtriangledown}$ is a principal k-ideal of L, (3) $x \in \overline{D(L)} \Leftrightarrow (x)^{\bigtriangledown} = \overline{D(L)}$.

300 **Proof.** (1) Let $y \in (x)^{\bigtriangledown}$. Then, we have

$$y^{++} \le x^{++} \lor k \Leftrightarrow y^{+} \ge x^{+}$$
$$\Leftrightarrow y^{+} \lor x = 1 \qquad \text{(by Definition 6)}$$

301 (2) For all $x \in L$, we get

$$\begin{aligned} (x)^{\nabla} &= \{ y \in L : y^{++} \le x^{++} \lor k \} \\ &= \{ y \in L : y^{++} \lor (y \land k) \le x^{++} \lor k \lor (y \land k) \} \\ &= \{ y \in L : y \le x^{++} \lor k \} \qquad \text{(by Lemma 7(2) and Definition 1(2))} \\ &= (x^{++} \lor k] \\ &= (x^{++} \lor \langle k] = (x^{++}] \lor \overline{D(L)}. \end{aligned}$$

302 (3) Let
$$x \in \overline{D(L)}$$
. Then $x^+ = 1$. Now,

$$(x)^{\nabla} = (x^{++} \lor k]$$

= $(0 \lor k] = (k] = \overline{D(L)}.$ (by(2))

³⁰³ The second implication is clear.

More interesting properties of principal k-ideals are given in the following two lemmas.

Lemma 18. Let L be a CRD-Stone algebra L. Then for any $x, y \in L$, we have

$$\begin{array}{ll} \text{307} & (1) & (x) \nabla \nabla = (x) \nabla, \\ \text{308} & (2) & (x] \nabla = (x) \nabla, \\ \text{309} & (3) & x \in (y) \nabla \Leftrightarrow (x) \nabla \subseteq (y) \nabla, \\ \text{310} & (4) & x \leq y \Rightarrow (x) \nabla \subseteq (y) \nabla. \end{array}$$

Lemma 19. Let L be a CRD-Stone algebra L. For any $x, y \in L$, we have

312 (1)
$$(x) \nabla = (x^{++}) \nabla$$
,

- 313 (2) $(x \wedge y) \bigtriangledown = (x) \bigtriangledown \cap (y) \bigtriangledown$,
- 314 (3) $(x \lor y)^{\bigtriangledown} = (x)^{\bigtriangledown} \lor (y)^{\bigtriangledown},$
- 315 (4) $(x \vee x^+)^{\bigtriangledown} = (1)^{\bigtriangledown} = L,$

316 (5) $(x \wedge x^+)^{\bigtriangledown} = \overline{D(L)}$. 317 **Proof.** (1) $(x)^{\bigtriangledown} = \{y \in L : y^{++} \le x^{++} \lor k = (x^{++})^{++} \lor k\} = (x^{++})^{\bigtriangledown}$, as 318 $x^{++++} = x^{++}$.

 $_{319}$ (2) By Theorem 17.(2), we get

$$\begin{aligned} (x \wedge y)^{\nabla} &= ((x \wedge y)^{++}] \vee \overline{D(L)} \\ &= ((x^{++} \wedge y^{++})] \vee \overline{D(L)} \\ &= ((x^{++}] \cap (y^{++}]) \vee \overline{D(L)} \\ &= ((x^{++}] \vee \overline{D(L)}) \cap ((y^{++})] \vee \overline{D(L)}) \qquad \text{(by distributivity of I(L))} \\ &= (x)^{\nabla} \cap (y)^{\nabla}. \end{aligned}$$

 $_{320}$ (3) By Theorem 17(2), we get

$$(x \lor y)^{\nabla} = ((x \lor y)^{++}] \lor \overline{D(L)}$$

= $((x^+ \land y^+)^+] \lor \overline{D(L)}$
= $(x^{++} \lor y^{++}] \lor \overline{D(L)}$
= $((x^{++}] \lor (y^{++}]) \lor \overline{D(L)}$
= $((x^{++}] \lor \overline{D(L)}) \lor ((y^{++})] \lor \overline{D(L)})$ (by distributivity of I(L))
= $(x)^{\nabla} \lor (y)^{\nabla}$.

- 321 (4) Since $x \vee x^+$, we get $(x \vee x^+)^{\bigtriangledown} = (1] = L$.
- (5) Since $x \wedge x^+ \in \overline{D(L)}$, then by Theorem 17(3), $(x \wedge x^+)^{\bigtriangledown} = \overline{D(L)}$.

Lemma 20. Let L be a CRD-Stone algebra L. For any $x, y \in L$, we have

 $_{324} \quad (1) \ \ (x)^{\bigtriangledown} = (y)^{\bigtriangledown} \Leftrightarrow x^{++} = y^{++} \Leftrightarrow x^+ = y^+,$

325 (2)
$$(x)^{\bigtriangledown} = (y)^{\bigtriangledown} \Rightarrow (x \land z)^{\bigtriangledown} = (y \land z)^{\bigtriangledown}, \forall z \in L,$$

326 (3) $(x)^{\bigtriangledown} = (y)^{\bigtriangledown} \Rightarrow (x \lor z)^{\bigtriangledown} = (y \lor z)^{\bigtriangledown}, \forall z \in L.$

Now, we introduce the following important result.

Theorem 21. Every principal k-ideal of L can be expressed as $(x)^{\bigtriangledown}$ for some $x \in L$.

Proof. Let (x] be a principal k-ideal of L. We claim that $(x] = (x)^{\bigtriangledown}$. Since $x \in (x)^{\bigtriangledown}$ then $(x] \subseteq (x)^{\bigtriangledown}$. For the converse, let $y \in (x)^{\bigtriangledown}$. Then

$$y \in (x)^{\bigtriangledown} \Rightarrow y^{++} \leq x^{++} \lor k$$

$$\Rightarrow y^{++} \lor (y \land k) \leq (x^{++} \lor k) \lor (y \land k) = (x^{++} \lor k \lor y) \land (x^{++} \lor k)$$

$$= x^{++} \lor k \leq x \lor k$$

$$\Rightarrow y \leq x \lor k \quad as \ y = y^{++} \lor (y \land k)$$

$$\Rightarrow y \in (x \lor k] \subseteq (x] \quad as \ k \leq x.$$

332 Therefore $(x)^{\bigtriangledown} \subseteq (x]$ and hence $(x)^{\bigtriangledown} = (x]$.

A characterization of a k-ideal via the principal k-ideal is given in the following theorem.

Theorem 22. Let I be an ideal of a CRD-Stone algebra L. Then the following statements are equivalent:

$$I$$
 is a k-ideal,

 $338 \quad (2) \ x^{++} \in I \Rightarrow x \in I,$

 $\text{339} \quad (3) \text{ for all } x, y \in L, \ (x)^{\bigtriangledown} = (y)^{\bigtriangledown} \text{ and } y \in I \Rightarrow x \in I,$

- 340 (4) $I = \bigcup_{x \in I} (x)^{\bigtriangledown}$,
- $_{341} \quad (5) \ x \in I \Rightarrow (x)^{\bigtriangledown} \subseteq I.$

Proof. (1) \Rightarrow (2) Let I be a k-ideal of L and $x^{++} \in I$. Then $k \in I$ implies 343 $x \wedge k \in I$. Now, x^{++} , $x \wedge k \in I$ imply that $x = x^{++} \lor (x \land k) \in I$.

344 (2) \Rightarrow (3) Let $(x)^{\bigtriangledown} = (y)^{\bigtriangledown}$, $y \in I$. Thus $x \in (y)^{\bigtriangledown}$. Then, $x^{++} \leq y^{++} \lor k$ 345 implies $x^{++} \leq y^{++} \leq y \in I$. Thus, $x^{++} \in I$. By (2), we get $x \in I$.

(3) \Rightarrow (4) For any $x \in I$, we have $x \in (x)^{\bigtriangledown} \subseteq \bigcup_{x \in I}(x)^{\bigtriangledown}$. Then $I \subseteq \bigcup_{x \in I}(x)^{\bigtriangledown}$. 347 Conversely, let $y \in \bigcup_{x \in I}(x)^{\bigtriangledown}$. Then $y \in (z)^{\bigtriangledown}$ for some $z \in I$. Hence, $(y)^{\bigtriangledown} \subseteq$ 348 $(z)^{\bigtriangledown}$, by Lemma 18(3). It follows that $(y)^{\bigtriangledown} = (y)^{\bigtriangledown} \cap (z)^{\bigtriangledown} = (y \land z)^{\bigtriangledown}$. Since 349 $y \land z \in I$, then by (3), we get $y \in I$. Therefore, $\bigcup_{x \in I}(x)^{\bigtriangledown} \subseteq I$ and hence 350 $\bigcup_{x \in I}(x)^{\bigtriangledown} = I$.

(4) \Rightarrow (5) Assume (4). Let $x \in I$. Then by (4), we get $x \in (i)^{\bigtriangledown}$ for some i $\in I$. Suppose $t \in (x)^{\bigtriangledown}$. Then it concludes $t \in (x)^{\bigtriangledown} \subseteq (i)^{\bigtriangledown}$ with $i \in I$. Then it $t \in \bigcup_{i \in I} (i)^{\bigtriangledown} = I$ and hence $(x)^{\bigtriangledown} \subseteq I$.

(5) \Rightarrow (1) Assume (5). Since $k \in (x)^{\nabla}$, $\forall x \in I$, then by (5), $k \in (x)^{\nabla} \subseteq I$. This proves that I is a k-ideal of L.

Let $I_k^p(L) = \{(x)^{\bigtriangledown} : x \in L\}$ be the set of all principal k-ideal of a CRD-Stone algebra L.

Theorem 23. Let L be a CRD-Stone algebra. Then $(I_k^p(L); +, \bullet, (0) \nabla, (1) \nabla)$ forms a Boolean ring, where + the addition operation and \bullet the multiplication operation are defined as follows:

$$(x)^{\nabla} + (y)^{\nabla} = ((x \wedge y^{+}) \vee (y \wedge x^{+}))^{\nabla},$$

$$(x)^{\nabla} \bullet (y)^{\nabla} = (x \wedge y)^{\nabla}.$$

Proof. Let $(x)^{\bigtriangledown}, (y)^{\bigtriangledown}, (z)^{\bigtriangledown} \in I_k^p(L)$. Then we deduce the following properties:

364 (i) Associativity of +,

$$\begin{aligned} &(x)^{\bigtriangledown} + ((y)^{\bigtriangledown} + (z)^{\bigtriangledown}) \\ &= (x)^{\bigtriangledown} + ((y \wedge z^+) \lor (z \wedge y^+))^{\bigtriangledown} \\ &= ((x \wedge \{(y \wedge z^+) \lor (z \wedge y^+)\}^+) \lor (x^+ \wedge \{(y \wedge z^+) \lor (z \wedge y^+)\}))^{\bigtriangledown} \\ &= (\{x \wedge y^+ \wedge z^+\} \lor \{x \wedge z^{++} \land y^{++}\} \lor \{x^+ \wedge y \wedge z^+\} \lor \{x^+ \wedge z \wedge y^+\})^{\bigtriangledown} \end{aligned}$$

365 where

$$\begin{aligned} & (x \land \{(y \land z^{+}) \lor (z \land y^{+})\}^{+}) \\ &= (x \land \{(y \land z^{+})^{+} \land (z \land y^{+})^{+}\}) & (by \text{ Theorem 1(7)}) \\ &= x \land \{(y^{+} \lor z^{++}) \land (z^{+} \lor y^{++})\} & (by \text{ Theorem 1(6)}) \\ &= \{(x \land y^{+}) \lor (x \land z^{++})\} \land (z^{+} \lor y^{++}) & (by \text{ distributivity of } L) \\ &= \{(x \land y^{+}) \land (z^{+} \lor y^{++})\} \lor \{(x \land z^{++}) \land (z^{+} \lor y^{++})\} & (by \text{ distributivity of } L) \\ &= (x \land y^{+} \land z^{+}) \lor (x \land y^{+} \land y^{++}) \lor (x \land z^{++} \land z^{+}) \lor (x \land z^{++} \land y^{++}) \\ &= (x \land y^{+} \land z^{+}) \lor (x \land z^{++} \land y^{++}) \text{ as } x^{+} \land x^{++} = 0, \forall x \in L. \end{aligned}$$

$$\begin{split} &((x)^{\bigtriangledown} + (y)^{\bigtriangledown}) + (z)^{\bigtriangledown} \\ &= (((x \land y^+) \lor (y \land x^+))^{\bigtriangledown} + z^{\bigtriangledown}) \\ &= ((\{(x \land y^+) \lor (y \land x^+)\} \land z^+) \lor (\{(x \land y^+) \lor (y \land x^+)\}^+ \land z))^{\bigtriangledown} \\ &= (\{x \land y^+ \land z^+\} \lor \{x^+ \land y \land z^+\} \lor \{x^{++} \land y^{++} \land z\} \lor \{x^+ \land y^+ \land z\})^{\bigtriangledown} \end{split}$$

367 where

$$\begin{array}{l} (\{(x \wedge y^{+}) \lor (y \wedge x^{+})\}^{+} \land z) \\ = (\{(x \wedge y^{+})^{+} \land (y \wedge x^{+})^{+}\} \land z) & \text{(by Theorem 1(7))} \\ = (\{(x^{+} \lor y^{++}) \land (y^{+} \lor x^{++})\} \land z) & \text{(by Theorem 1(6))} \\ = (\{((x^{+} \lor y^{++}) \land y^{+}) \lor ((x^{+} \lor y^{++}) \land x^{++})\} \land z) & \text{(by distributivity of } L) \\ = \{(x^{+} \lor y^{++}) \land y^{+} \land z\} \lor \{(x^{+} \lor y^{++}) \land x^{++} \land z\} & \text{(by distributivity of } L) \\ = (x^{+} \land y^{+} \land z) \lor (y^{++} \land y^{+} \land z) \lor (x^{+} \land x^{++} \land z) \lor (y^{++} \land x^{++} \land z) \\ = (x^{+} \land y^{+} \land z) \lor (y^{++} \land x^{++} \land z) \text{ as } x^{+} \land x^{++} = 0, \ \forall x \in L. \end{array}$$

Now, we use the fact $(x)^{\bigtriangledown} = (y)^{\bigtriangledown} \Leftrightarrow x^{++} = y^{++} \Leftrightarrow x^+ = y^+$, see Lemma 20(1). It is easy to check that

$$\begin{split} &\{\{x \wedge y^+ \wedge z^+\} \vee \{x \wedge z^{++} \wedge y^{++}\} \vee \{x^+ \wedge y \wedge z^+\} \vee \{x^+ \wedge z \wedge y^+\}\}^+ \\ &= \{\{x \wedge y^+ \wedge z^+\} \vee \{x^+ \wedge y \wedge z^+\} \vee \{x^{++} \wedge y^{++} \wedge z\} \vee \{x^+ \wedge y^+ \wedge z\}\}^+ \\ &= \{x^+ \vee y^{++} \vee z^{++}\} \wedge \{x^+ \vee z^+ \vee y^+\} \wedge \{x^{++} \vee y^+ \vee z^{++}\} \wedge \{x^{++} \vee z^+ \vee y^{++}\}. \end{split}$$

Therefore, $(\{x \land y^+ \land z^+\} \lor \{x \land z^{++} \land y^{++}\} \lor \{x^+ \land y \land z^+\} \lor \{x^+ \land z \land y^+\})^{\bigtriangledown} = (\{x \land y^+ \land z^+\} \lor \{x^+ \land y \land z^+\} \lor \{x^{++} \land y^{++} \land z\} \lor \{x^+ \land y^+ \land z\})^{\bigtriangledown}$ implies $((x)^{\bigtriangledown} + (y)^{\bigtriangledown}) + (z)^{\bigtriangledown} = (x)^{\bigtriangledown} + ((y)^{\bigtriangledown} + (z)^{\bigtriangledown}).$

(ii) Since $(x)^{\bigtriangledown} + (0)^{\bigtriangledown} = ((x \land 0^+) \lor (x^+ \land 0))^{\bigtriangledown} = (x \lor 0)^{\bigtriangledown} = (x)^{\bigtriangledown}$, then $(0)^{\bigtriangledown}$ is the additive identity on $I_k^p(L)$.

 $_{373}$ (iii) Commutativity of + and \bullet ,

$$(x)^{\bigtriangledown} + (y)^{\bigtriangledown} = (x \land y^{+}) \lor (y \land x^{+})^{\bigtriangledown}$$
$$= (y \land x^{+}) \lor (y^{+} \land x)^{\bigtriangledown}$$
$$= (y)^{\bigtriangledown} + (x)^{\bigtriangledown},$$
$$(x)^{\bigtriangledown} \bullet (y)^{\bigtriangledown} = (x \land y)^{\bigtriangledown}$$
$$= (y \land x)^{\bigtriangledown}$$
$$= (y)^{\bigtriangledown} \bullet (x)^{\bigtriangledown}.$$

iv) It is clear that the additive inverse of $(x)^{\bigtriangledown} \in I^p_K(L)$ is $(x)^{\bigtriangledown}$ itself, that is, $-(x)^{\bigtriangledown} = (x)^{\bigtriangledown}$.

(v) The multiplicative identity of $I_k^p(L)$ is $(1)^{\bigtriangledown}$.

(vii) The distributive law on $I_k^p(L)$,

$$\begin{aligned} (x)^{\nabla} \bullet \{ (y)^{\nabla} + (z)^{\nabla} \} &= (x)^{\nabla} \bullet ((y \wedge z^{+}) \vee (z \wedge y^{+}))^{\nabla} \\ &= (x \wedge \{ (y \wedge z^{+}) \vee (z \wedge y^{+}) \})^{\nabla} \\ &= (\{ x \wedge y \wedge z^{+} \} \vee \{ x \wedge z \wedge y^{+} \})^{\nabla}, \end{aligned}$$

378 and

$$\begin{split} \{(x)^{\bigtriangledown} \bullet (y)^{\bigtriangledown}\} + \{(x)^{\bigtriangledown} \bullet (z)^{\bigtriangledown}\} \\ &= (x \wedge y)^{\bigtriangledown} + (x \wedge z)^{\bigtriangledown} \\ &= (\{(x \wedge y) \wedge (x \wedge z)^{+}\} \vee \{(x \wedge y)^{+} \wedge (x \wedge z)\})^{\bigtriangledown} \\ &= (\{(x \wedge y) \wedge (x^{+} \vee z^{+})\} \vee \{(x^{+} \vee y^{+}) \wedge (x \wedge z)\})^{\bigtriangledown} \\ &= (\{x \wedge y \wedge x^{+}\} \vee \{x \wedge y \wedge z^{+}\} \vee \{x^{+} \wedge x \wedge z\} \vee \{y^{+} \wedge x \wedge z\})^{\bigtriangledown}. \end{split}$$

Then by Lemma 20(1), we get $(\{x \land y \land z^+\} \lor \{x \land z \land y^+\})^{\bigtriangledown} = (\{x \land y \land x^+\} \lor \{x \land x \land z\} \lor \{y^+ \land x \land z\})^{\bigtriangledown}.$ Therefore, $(x)^{\bigtriangledown} \bullet \{(y)^{\bigtriangledown} + (z)^{\bigtriangledown}\} = \{(x)^{\bigtriangledown} \bullet (y)^{\bigtriangledown}\} + \{(x)^{\bigtriangledown} \bullet (z)^{\bigtriangledown}\}.$ (viii) $(x)^{\bigtriangledown} \bullet (x)^{\bigtriangledown} = (x \land x)^{\bigtriangledown} = (x)^{\bigtriangledown}.$ Consequently $(I_k^p(L); +, \bullet, (0)^{\bigtriangledown}, (1)^{\bigtriangledown})$ is a Boolean ring.

It is known that there is a one-to-one correspondence between Boolean algebras and Boolean rings (see [17]). Then we can convert the Boolean ring $I_k^p(L)$ into a Boolean algebra as follows. **Corollary 24.** Let $(I_k^p(L); +, \bullet, (0)^{\bigtriangledown}, (1)^{\bigtriangledown})$ be a Boolean ring of all principal kideals of a CRD-Stone algebra L. Then $(I_k^p(L); \lor, \land, ', (0)^{\bigtriangledown}, (1)^{\bigtriangledown})$ is a Boolean algebra, where

$$(x) \nabla \vee (y) \nabla = (x) \nabla + (y) \nabla + \{(x) \nabla \bullet (y) \nabla\} = (x \wedge y) \nabla,$$

$$(x)^{\bigtriangledown} \cap (y)^{\bigtriangledown} = (x)^{\bigtriangledown} \bullet (y)^{\bigtriangledown} = (x \land y)^{\bigtriangledown},$$
$$(x)^{\bigtriangledown'} = (x^+)^{\bigtriangledown}.$$

Now, we give an example to clarify the basic properties of the class of all principal k-ideals of a certain CRD-Stone algebra L.

Example 25. Consider the *CRD*-Stone algebra S_9 which is given in Example 6(1) (see Figure 1). The principal k-ideals of S_9 are given as follows.

³⁹⁷ $(0)^{\bigtriangledown} = (c)^{\bigtriangledown} = (d)^{\bigtriangledown} = (k)^{\bigtriangledown} = (k], (a)^{\bigtriangledown} = (x)^{\bigtriangledown} = (x], (b)^{\bigtriangledown} = (y)^{\bigtriangledown} = (y]$ ³⁹⁸ and $(1)^{\bigtriangledown} = L = (1]$. We determine the algebras $(I_k^p(L), +)$ and $(I_k^p(L), \bullet)$ as in ³⁹⁹ the following tables.

+	(0)	$(a)^{\bigtriangledown}$	$(b) \bigtriangledown$	(1)	•	(0)	$(a)^{\bigtriangledown}$	$(b) \bigtriangledown$	(1)
(0)	(0)	$(a)^{\bigtriangledown}$	$(b) \bigtriangledown$	(1)	(0)	(0)	(0)	(0)	(0)
(a)	$(a) \nabla$	$\nabla(0)$	$(b) \nabla$	(1)	$(a) \nabla$	$\nabla(0)$	$(a) \nabla$	$\nabla(0)$	$(a) \nabla$
$(b) \nabla$	$(b) \nabla$	(1)	(0)	(a)	$(b) \nabla$	(0)	(0)	$(b) \nabla$	$(b) \nabla$
(1)▽	(1)▽	$(b) \nabla$	$(a) \nabla$	(0)▽	(1)▽	(0)▽	(a)	$(b) \nabla$	(1)▽

From the above tables, we abserve that $(I_k^p(L); +, \bullet)$ forms a Boolean ring. Also, Figure 3. Shows that $(I_k^p(L); \lor, \land, ', (0)^{\bigtriangledown}, (1)^{\bigtriangledown})$ forms a Boolean algebra which is isomorphic to B(L), where ' is given as, $(0)^{\bigtriangledown'} = (1)^{\bigtriangledown}, (a)^{\bigtriangledown'} = (b)^{\bigtriangledown},$ $(b)^{\bigtriangledown'} = (a)^{\bigtriangledown}, (1)^{\bigtriangledown'} = (0)^{\bigtriangledown}.$

- 404 **Theorem 26.** Let L be a CRD-Stone algebra. Then
- 405 (1) $(I_k(L); \lor, \land, \overline{D(L)}, L)$ is a {1}-sublattice of I(L),
- 406 (2) $(I_k^p(L); \lor, \land, (0)^{\bigtriangledown}, (1)^{\bigtriangledown})$ is a bounded sublattice of $I_k(L)$,
- 407 (3) B(L) is isomorphic to $I_k^p(L)$.

Proof. (1) Let $I, J \in I_k(L)$. Since $k \in I, J$, then $I \cap J$ and $I \vee J$ are k-ideals. Since $k \in L = (1]$, then L is the greatest k-ideal of L, but $\overline{D(L)} = (k]$ is the smallest k-ideal of L. Then $I_k(L)$ is a $\{1\}$ -sublattice of the lattice I(L).

391 392

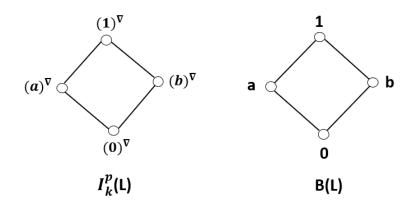


Figure 3. $I_k^p(L)$ and B(L) are isomorphic Boolean algebras.

(2) We have $(x \vee y)^{\bigtriangledown} = (x)^{\bigtriangledown} \vee (y)^{\bigtriangledown}$ and $(x \wedge y)^{\bigtriangledown} = (x)^{\bigtriangledown} \wedge (y)^{\bigtriangledown}$ for all (x) $^{\bigtriangledown}, (y)^{\bigtriangledown} \in I_k^p(L)$. It is observed that $(0)^{\bigtriangledown} = \overline{D(L)}, (1)^{\bigtriangledown} = L$ are the smallest and the greatest members of $I_k^p(L)$, respectively. Therefore, $(I_k^p(L); \vee, \wedge, (0)^{\bigtriangledown}, (1)^{\bigtriangledown})$ is a bounded sublattice of the lattice $I_k(L)$.

(3) Define mapping: $f: B(L) \longrightarrow I_k^p(L)$ by $f(x) = (x)^{\bigtriangledown}$, for all $x \in B(L)$. To prove that f is a homomorphism, let $x, y \in B(L)$,

$$f(x \lor y) = (x \lor y)^{\bigtriangledown}$$

= $(x)^{\bigtriangledown} \lor (y)^{\bigtriangledown}$ (by Lemma 19(3))
= $f(x) \lor f(y)$

Thus $f(x \lor y) = f(x) \lor f(y)$. Similarly, we can get $f(x \land y) = f(x) \land f(y)$. Then f is homomorphism. Let f(x) = f(y). Then $(x)^{\bigtriangledown} = (y)^{\bigtriangledown}$ and hence $x = x^{++} = y^{++} = y$. Then f is an injective map. For all $(x)^{\bigtriangledown} \in I_k^p(L)$, we have $(x)^{\bigtriangledown} = (x^{++})^{\bigtriangledown} = f(x^{++}), x^{++} \in B(L)$. Then f is a surjective map. Therefore f is an isomorphism and $B(L) \cong I_k^p(L)$.

422 5. k-{+}-congruences on a CRD-Stone algebra

In this section, we study the relationships between k-ideals and k-{+}-congruences of a *CRD*-Stone algebra L. Also, we describe the lattice $Con_k^+(L)$ of all k-{+}congruences of L.

Definition 18. A $\{^+\}$ -congruence θ on a *CRD*-Stone algebra *L* is called a *k*- $\{^+\}$ -congruence if $k \in Ker \ \theta$, where $Ker \ \theta = \{x \in L : (x, 0) \in \theta\} = [0]_{\theta}$ ⁴²⁸ **Proposition 27.** Define a binary relation θ on a core regular double Stone L as ⁴²⁹ follows:

$$(x,y) \in \theta \Leftrightarrow (x)^{\bigtriangledown} = (y)^{\bigtriangledown}$$

431 Then θ is a k-{+}-congruence on L. Moreover, $\theta = \psi^+$.

Let *I* be a *k*-ideal of *CRD*-Stone algebra *L*. Define a binary relation θ_I on *L* as follows:

434

430

$$\theta_I = \{(a,b) \in L \times L : a \lor i \lor k = b \lor i \lor k, \text{ for some } i \in I\}.$$

Theorem 28. Let I be a k-ideal of CRD-Stone algebra L. Then θ_I is a k-{+}congerence on L such that Ker $\theta_I = I$.

Proof. It is Clear that θ_I is an equivalent relation on L. Let $(a, b) \in \theta_I$. Then $a \lor i \lor k = b \lor i \lor k$ for some $i \in I$. Now for all $c \in L$, then by distributivity of L, we get

$$(a \wedge c) \lor i \lor k = (b \wedge c) \lor i \lor k,$$
$$(a \lor c) \lor i \lor k = (b \lor c) \lor i \lor k.$$

⁴³⁷ Therefore $(a \land c, b \land c), (a \lor c, b \lor c) \in \theta_I$. So by **Theorem 8**, θ_I is a lattice ⁴³⁸ congruence on *L*. It remains to show that $(a, b) \in \theta_I$ implies $(a^+, b^+) \in \theta_I$.

$$(a,b) \in \theta_I \Rightarrow a \lor i \lor k = b \lor i \lor k$$

$$\Rightarrow a^+ \land i^+ \land k^+ = b^+ \land i^+ \land k^+$$

$$\Rightarrow a^+ \land i^+ = b^+ \land i^+ as \ k^+ = 1$$

$$\Rightarrow (a^+ \land i^+) \lor i = (b^+ \land i^+) \lor i$$

$$\Rightarrow (a^+ \lor i) \land (i^+ \lor i) = (b^+ \lor i) \land (i^+ \lor i) \quad \text{(by distributivity of L)}$$

$$\Rightarrow (a^+ \lor i) \land 1 = (b^+ \lor i) \land 1 \qquad \text{(by Theorem 1(2))}$$

$$\Rightarrow a^+ \lor i = b^+ \lor i$$

$$\Rightarrow (a^+, b^+) \in \theta_I$$

439 Then θ_I is a $\{^+\}$ -congruence on L.

440 Now, we prove that $Ker \ \theta_I = I$.

$$\begin{split} & Ker \ \theta_I = \{x \in L : (0, x) \in \theta_I\} \\ & = \{x \in L : 0 \lor i \lor k = x \lor i \lor k, i \in I\} \\ & = \{x \in L : i \lor k = x \lor i \lor k\} \\ & = \{x \in L : x \leq i \lor k\} \\ & = \{x \in L : x^{++} \leq i^{++} \leq i^{++} \lor k\} \\ & = \{x : x \in I^{\bigtriangledown} = I\} = I. \end{split}$$

441 Since $k \in I = Ker \ \theta_I$, then θ_I is a $k \in \{+\}$ -congruence on L.

⁴⁴² **Theorem 29.** For any k-ideals I, J of a CRD-Stone algebra L, we have

- 443 (1) $I \subseteq J \Leftrightarrow \theta_I \subseteq \theta_J$,
- 444 (2) $\psi^+ \subseteq \theta_I$, where ψ^+ is the dual Glivenko congruence on L,

445 (3)
$$\theta_{\overline{D(L)}} = \psi^+$$
,

- 446 (4) $\theta_L = \nabla_L$,
- 447 (5) the quotient lattice L/θ_I forms a Boolean algebra.

448 **Proof.** (1) Suppose $I \subseteq J$ and $(a, b) \in \theta_I$. Then there exists $i \in I$ such that 449 $a \lor i \lor k = b \lor i \lor k$. Since $I \subseteq J$, then $(a, b) \in \theta_J$. Thus $\theta_I \subseteq \theta_J$. Conversely, let 450 $\theta_I \subseteq \theta_J$. Then by the above **Theorem 28**, $I = Ker \ \theta_I \subseteq Ker \ \theta_J = J$.

451 (2) Let $(a, b) \in \psi^+$. Then $a^+ = b^+$ implies $a^{++} = b^{++}$. Now, we have

$$\forall i \lor k = (a^{++} \lor (a \land k)) \lor i \lor k$$
 (by Lemma 7(2))

$$= a^{++} \lor i \lor ((a \land k) \lor k)$$

$$= a^{++} \lor i \lor k$$
 (by Definition 1(2))

$$= b^{++} \lor i \lor k$$

$$= b^{++} \lor i \lor ((b \land k) \lor k)$$

$$= (b^{++} \lor (b \land k)) \lor i \lor k$$

$$= b \lor i \lor k.$$

452 Thus $(a,b) \in \theta_I$ and hence $\psi^+ \subseteq \theta_I$.

a

(3) Since, $i^+ = 1$, for all $i \in \overline{D(L)}$, we get

$$\begin{split} \theta_{\overline{D(L)}} &= \{(a,b) \in L \times L : a \lor i \lor k = b \lor i \lor k, \ i \in \overline{D(L)} \} \\ &= \{(a,b) \in L \times L : a^+ \land i^+ \land k^+ = b^+ \land i^+ \land k^+ \} \\ &= \{(a,b) \in L \times L : a^+ = b^+ \} = \psi^+ \ (as \ i^+ = k^+ = 1) \end{split}$$

(4) Since $a \vee 1 \vee k = b \vee 1 \vee k$ for all $a, b \in L$, then $(a, b) \in \theta_L$ and hence $\theta_{L} = \nabla_L$.

(5) The quotient set L/θ_I is $\{[a]\theta_I : a \in L\}$, where $[a]\theta_I$ is the congruence class of an element $a \in L$ modulo θ_I . It is known that $L/\theta_I = (L/\theta_I; \lor, \land, [1]\theta_I,$ $[0]\theta_I)$ is a bounded distributive lattice, where $[0]_I = I$, $[1]\theta_I$ are the bounds of L/θ_I and $[a]\theta_I \land [b]\theta_I = [a \land b]\theta_I, \ [a]\theta_I \lor [b]\theta_I = [a \lor b]\theta_I$. Define L/θ_I by $[a]'\theta_I =$ $[a^+]\theta_I$, since $[a]\theta_I \land [a^+]\theta_I = [a \land a^+]\theta_I = [0]\theta_I, \ [a]\theta_I \lor [a^+]\theta_I = [a \lor a^+]\theta_I = [1]\theta_I$ and $[a]''\theta_I = [a^+]'\theta_I = [a^{++}]\theta_I = [a]\theta_I$. Then $(L/\theta_I; \lor, \land, ', [0]\theta_I, [1]\theta_I)$ is a Boolean algebra.

Let $Con_k^+(L) = \{\theta_I : I \in I_k(L)\}$ be the set of all k- $\{^+\}$ -congruences on Lwhich are induced by the k-ideals of L. Using Theorem 29. We can show the following results. **Theorem 30.** For any θ_I and θ_J of $Con_k^+(L)$, we have the following:

- 466 (1) $\theta_I \cap \theta_J = \theta_{(I \cap J)},$
- 467 (2) $\theta_I \vee \theta_J = \theta_{(I \vee J)},$
- 468 (3) $(Con_k^+(L); \lor, \land, \theta_{\overline{D(L)}}, \theta_L)$ forms a bounded lattice and a sublattice of 469 $Con^+(L)$.

Proof. (1) Since $I \cap J \subseteq I, J$, by Theorem 29 $\theta_{(I \cap J)} \subseteq \theta_I, \theta_J$ implies $\theta_{(I \cap J)} \subseteq \theta_I \cap \theta_J$. Conversely, let $(a, b) \in \theta_I \cap \theta_J$. We get

$$\begin{aligned} (a,b) \in \theta_I \cap \theta_J \Rightarrow (a,b) \in \theta_I & \text{and } (a,b) \in \theta_J \\ \Rightarrow a \lor i \lor k = b \lor i \lor k \text{ for some } i \in I \text{ and } a \lor j \lor k = b \lor j \lor \\ k \text{ for some } j \in J \\ \Rightarrow (a \lor i \lor k) \land (a \lor j \lor k) = (b \lor i \lor k) \land (a \lor j \lor k) \\ \Rightarrow (a \lor k \lor i) \land (a \lor k \lor j) = (b \lor k \lor i) \land (a \lor k \lor j) \\ \Rightarrow a \lor k \lor (i \land j) = b \lor k \lor (i \land j) \\ \Rightarrow (a,b) \in \theta_{(I \cap J)} \text{ as } (i \land j) \in (I \cap J). \end{aligned}$$

470 Then $\theta_I \cap \theta_J \subseteq \theta_{(I \cap J)}$ and hence $\theta_I \cap \theta_J = \theta_{(I \cap J)}$.

(2) Since $I, J \subseteq I \lor J$, then by Theorem 29, $\theta_I, \theta_J \subseteq \theta_{(I \lor J)}$. Thus, $\theta_{(I \lor J)}$ is an upper bound of θ_I, θ_J . Conversely, let θ_k be an upper bound of θ_I and θ_J , for $k \in I_k(L)$. Then $\theta_I, \theta_J \subseteq \theta_k$. Hence $I, J \subseteq k$ as $I \lor J$ is the least upper bound of I, J on $I_k(L)$. By Theorem 29, $\theta_I, \theta_J \subseteq \theta_k$. Therefore $\theta_{(I \lor J)}$ is the least upper bound of θ_I, θ_J . This proves that $\theta_I \lor \theta_J = \theta_{(I \lor J)}$.

(3) From (1) and (2), it is clear that $(Con_k^+(L); \lor, \land)$ forms a sublattice of $Con^+(L)$. Since $\theta_{\overline{D(L)}}$ and θ_L are the smallest and the greatest members of $Con_k^+(L)$, respectively. Then $(Con_k^+(L); \lor, \land, \theta_{\overline{D(L)}}, \theta_L)$ is a bounded lattice.

⁴⁷⁹ Now, we introduce the following interesting results.

Theorem 31. For every k-{+}-congruence θ on a CRD-Stone algebra L, we have

- 482 (1) [0] θ is a k-ideal of L,
- 483 (2) θ can be expressed as θ_I for some k-ideal I of L.

Proof. (1) It is clear that $[0]\theta = \{x \in L : (x,0) \in \theta\} = Ker \ \theta$. It is known that the Ker θ is an ideal of L. Since θ is a k-{+}-congruence, then $k \in Ker \ \theta$. Therefore $[0]\theta$ is a k-ideal of L.

487 (2) We claim that $\theta = \theta_{[0]\theta}$. Let $(x, y) \in \theta$. Since $(k, k) \in \theta$ hence 488 $(x \wedge k, y \wedge k) \in \theta$. Since $[0]\theta$ is a k-ideal of L, then $x \wedge k, y \wedge k \in [0]\theta$. Hence 489 $(x \wedge k, y \wedge k) \in \theta_{[0]\theta}$. Now, we prove that $(x^{++}, y^{++}) \in \theta_{[0]\theta}$.

$$\begin{aligned} (x^+, y^+) &\in \theta \Rightarrow (x^+ \land x^{++}, y^+ \land x^{++}) \in \theta \text{ and } (x^+ \land y^{++}, y^+ \land y^{++}) \in \theta \\ &\Rightarrow (0, y^+ \land x^{++}) \in \theta \text{ and } (x^+ \land y^{++}, 0) \in \theta \text{ (by Definition 8)} \\ &\Rightarrow x^+ \land y^{++}, y^+ \land x^{++} \in [0]\theta \\ &\Rightarrow (x^+ \land y^{++}, y^+ \land x^{++}) \in \theta_{[0]\theta} \\ &\Rightarrow (x^+ \lor (x^+ \land y^{++}), x^+ \lor (y^+ \land x^{++})) = (x^+, x^+ \lor y^+) \theta_{[0]\theta} \\ &\qquad \text{(by Definition 1(2))} \\ &\text{and } (y^+ \lor (x^+ \land y^{++}), y^+ \lor (y^+ \land x^{++})) = (x^+ \lor y^+, y^+) \in \theta_{[0]\theta} \\ &\Rightarrow (x^+, y^+) \in \theta_{[0]\theta} \\ &\Rightarrow (x^{++}, y^{++}) \in \theta_{[0]\theta}. \end{aligned}$$

⁴⁹⁰ Now, $(x^{++}, y^{++}) \in \theta_{[0]\theta}$ and $(x \wedge k, y \wedge k) \in \theta_{[0]\theta}$ imply that $(x, y) = (x^{++} \vee (y \wedge k), y^{++} \vee (y \wedge k)) = (x^{++}, y^{++}) \vee (x \wedge k, y \wedge k) \in \theta_{[0]\theta}$. Then $\theta \subseteq \theta_{[0]\theta}$. For ⁴⁹² the converse, let $(x, y) \in \theta_{[0]\theta}$. Then $(x \wedge k, y \wedge k) \in \theta_{[0]\theta}$. Since $x \wedge k, y \wedge k \in [0]\theta$, ⁴⁹³ then $(x \wedge k, y \wedge k) \in \theta$.

Now, we prove that $(x^{++}, y^{++}) \in \theta$ for all $(x, y) \in \theta_{[0]\theta}$

$$\begin{aligned} &(x,y) \in \theta_{[0]\theta} \\ \Rightarrow &(x^+, y^+) \in \theta_{[0]\theta} \\ \Rightarrow &(x^+ \wedge x^{++}, y^+ \wedge x^{++}), (x^+ \wedge y^{++}, y^+ \wedge y^{++}) \in \theta_{[0]\theta} \\ \Rightarrow &(0, y^+ \wedge x^{++}), (x^+ \wedge y^{++}, 0) \in \theta_{[0]\theta} \text{ as } x^+ \wedge x^{++} = 0, y^+ \wedge y^{++} = 0 \\ \Rightarrow &x^+ \wedge y^{++}, y^+ \wedge x^{++} \in [0]\theta \\ \Rightarrow &(x^+ \wedge y^{++}, y^+ \wedge x^{++}) \in [0]\theta \\ \Rightarrow &(x^+ \vee (x^+ \wedge y^{++}), x^+ \vee (y^+ \wedge x^{++})), (y^+ \vee (x^+ \wedge y^{++}), y^+ \vee (y^+ \wedge x^{++})) \in \theta \\ \Rightarrow &(x^+, (x^+ \vee y^+) \wedge (x^+ \vee x^{++})), ((y^+ \vee x^+) \wedge (y^+ \vee y^{++}), y^+) \in \theta \\ &\text{ (by Definition 1(2))} \\ \Rightarrow &(x^+, x^+ \vee y^+), (x^+ \vee y^+, y^+) \in \theta \text{ (by Definition 8)} \\ \Rightarrow &(x^+, y^{++}) \in \theta \\ \Rightarrow &(x^{++}, y^{++}) \in [0]\theta. \end{aligned}$$

Now, $(x^{++}, y^{++}) \in \theta$ and $(x \wedge k, y \wedge k) \in [0]\theta$ imply that $(x, y) = (x^{++}, y^{++})$ $\forall (x \wedge k, y \wedge k) \in \theta$. Therefore $\theta_{[0]\theta} \subseteq \theta$ and $\theta = \theta_{[0]\theta}$.

According to Theorem 30 and Theorem 31, we observe that there is a one to one correspondence between the elements of the lattice $I_k(L)$ of all k-ideals of a *CRD*-Stone algebra L and the elements of the lattice $Con_k^+(L)$ of all k-{+}-500 ⁵⁰¹ Congruences of *L*. In fact, this deduces that the lattices $I_k(L)$ and $Con_k^+(L)$ are ⁵⁰² isomorphic and hence the lattice $Con_k^+(L)$ is a distributive lattice.

Theorem 32. Let L be a CRD-Stone algebra. Then the lattices $I_k(L)$ and Con⁺_k(L) are isomorphic and hence $Con^+_k(L)$ is a distributive lattice.

⁵⁰⁵ **Proof.** Define a map $h: I_k(L) \longrightarrow Con_k^+(L)$ by $h(I) = \theta_I$, for all $I \in I_k(L)$. ⁵⁰⁶ From Theorem 30, for $I, J \in I_k(L)$, we have

507
$$h(I \lor J) = \theta_I \lor \theta_J = \theta_{(I \lor J)} = h(I) \lor h(J),$$

508
$$h(I \cap J) = \theta_I \cap \theta_J = \theta_{(I \cap J)} = h(I) \cap h(J),$$

509
$$h(\overline{D(L)}) = \theta_{\overline{D(L)}} = \psi^+,$$

510
$$h(L) = \theta_L = \nabla_L$$

Then h is (0,1)-lattice homomorphism. Let h(I) = h(J). Then $\theta_I = \theta_J$ implies I = J. Thus h is an injective map. For each $\theta \in Con_k^+(L)$, by Theorem 31(2), we have $\theta = \theta_I$ for some $I \in I_k(L)$. Then $h(I) = \theta_I = \theta$ implies that h is a surjective. Therefore, h is an isomorphism and hence $I_k(L)$ and $Con_k^+(L)$ are isomorphic lattices. Since $I_k(L)$ is a distributive lattice (see Theorem 16), then also, $Con_k^+(L)$ a distributive lattice.

517 6. PRINCIPAL k-{+}-CONGRUENCES ON A CRD-Stone Algebra

In this section, we describe the principal k-{+}-Congruences on a *CRD*-Stone algebra L which are induced by the principal k-ideals of L. Also, we describe the algebraic structure of the class $Con_k^p(L)$ all principal k-{+}-ideals of L.

Proposition 33. Let L be a CRD-Stone algebra L and $I = (x)^{\bigtriangledown}$. Then $\theta_{(x)^{\bigtriangledown}}$ is given as follows:

$$\theta_{(x)\nabla} = \{(a,b) \in L \times L : a \lor x \lor k = b \lor x \lor k\} \text{ and } Ker \ \theta_{(x)\nabla} = (x)^{\nabla}.$$

Proof. Let $I = (x) \nabla$. Then

$$\theta_I = \theta_{(x)\nabla} = \left\{ (a, b) \in L \times L : a \lor i \lor k = b \lor i \lor k, \text{ for some } i \in (x)^{\nabla} \right\}.$$

Let $(a, b) \in \theta_I$. Since $I = (x)^{\bigtriangledown}$, thus $a \lor i \lor k = b \lor i \lor k$, for some $i \in (x)^{\bigtriangledown}$ and hence $a^{++} \lor i^{++} = b^{++} \lor i^{++}$. Since $i \in (x)^{\bigtriangledown}$, then $i^{++} \le x^{++} \lor k$ and we have $i^{++} \le x^{++}$.

$$a \lor x \lor k = (a^{++} \lor (a \land k)) \lor (x^{++} \lor (x \land k)) \lor k \qquad \text{(by Lemma 7(2))}$$

$$= (a^{++} \lor (a \land k)) \lor x^{++} \lor ((x \land k) \lor k)$$

$$= (a^{++} \lor (a \land k)) \lor x^{++} \lor k \qquad \text{(by Definition 1(2))}$$

$$= a^{++} \lor x^{++} \lor ((a \land k) \lor k)$$

$$= b^{++} \lor x^{++} \lor k$$

$$= b^{++} \lor x^{++} \lor (x \land k) \lor (b \land k) \lor k$$

$$= (b^{++} \lor (b \land k)) \lor (x^{++} \lor (x \land k)) \lor k$$

$$= b \lor x \lor k.$$

Then, we have $(a, b) \in \theta_{(x)^{\bigtriangledown}}$ if and only if $a \lor x \lor k = b \lor x \lor k$ and hence $\theta_{(x)^{\bigtriangledown}} = \{(a, b) \in L \times L : a \lor x \lor k = b \lor x \lor k\}$. From Theorem 28, $Ker \ \theta_{(x)^{\bigtriangledown}} = (x)^{\bigtriangledown}$.

Definition 19. A k-{+}-congruence θ on a *CRD*-Stone algebra L is called a principal k-{+}-congruence if θ is a principal {+}-congruence on L.

Proposition 34. For any element x of a CRD-Stone algebra L, define $\theta(0, x^{++} \lor k)$ on L as follows

533
$$\theta(0, x^{++} \lor k) = \{(a, b) \in L \times L : a \lor x^{++} \lor k = b \lor x^{++} \lor k\}.$$

Then $\theta(0, x^{++} \lor k)$ is a principal $k - \{+\}$ -congruence on L and $Ker \ \theta(0, x^{++} \lor k) =$ ($x^{++} \lor k$] = $(x)^{\bigtriangledown}$.

Proof. It is known that $\theta(0, x^{++} \lor k)$ is a principal lattice congruence on L (see Theorem 9(3)).

Let $(a, b) \in \theta(0, x^{++} \vee k)$. Then, we get

$$\begin{aligned} a \lor x^{++} \lor k &= b \lor x^{++} \lor k \\ \Rightarrow a^+ \land x^+ \land k^+ &= b^+ \land x^+ \land k^+ \\ \Rightarrow a^+ \land x^+ &= b^+ \land x^+ \text{ as } k^+ = 1 \\ \Rightarrow (a^+ \land x^+) \lor (x^{++} \lor k) &= (b^+ \land x^+) \lor (x^{++} \lor k) \\ \Rightarrow (a^+ \lor x^{++} \lor k) \land (x^+ \lor x^{++} \lor k) &= (b^+ \lor x^{++} \lor k) \land (x^+ \lor x^{++} \lor k) \\ \Rightarrow a^+ \lor x^{++} \lor k &= b^+ \lor x^{++} \lor k \text{ as } x^+ \lor x^{++} = 1. \end{aligned}$$

Then $(a^+, b^+) \in \theta(0, x^{++} \lor k)$. Thus $\theta(0, x^{++} \lor k)$ a principal $\{^+\}$ -congruence on L. Since $0 \lor x^{++} \lor k = k \lor x^{++} \lor k$, then $(0, k) \in \theta(0, x^{++} \lor k)$. Then $k \in Ker \ \theta(0, x^{++} \lor k)$ and hence θ is a principal k- $\{^+\}$ -congruence on L. Now, for every for all $x \in L$, we prove $Ker \ \theta(0, x^{++} \lor k) = (x^{++} \lor k]$.

$$Ker \ \theta(0, x^{++} \lor k) = \{ y \in L : (0, y) \in \theta(0, x^{++} \lor k) \}$$
$$= \{ y \in L : x^{++} \lor k = y \lor x^{++} \lor k \}$$
$$= \{ y \in L : y \le x^{++} \lor k \}$$
$$= (x^{++} \lor k]$$
$$= (x)^{\bigtriangledown}.$$

542

543 **Theorem 35.** Let x be an element of a CRD-Stone algebra L. Then

544
$$\theta(0, x^{++} \lor k) = \theta_{(x) \bigtriangledown}.$$

Proof. Let $(a,b) \in \theta(0, x^{++} \vee k)$. Then

$$\begin{aligned} a \lor x^{++} \lor k &= b \lor x^{++} \lor k \Rightarrow a \lor x^{++} \lor x \lor k = b \lor x^{++} \lor x \lor k \\ &\Rightarrow a \lor x \lor k = b \lor x \lor k \\ &\Rightarrow (a, b) \in \theta_{(x)^{\bigtriangledown}}. \end{aligned}$$

545 Thus $\theta(0, x^{++} \lor k) \subseteq \theta_{(x) \bigtriangledown}$. Conversely, let $(a, b) \in \theta_{(x) \bigtriangledown}$. Then we get

$$\begin{split} a \lor x \lor k &= b \lor x \lor k \\ \Rightarrow a \lor (x^{++} \lor (x \land k)) \lor x \lor k = b \lor (x^{++} \lor (x \land k)) \lor x \lor k \text{ (by Lemma 7(2))} \\ \Rightarrow a \lor x^{++} \lor ((x \land k) \lor k) = b \lor x^{++} \lor ((x \land k) \lor k) \text{ (by Definition 1(2))} \\ \Rightarrow a \lor x^{++} \lor k = b \lor x^{++} \lor k \\ \Rightarrow (a,b) \in \theta(0, x^{++} \lor k). \end{split}$$

546 Then $\theta_{(x)\nabla} \subseteq \theta(0, x^{++} \lor k)$ and hence $\theta_{(x)\nabla} = \theta(0, x^{++} \lor k)$.

547 Corollary 36. Let L be a CRD-Stone algebra. Then

 $Ker \ \theta_{(x)\nabla} = Ker \ \theta(0, x^{++} \lor k) = (x^{++} \lor k] = (x)\nabla.$

A charclerization of a principle k-{+}-congruence on a *CRD*-Stone algebra L is given in the following two theorems.

Theorem 37. Let θ be a principle $\{^+\}$ -congruence of L. Then $\theta(0, a)$ is principle $k-\{^+\}$ -congruence if and only if $k \leq a$.

Proof. If θ is a principle k-{+}-congruence, then $k \in Ker \ \theta(0, a)$ implies $(k, 0) \in \theta(0, a)$ and hence $k \lor a = 0 \lor a = a$. Thus $k \le a$. Conversely, let $k \le a$ and $\theta(0, a)$ is a principal k-{+}-congruence. Then $(k, 0) \in \theta(0, a)$. Since $k \in Ker \ \theta(0, a)$, thus $\theta(0, a)$ is a k-{+}-congruence on L.

24

Theorem 38. Let $\theta(0, a)$ be principle k-{+}-congruence on L. Then $\theta(0, a) = \theta_{(a)^{\bigtriangledown}}$ if and only if $k \leq a$.

559 **Proof.** Let $\theta(a, b)$ be a k-{+}-congruence on L and $\theta(0, a) = \theta_{(a)}$

$$\begin{split} \theta(0,a) &= \theta_{(a)^{\bigtriangledown}} \Rightarrow k \in Ker \ \theta(0,a) = Ker \ \theta_{(a)^{\bigtriangledown}} \\ \Rightarrow (k,0) &= \theta(0,a) \\ \Rightarrow k \lor a = 0 \lor a = a \\ \Rightarrow k \leq a. \end{split}$$

560 Conversely, let $k \leq a$ and $(x, y) \in \theta(0, a)$.

$$\begin{split} (x,y) &\in \theta(0,a) \Rightarrow x \lor a = y \lor a \\ \Rightarrow x \lor a \lor k = y \lor a \lor k \\ \Rightarrow (x,y) \in \theta_{(a)^{\bigtriangledown}}. \end{split}$$

Then $\theta(0,a) \subseteq \theta_{(a)\nabla}$. Let $(x,y) \in \theta_{(a)\nabla}$. Then we have

$$\begin{split} (x,y) \in \theta_{(a)^{\bigtriangledown}} &\Rightarrow x \lor a \lor k = y \lor a \lor k \\ &\Rightarrow x \lor a = y \lor a \\ &\Rightarrow (x,y) \in \theta(0,a). \end{split}$$

562 Then $\theta_{(a)\nabla} \subseteq \theta(0, a)$ and hence $\theta_{(a)\nabla} = \theta(0, a)$.

Corollary 39. Every principle k-{+}-congruence $\theta(0, a)$ on CRD-Stone algebra L can be expressed as $\theta(0, a^{++} \lor k)$.

Let $\operatorname{Con}_{k}^{p}(L) = \left\{ \theta_{(x)\nabla} : x \in L \right\}$ be the class of all principal k- $\{^{+}\}$ -congerences which are induced by the principal k-ideals of L. Theorem 40 shows that the class $\operatorname{Con}_{k}^{p}(L)$ forms a Boolean ring which is isomorphic to the Boolean ring $I_{k}^{p}(L)$.

Theorem 40. Let *L* be a CRD-Stone algebra. Then $(\operatorname{Con}_k^p(L); \oplus, \odot, \theta_{(1)^{\bigtriangledown}}, \theta_{(0)^{\bigtriangledown}})$ forms a Boolean ring, where

$$\begin{aligned} \theta_{(x)\nabla} \oplus \theta_{(y)\nabla} &= \theta_{(x)\nabla+(y)\nabla}, \\ \theta_{(x)\nabla} \odot \theta_{(y)\nabla} &= \theta_{(x)\nabla\bullet(y)\nabla}. \end{aligned}$$

Moreover, $\operatorname{Con}_{k}^{p}(L)$ and $I_{k}^{p}(L)$ are isomorphic Boolean rings.

569 **Proof.** According to Theorem 23, $(I_k^p(L); +, \bullet, (0) \nabla, (1) \nabla)$ is a Boolean ring.

⁵⁷⁰ Consequently, for any $\theta_{(x)\nabla}, \theta_{(y)\nabla}, \theta_{(z)\nabla} \in Con_k^{\nabla}(L)$, we use the properties of the

⁵⁷¹ ring $(I_k^p(L), +, \bullet)$ to show the following properties.

1

(i) The associativity of \oplus and \odot .

$$\begin{split} \theta_{(x)\nabla} \oplus \left\{ \theta_{(y)\nabla} \oplus \theta_{(z)\nabla} \right\} &= \theta_{(x)\nabla} \oplus \theta_{(y)\nabla + (z)\nabla} \\ &= \theta_{(x)\nabla + \left\{ (y)\nabla + (z)\nabla \right\}} \\ &= \theta_{\left\{ (x)\nabla + (y)\nabla \right\} + (z)\nabla} \text{ by associativity of } + \\ &= \theta_{(x)\nabla + (y)\nabla} \oplus \theta_{(z)\nabla} \\ &= \left\{ \theta_{(x)\nabla} \oplus \theta_{(y)\nabla} \right\} \oplus \theta_{(z)\nabla}, \end{split}$$

and

$$\begin{split} \theta_{(x)\nabla} \odot & \left\{ \theta_{(y)\nabla} \odot \theta_{(z)\nabla} \right\} = \theta_{(x)\nabla} \odot \theta_{(y)\nabla \bullet(z)\nabla} \\ &= \theta_{(x)\nabla \bullet \left\{ (y)\nabla \bullet(z)\nabla \right\}} \\ &= \theta_{\left\{ (x)\nabla \bullet (y)\nabla \right\} \bullet (z)\nabla} \text{ by associativity of } \bullet \\ &= \theta_{(x)\nabla \bullet (y)\nabla} \odot \theta_{(z)\nabla} \\ &= \left\{ \theta_{(x)\nabla} \odot \theta_{(y)\nabla} \right\} \odot \theta_{(z)\nabla}. \end{split}$$

⁵⁷² (ii) The additive identity and the multiplicative identity in $\operatorname{Con}_k^p(L)$ are $\theta_{(1)^{\bigtriangledown}}$ ⁵⁷³ and $\theta_{(0)^{\bigtriangledown}}$, respectively.

574 (iii) The commutativity of \oplus and \odot .

$$\begin{aligned} \theta_{(x)\nabla} \oplus \theta_{(y)\nabla} &= \theta_{(x)\nabla+(y)\nabla} \\ &= \theta_{(y)\nabla+(x)\nabla} \text{ as } + \text{ is commutative in } I_k^p(L) \\ &= \theta_{(y)\nabla} \oplus \theta_{(x)\nabla}, \\ \theta_{(x)\nabla} \odot \theta_{(y)\nabla} &= \theta_{(b)\nabla \bullet(y)\nabla} \\ &= \theta_{(y)\nabla \bullet(x)\nabla} \text{ as } \bullet \text{ is commutative in } I_k^p(L) \\ &= \theta_{(y)\nabla} \odot \theta_{(x)\nabla}. \end{aligned}$$

(iv) The additive inverse of $\theta_{(x) \bigtriangledown}$ is $\theta_{(x) \bigtriangledown}$ itself. (v) The distributive law holds as

$$\begin{split} \theta_{(x)^{\bigtriangledown}} \odot \left\{ \theta_{(y)^{\bigtriangledown}} \oplus \theta_{(z)^{\bigtriangledown}} \right\} &= \theta_{(x)^{\bigtriangledown}} \odot \theta_{\left\{ (y)^{\bigtriangledown + (z)^{\bigtriangledown}} \right\}} \\ &= \theta_{(x)^{\bigtriangledown \bullet} \left\{ (y)^{\bigtriangledown + (z)^{\bigtriangledown}} \right\}} \\ &= \theta_{\left\{ (x)^{\bigtriangledown \bullet} (y)^{\bigtriangledown} \right\} + \left\{ (x)^{\bigtriangledown \bullet} (z)^{\bigtriangledown} \right\}} \text{ by distributivity of } I_k^p(L) \\ &= \theta_{\left\{ (x)^{\bigtriangledown \bullet} (y)^{\bigtriangledown} \right\}} \oplus \theta_{\left\{ (x)^{\bigtriangledown \bullet} (z)^{\bigtriangledown} \right\}} \\ &= \left\{ \theta_{(x)^{\bigtriangledown}} \odot \theta_{(y)^{\bigtriangledown}} \right\} \oplus \left\{ \theta_{(x)^{\bigtriangledown}} \odot \theta_{(z)^{\bigtriangledown}} \right\}. \end{split}$$

577 (vii) $\left[\theta_{(x)^{\bigtriangledown}}\right]^2 = \theta_{(x)^{\bigtriangledown}} \odot \theta_{(x)^{\bigtriangledown}} = \theta_{(x)^{\bigtriangledown} \bullet(x)^{\bigtriangledown}} = \theta_{(x)^{\bigtriangledown}}.$

Therefore $(\operatorname{Con}_k^p(L); \oplus, \odot, \theta_{(1)\nabla}, \theta_{(0)\nabla})$ is a Boolean ring. It is observed that the two rings $I_k^p(L)$ and $\operatorname{Con}_k^p(L)$ are isomorphic under the isomorphism $(x)^{\nabla} \mapsto \theta_{(x)\nabla}$.

⁵⁸¹ Combining the above Theorem 40 and Corollary 24, we will investigate the ⁵⁸² following interesting result.

Corollary 41. Let $(\operatorname{Con}_k^p(L); \oplus, \odot, \theta_{(1)\nabla}, \theta_{(0)\nabla})$ be the Boolean ring of all principal k- $\{^+\}$ -congerences on a CRD-Stone algebra L. Then $(\operatorname{Con}_k^p(L); \lor, \cap, ', \theta_{(1)\nabla}, \theta_{(0)\nabla})$ is a Boolean algebra, where

$$\begin{split} \theta_{(x) \bigtriangledown} &\lor \theta_{(y) \bigtriangledown} = \theta_{(x \lor y) \bigtriangledown}, \\ \theta_{(x) \bigtriangledown} &\cap \theta_{(y) \bigtriangledown} = \theta_{(x \land y) \bigtriangledown}, \\ \theta'_{(x) \bigtriangledown} &= \theta_{(x^+) \bigtriangledown}. \end{split}$$

Example 42. Consider the *CRD*-Stone algebra S_9 as in Figure 1. The principal $k - \{^+\}$ -congerences of S_9 are gives as follows:

$$\begin{aligned} \theta(0,0) &= \theta(0,c) = \theta(0,d) = \theta(0,k) = \triangle_L, \\ \theta(0,a) &= \theta(0,x) = \{\{0,d,c,k,a,x\},\{b,y,1\}\}, \\ \theta(0,b) &= \theta(0,y) = \{\{0,d,c,k,b,y\},\{a,x,1\}\}, \\ \theta(0,1) &= \bigtriangledown_L. \end{aligned}$$

Then the following two tables show that $(\operatorname{Con}_k^p(L); \oplus, \odot)$ is a Boolean ring, where $\operatorname{Con}_k^p(L) = \{\theta(0,0), \theta(0,a), \theta(0,b), \theta(0,1)\} = \{\theta_{(0)^{\bigtriangledown}}, \theta_{(a)^{\bigtriangledown}}, \theta_{(b)^{\bigtriangledown}}, \theta_{(1)^{\bigtriangledown}}\}.$ ⁵⁸⁷

\oplus	$\theta(0,0)$	$\theta(0,a)$	$\theta(0,b)$	$\theta(0,1)$
$\theta(0,0)$	$\theta(0,0)$	$\theta(0,a)$	$\theta(0,b)$	$\theta(0,1)$
$\theta(0,a)$	$\theta(0,a)$	heta(0,0)	$\theta(0,1)$	$\theta(0,b)$
$\theta(0,b)$	$\theta(0,b)$	$\theta(0,1)$	heta(0,0)	$\theta(0,a)$
$\theta(0,1)$	$\theta(0,1)$	$\theta(0,b)$	heta(0,a)	$\theta(0,0)$

\odot	$\theta(0,0)$	$\theta(0,a)$	$\theta(0,b)$	$\theta(0,1)$
$\theta(0,0)$	$\theta(0,0)$	$\theta(0,0)$	$\theta(0,0)$	$\theta(0,0)$
				$\theta(0,a)$
				$\theta(0,b)$
				$\theta(0,1)$

Figure 4. Shows that $(\operatorname{Con}_{k}^{p}(L); \oplus, \odot, \theta_{(1)\nabla}, \theta_{(0)\nabla})$ forms a Boolean algebra which is isomorphic to the Boolean algebra $I_{k}^{p}(L)$.

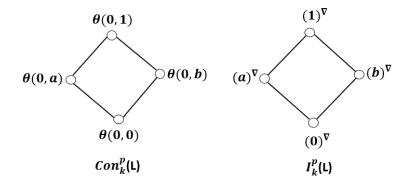


Figure 4. $\operatorname{Con}_{k}^{p}(L)$ and $I_{k}^{p}(L)$ are isomorphic Boolean algebras.

Acknowledgement

The authors would like to thank the editor and referees for their valuable suggestions and comments which improved the presentation of this article.

592 References

[1] A. Badawy, Extensions of the Glivenko-type congruences on a Stone lattice, Math. Meth. Appl. Sci. 41 (2018) 5719–5732.

- [2] A. Badawy, Characterization of congruence lattices of principal p-algebras, Math.
 Slovaca 67 (2017) 803-810.
- [3] A. Badawy, Construction of a core regular MS-algebra, Filomate 34(1) (2020) 35– 598 50.
- [4] A. Badawy, Congruences and de Morgan filters of decomposable MS-algebras,
 South. Asian Bull. Math. 34 (2019) 13–25.
- [5] A. Badawy and M. Atallah, Boolean filters of principal p-algebras, Int. J. Math.
 Comput. 26 (2015) 0974–5718.
- [6] A. Badawy and M. Atallah, *MS-intervals of an MS-algebra*, Hacettepe J. Math.
 Stat. 48(5) (2019) 1479–1487.
- [7] A. Badawy, K. El-Saady and E. Abd El-Baset, δ -ideals of p-algebras, Soft Computing, 2023.
- 607 https://doi.org/10.1007/s00500-023-09308-0
- [8] A. Badawy and A. Helmy, *Permutability of principal MS-algebras*, AIMS Math.
 8(9) (2023) 19857–19875.
- [9] A. Badawy, S. Hussen and A. Gaber, *Quadruple construction of decomposable double MS-algebras*, Math. Slovaca **70(5)** (2019) 1041–1056.

- [10] A. Badawy and KP. Shum, Congruences and Boolean filters of quasimodular palgebras, Discuss. Math. General Alg. and Appl. 34(1) (2014) 109–123.
- [11] A. Badawy and KP. Shum, Congruence pairs of principal p-algebras, Math. Slovaca
 67 (2017) 263–270.
- [12] G. Birkhoff, Lattice Theory, American Mathematics Society, Colloquium Publica tions 25 (New York, 1967).
- ⁶¹⁸ [13] R. Balbes and A. Horn, *Stone lattices*, Duke Math. J. **37** (1970) 537–543.
- [14] T.S. Blyth, Lattices and ordered Algebric Structures (Springer-Verlag, London Lim ited, 2005).
- [15] M. Sambasiva Rao and A. Badawy, Normal ideals of pseudocplemented distributive
 lattices, Chamchuri J. Math. 9 (2017) 61–73.
- [16] M. Sambasiva Rao and A. Badawy, *Filters of lattices with respect to a congruence*,
 Discuss. Math. General Alg. and Appl. **34** (2014) 213–219.
- ⁶²⁵ [17] S. Burris and H.P. Sankappanavar, A Course Universal Algebra **78** (Springer, 1981).
- [18] C.C. Chen and G. Grätzer, *Stone lattices* I: *Construction Theorems*, Can. J. Math.
 21 (1969) 884–894.
- [19] C.C. Chen and G. Grätzer, Stone lattices II: Structure Theorems, Can. J. Math. 21
 (1969) 895–903.
- [20] D.J. Clouse, Exploring Core Regular Double Stone Algebras, CRDSA, II. Moving
 Towards Duality (Cornell University, 2018).
- [21] S.D. Comer, Perfect extensions of regular double Stone algebras, Algebra Univ. 34
 (1995) 96-109.
- 634 [22] O. Frink, Pseudo-complments in semi-lattices, Duke Math. J. 29 (1962) 505–514.
- [23] G. Grätzer, Lattice Theory: First Concepts and Distributive Lattices, Freeman (San Francisco, California, 1971).
- [24] A. Kumar and S. Kumari, Stone lattices: 3-valued logic and rough sets, Soft Comp.
 25 (2021) 12685–12692.
- [25] T. Katriňák, Construction of regular double p-algebras, Bull. Soc. Roy. Sci. Liege
 43 (1974) 283–290.
- [26] T. Katriňák, A new proof of the construction theorem for Stone algebras, Proc.
 Aner. Math. Soc. 40 (1973) 75–79.
- [27] R.V.G. Ravi Kumar, M.P.K. Kishore and A.R.J. Srikanth, Core regular double Stone
 algebra, J. Calcutta Math. Soc. 11 (2015) 1–10.
- [28] A.R.J. Srikanth and R.V.G. Ravi Kumar, *Ideals of core regular double Stone algebra*,
 Asian Eur. J. Math. **11(6)** (2018) 1–14.
- [29] A.R.J. Srikanth and R.V.G. Ravi Kumar, Centre of core regular double Stone algebra, Eur. J. Pure Appl. Math. 10(4) (2017) 717–729.

- ⁶⁴⁹ [30] J. Varlet, A regular variety of type (2, 2, 1, 1, 0, 0), Algebra Univ. 2 (1972) 218–223.
- [31] J. Varlet, On characterization of Stone lattices, Acta Sci. Math. Szeged 27 (1966)
 81–84.
- [32] Q. Zhang, X. MA, C. Zhao, W. Chen and J. Qu, *Double Stone algebras ideal and congruence ideal*, China Institute of Communications (2018) 277–280.

654	Received 15 August 2023
655	Revised 28 February 2024
656	Accepted 28 February 2024

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License https://creativecommons.org/licenses/by/4.0/