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In this paper, the structures of Hall subgroups of finite metacyclic and11

nilpotent groups are studied. It is proved that the collection of all Hall12

subgroups of a metacyclic group is a lattice and a group G is nilpotent if13

and only if its collection of Hall subgroups forms a distributive lattice. Also,14
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Hall subgroups of Dn for different values of n.16
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1. Introduction and notation21

Throughout this article, G denotes a finite group. It is known that the set22

of all subgroups of a given finite group G forms a lattice denoted by L(G) with23

H∧K = H∩K and H∨K = ⟨H,K⟩ for subgroups H, K of G. The interrelations24

between the theory of lattices and the theory of groups have been studied by many25

researchers, see Pálfy [10], Schmidt [12], Suzuki [14]. For the group theoretic26

concepts and notations, we refer to Birkhoff [1], Luthar and Passi [8], Schmidt27

[12].28
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There are a few types of subgroups such as Hall subgroups whose collections29

may form lattices and these lattices can be used to study the properties of groups.30

Accordingly, a study for collection of Hall subgroups of metacyclic and nilpotent31

groups has been carried out.32

The following notations are used throughout this article.33

• LH(G) – Collection of all Hall subgroups of G.34

• LN(G) – Collection of all normal subgroups of G, which is a sublattice of35

L(G).36

• |G| – Order of G.37

• |L(G)| – Number of subgroups of G - Cardinality of L(G).38

• e – Neutral (Identity) element in G.39

• [m, r] – lcm of m and r.40

• (m, r) – gcd of m and r.41

• ∧LH – g.l.b. in LH(G).42

• ∨LH – l.u.b. in LH(G).43

• H ≺ K – H is covered by K.44

• Dn – Dihedral group of order 2n : ⟨a, b | an = e = b2, ba = a−1b⟩.45

The following definition of a Hall subgroup of a finite group is essentially due46

to Hall [6].47

Definition 1.1 [6]. A Hall subgroup of a finite group is a subgroup whose order48

is coprime to its index.49

Remark 1.2. Every Sylow p-subgroup of a finite group is a Hall subgroup.50

The collection of Hall subgroups of a group is not necessarily a lattice, i.e.,51

we have a group G in which LH(G) does not form a lattice.52

Consider L(A7) and its collection LH(A7) of all Hall subgroups of A7. Note53

that, the subgroupsH = ⟨(1 2 3) (2 3 4 5 6)⟩ andK = ⟨(1 2 3), (2 3 4 5 7)⟩ are iso-54

morphic to A6 and so Hall subgroups of A7. Moreover, H∧K = ⟨(1 2 3), (2 3 4 5)⟩55

is isomorphic to A5. Note that,
(
|H ∧K|, |G|

|H∧K|

)
= (120, 42) = 6 and so H ∧K56

is not a Hall subgroup.57

Also, the subgroups T = ⟨(2 3 4 5 6)⟩ and S = ⟨(2 4 3 5 6)⟩ are Sylow58

5-subgroups of A7. Note that, T ∨ S = H ∧K which is not a Hall subgroup of59

A7. Consequently, join of T ∨LH S as well as meet of H ∧LH K does not exists60

and therefore LH(A7) is not a lattice.61

Next consider, the lattice depicted in Fig 1.1 which is the Hasse diagram of62

L(S4). Note that, LH(Sn) = L(Sn) for n ≤ 3. The Hasse diagram of LH(S4)63
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is depicted in Figure 1.2, and it is a lattice. Observe that for P28 and P27 in64

LH(Sn), we have P28 ∧ P27 = M18 in L(S4), but M18 /∈ LH(S4) and as such,65

LH(S4) is not a sublattice of L(S4).66

K1

L14L13L12L11

A4

M18M21M20M19M17M16M15

P28P27P26

K4K3K2 T1 T2 T3 T4 T5 T6

N22 N23 N24 N25

S4

Figure 1.1. L(S4).

K1

P26P27P28 L11 L12 L13 L14

S4

Figure 1.2. LH(S4).

So it is necessary to investigate the groups for which LH(G) is a lattice and67

similarly, LH(G) is a sublattice of L(G). It is also worth studying some properties68

of LH(G) in these situations.69

Faigle, et al. (see [4, 11, 13]) studied strong lattices of finite length in which70

the join-irreducible elements play a key role.71

For the following definition and other relevant definitions in lattice theory we72

refer to Birkhoff [1], Grätzer [5] and Stern [13].73

Definition 1.3 [13]. An element j of a lattice L is called join-irreducible if, for74

all x, y ∈ L, j = x ∨ y implies j = x or j = y.75
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For a lattice L of finite length J(L) denotes the set of all non-zero join-76

irreducible elements.77

We introduce the concept of join-irreducible subgroups as follows.78

Definition 1.4. A subgroup of a group G is said to be join-irreducible if it is a79

join-irreducible element of L(G).80

We note that,every cyclic subgroup of prime power order of a finite group is81

a join-irreducible subgroup.82

From this fact and Lemma 2 of [15], the following Lemma follows.83

Lemma 1.5. A subgroup of a finite group is a join-irreducible subgroup if and84

only if it is a cyclic subgroup of prime power order.85

The following concept of a strong element was coined by Faigle [4]; see also86

[13].87

Definition 1.6 [4]. Let L be a lattice of finite length. A join-irreducible element88

j ̸= 0 is called a strong element if the following condition holds for all x ∈ L:89

(St) j ≤ x∨ j− =⇒ j ≤ x, where j− denotes the uniquely determined lower cover90

of j.91

A lattice is said to be strong if every join-irreducible element of it is strong.92

Remark 1.7. The condition (St) in the definition of a strong element is equiva-93

lent to the following; see [13] for more details.94

(St’) For every q < j ∈ J(L), x ∈ L, j ≤ x ∨ q implies j ≤ x.95

The following characterization of strong lattices is due to Richter and Stern96

[11].97

Theorem 1.8 [11]. A lattice L of finite length is strong if and only if it does not98

contain a special pentagon sublattice with j ∈ J(L).99

j ∧ x

j−

j

x

j− ∨ x

Figure 1.3. Special Pentagon.
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Proof of the following Lemma follows from Theorem 1.8.100

Lemma 1.9. Let L be a finite lattice. If atoms are the only join-irreducible101

elements in L, then L is strong.102

Theorem 1.10. Let G be a group, if LH(G) is a lattice, then LH(G) is strong.103

Proof. In view of the Lemma 1.9, it is sufficient to prove that only atoms are104

join-irreducible elements. Let |G| =
∏m

i=1 p
αi
i and J ∈ LH(G) a join-irreducible105

Hall subgroup. Then |J | = pαt
t for some prime t ∈ {1, 2, . . . ,m} and |J−| =106

pαt−1
t ∈ L(G). Note that, |J−| = {e} in LH(G). Consequently, if a subgroup J107

is join-irreducible in LH(G) then it is an atom.108

Note that, there exists a strong lattice which is not a Hall subgroup lattice109

of any finite group. Figure 1.4 depicts a strong lattice, which is not a LH(G) for110

any finite group G.111

{e}

Q

G

Figure 1.4. C3

2. Hall subgroups in finite metacyclic groups112

In this section, the collection of Hall subgroups of metacyclic group is investigated.113

Following is the definition of a metacyclic group, see [2].114

Definition 2.1 [2]. A finite group G is a metacyclic if it contains a cyclic normal115

subgroup N such that G
N is also cyclic.116

It is observed that a metacyclic group can be written G = SN with S ≤ G117

and N ⊴ G such that both S and N are cyclic. Such a product is a metacyclic118

factorization of G.119

Note that, Hall subgroups of a metacyclic group G are obtained with the120

help of its metacyclic factorization. and so we have the following result which is121

a Lemma 5.3 of [7].122
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Lemma 2.2 [7]. Let G be a finite group with a metacyclic factorization G = SN ,123

to each set π of primes, the subgroup H = SπNπ is the unique Hall π-subgroup124

of G such that Sπ = H ∩ S, Nπ = N ∩H and so H = (H ∩ S)(H ∩N).125

As observed, the collection of Hall subgroups of a finite group need not form a126

lattice in general but in case of metacyclic group it forms a lattice as the following127

result shows.128

Theorem 2.3. If G is a finite metacyclic group, then LH(G) is a lattice. How-129

ever, it is not necessarily a sublattice of L(G).130

Proof. Let G be a finite metacyclic group, in order to show that LH(G) is a131

lattice, we prove that given two Hall subgroups H and K of G, H ∧LH K and132

H ∨LH K exist.133

Case I. Let H and K be two distinct Hall π1 and π2-subgroups respectively134

corresponding to metacyclic factorization SN of G.135

In view of Lemma 2.2, the subgroups H = Sπ1Nπ1 and K = Sπ2Nπ2 are the136

unique Hall π1 and π2-subgroups of G such that Sπ1 = H∩S, Nπ1 = H∩N , Sπ2 =137

K ∩S, Nπ2 = K ∩N . Therefore, H = (H ∩S)(H ∩N) and K = (K ∩S)(K ∩N).138

Now, for the set π = π1 ∩ π2 of primes, there is the unique Hall π-subgroup say139

T = SπNπ = (T ∩S)(T ∩N). Note that, T is the unique largest Hall subgroup of140

G which is contained in both H and K. Consequently, H ∧LH K = T . Similarly,141

for the set π′ = π1 ∪ π2 of primes there is the unique Hall π′-subgroup say142

R = Sπ′Nπ′ = (R∩S)(R∩N). Note that, R is the unique smallest Hall subgroup143

of G which contains both H and K. Therefore, H ∨LH K = R.144

Case II. Let H and K be two distinct Hall π1 and π2-subgroups respectively145

corresponding to two different metacyclic factorizations SN and S′N ′.146

In view of the Lemma 2.2, H = (H ∩ S)(H ∩ N) = Sπ1Nπ1 and K =147

(K ∩ S′)(K ∩ N ′) = S′
π2
N ′

π2
. Furthermore, each one of H and K is an unique148

Hall π1 and π2-subgroups corresponding to two metacyclic factorizations SN and149

S′N ′ respectively. Now, corresponding to each prime pi ∈ π1 there is the unique150

Sylow pi-subgroup say Pi, corresponding to factorization SN of G and similarly,151

corresponding to each prime pj ∈ π2 there is the unique Sylow pj-subgroup say152

Qj , corresponding to factorization S′N ′ of G.153

Note that, the subgroup H ′ = Sπ1∩π2Nπ1∩π2 then H ′ is a subgroup of H.154

If H ′ is also a subgroup of K then H ′ is the largest Hall subgroup of G which155

is contained in both H and K. Consequently, H ∧LH K = H ′. If H ′ is not a156

subgroup of K, then choose the set π of primes of pi ∈ π1 ∩ π2 such that each157

Sylow pi-subgroup Pi of G contained in both H and K. Note that, if P is a Hall158

π-subgroup of H then P ⊇ ∨Pi. Since every non-trivial Hall subgroup is join of159

Sylow subgroups we have P = ∨Pi. And so, it is contained in both H and K.160
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As such P is the unique largest Hall subgroup of G corresponding to metacyclic161

factorization SN as well as S′N ′ and so, H ∧LH K = ∨pi∈πPi.162

Similarly, choose the subgroup H ′ = Sπ1∪π2Nπ1∪π2 then H is the subgroup163

of H ′. If K is also a subgroup of H ′ then H ′ is the smallest Hall subgroup of164

G which contains both H and K and therefore H ∨LH K = H ′. If K is not a165

subgroup of H ′, choose the least set π′ of primes π′ with π1 ∪ π2 ⊆ π′ such that166

H, K ⊆ ∨pi∈π′Pi. Let R be a Hall subgroup of G such that ∨pi∈π′Pi ⊆ R is the167

unique Hall π′-subgroup corresponding to metacyclic factorizations SN as well168

as S′N ′. Note that, R is the least Hall subgroup which contains H and K and169

so, H ∨LH K = R.170

Hence LH(G) is a lattice whenever G is metacyclic.171

Consider a dihedral group Dn, which is metacyclic group. In [9] it is noted172

that LH(Dn) is a lattice but not necessarily a sublattice of L(Dn).173

Remark 2.4. Note that, a metacyclic group G may not have a unique metacyclic174

factorization, e.g., Dn. However, if G has unique meatcyclic factorization then175

LH(G) is a sublattice of L(G), e.g. Zpq. Also, for every finite group G whose176

order is square-free, LH(G) is a sublattice of L(G).177

We note that,dihedral groups are metacyclic and so LH(Dn) is a lattice.178

However, LH(Dn) is a lattice is proved independently in [9] using the classification179

of the subgroups given in [3] as follows;180

Theorem 2.5 [3]. Every subgroup of Dn is cyclic or dihedral. A complete listing181

of the subgroups is as follows:182

(1) ⟨ad⟩, where d|n, with index 2d,183

(2) ⟨ak, aib⟩, where k|n and 0 ≤ i ≤ k − 1, with index k.184

Every subgroup of Dn occurs exactly once in this listing.185

Remark 2.6. 1. A subgroup of Dn is said to be of Type (1) if it is cyclic subgroup186

as stated in (1) of Theorem 2.5.187

2. A subgroup of Dn is said to be of Type (2) if it is dihedral subgroup as188

stated in (2) of Theorem 2.5.189

A study of collection of Hall subgroups of Dn namely LH(Dn) is carried out190

by Mitkari et. al. in [9], where the binary operations ∧LH and ∨LH in LH(Dn)191

are defined as per the classification of subgroups of Dn as follows.192

Let n = 2α
∏m

i=1 p
αi
i .193

1. If T = ⟨at⟩ for some s, t ∈ N and S = ⟨as⟩ are Hall subgroups of Type194

(1), then T ∨LH S = ⟨ag⟩ where g = (s, t) and T ∧LH S = ⟨al⟩, where l = [s, t].195

2. If T = ⟨at⟩ is a Hall subgroup of Type (1) and S = ⟨as, aib⟩ is a Hall196

subgroups of Type (2) for some s, t ∈ N, then T ∨LHS = ⟨ag, aib⟩ where g = (s, t)197

and T ∧LH S = ⟨al⟩, where l = [s, t].198
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3. If T = ⟨at, aib⟩ and S = ⟨as, ajb⟩ are Hall subgroups of Type (2) for some199

s, t ∈ N, then T ∨LHS = ⟨ag, aib⟩ where g = g1
r and g1 = (t, s, i−j), r =

(
2n
g1
, g1

)
200

and201

T ∧LH S =



⟨as⟩, if tx+ sy = k − j has no integer solution

where s = 2α+1n
(|T |,|S|)

⟨ad, ak−n1x0b⟩, if tx+ sy = k − j has an integer solution

where d = 2n
(|T |,|S|)

202

where (x0, y0) is an integer solution of an equation tx+ sy = k − j.203

Now, we establish some lattice theoretic property such as lower semimodular-204

ity, complementation, atomic covering condition and Mac-lanes exchange prop-205

erty in the subgroup lattice LH(Dn).206

Definition 2.7 [13]. A lattice L is said to be lower semimodular, for every207

T, S ∈ L, if T ≺ T ∨ S, then T ∧ S ≺ S.208

Theorem 2.8. The lattice LH(Dn) is lower semimodular.209

Proof. Let T and S ∈ LH(Dn) be such that T ≺ T ∨ S.210

Claim. T ∧ S ≺ S.211

Consider n = 2α
∏m

i=1 p
αi
i where each pi is an odd prime. Note that, if a212

Type (1) subgroup H of Dn generated by ah is also a Hall subgroup, then it is213

necessary that h = 2α
∏

x∈M pαx
x for some subset M ⊆ {1, 2, . . . ,m}. Moreover,214

if a Type (2) subgroup H of Dn generated by {ah, aib} is also a Hall subgroup,215

then it is necessary that h =
∏

x∈N pαx
x for some subset N ⊆ {1, 2, . . . ,m}.216

Case I. Let T = ⟨at⟩, where t = 2α
∏

x∈U⊆{1,2,...,m} p
αx
x .217

Subcase I(i). If S = ⟨as⟩ where s = 2α
∏

y∈V⊆{1,2,...,m} p
αy
y then T ∨ S = ⟨ag⟩218

where g = (s, t). In view of T ≺ T ∨ S, Note that,⟨at⟩ ≺ ⟨ag⟩ if and only if219

g = t
pα∗
∗

=
2α

∏
x∈U pαx

x

pα∗
∗

and p∗ is an odd prime dividing n with largest power α∗.220

We have g|s (say gk = s where k ∈ Z) and pα∗
∗ ∤ s since T ̸⊆ S.221

Now S ∧ T = ⟨al⟩, where l = [s, t] = [gk, gpα∗
∗ ] = gkpα∗

∗ = spα∗
∗ (p∗ ∤ s).222

Consequently, T ∧ S = ⟨asp
α∗
∗ ⟩ ≺ ⟨as⟩.223

Subcase II(ii). Let S = ⟨as′ , aib⟩ for some subset M ⊆ {1, 2, . . . ,m} where224

s′ =
∏

y∈W⊆{1,2,...,m} p
αy
y such that T ≺ T ∨ S. Note that, T ∨ S = ⟨ag, aib⟩225

where g = (s′, t). Since T ≺ T ∨ S we have ⟨at⟩ ≺ ⟨ag, aib⟩ if and only if226

g = t
2α =

∏
x∈U pαx

x . As g|s′ ((say gk = s′ where k ∈ Z), i.e.,
∏

x∈U pαx
x |

∏
y∈W p

αy
y227

and so
∏

x∈U pαx
x

∏
q∈X⊆W p

αq
q =

∏
y∈W p

αy
y . Now consider T ∧ S = ⟨al⟩ where228
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l = [s′, t] = [gk, 2αg] = 2αgk = 2αs′ (2 ∤ s′). Consequently, T ∧ S = ⟨a2αs′⟩ ≺229

⟨as′ , aib⟩ = S, as |S|
|S∧T | = 2α+1.230

Case II. Let T = ⟨at, aib⟩ where t =
∏

x∈U pαx
x .231

Subcase II(i). Let S = ⟨as⟩ where s = 2α
∏

y∈V p
αy
y such that T ≺ T ∨S. We232

have T ∨ S = ⟨ag, aib⟩ where g = (s, t). Since T ≺ T ∨ S, we have ⟨at, aib⟩ ≺233

⟨ag, aib⟩ if and only if g = t
pα∗
∗

=
∏

x∈U pαx
x

pα∗
∗

. Note that, g|s ((say gk = s where234

k ∈ Z) and T ̸⊂ S which implies pα∗
∗ ∤ s.235

Now consider S ∧ T = ⟨al⟩ where l = [s, t] = [gq, gpα∗
∗ ] = gqpα∗

∗ = spα∗
∗236

(pα∗
∗ ∤ s). Consequently, T ∧ S = ⟨asp

α∗
∗ ⟩ ≺ ⟨as⟩ = S.237

Subcase II(ii). Let S be a dihedral subgroup with |S| = |T | and T ≺ T ∨ S.238

Then S = ⟨at, ajb⟩. Note that,S ∨ T = ⟨ag, aib⟩ = ⟨ag, ajb⟩. Since T ≺ T ∨ S, we239

have ⟨at, aib⟩ ≺ ⟨ag, aib⟩ if and only if g = t
pα∗
∗

=
∏

x∈Upαx
x

pα∗
∗

. Note that, i, j ≤ t240

and so i− j ≤ t. Consider the equation tx1 + tx2 = i− j for x1, x2 ∈ Z and this241

equation does not have a solution as i − j ≤ t, t ∤ i − j. Therefore, T ∧ S is a242

cyclic subgroup, suppose that T ∧ S = ⟨al⟩ where l = 2α+1n
(|T |,|S|) = 2α+1n

( 2n
t
, 2n

t
)
= t2α.243

Therefore, S ∧T = ⟨at2α⟩. Note that, |S|
|S∧T |= 2α+1 and hence T ∧S ≺ S for such244

choice of S and T .245

Now suppose S be a dihedral subgroup such that |T | ̸= |S| and T ≺ T ∨ S,246

say S = ⟨as′ , ajb⟩ where s′ =
∏

y∈V p
αy
y for some y ∈ V ⊆ {1, 2, . . . ,m}. Note247

that, S ∨ T = ⟨ag, aib⟩ where g = g1
r and g1 = (t, s, i − j), r =

(
2n
g1
, g1

)
. Since248

T ≺ T ∨S we have ⟨at, aib⟩ ≺ ⟨ag, aib⟩ if and only if g = t
pα∗
∗

=
∏

x∈U pαx
x

pα∗
∗

. Now as249

g|s′ and g|i−j there exists α, β ∈ Z we have αg = i−j and βg = s′. Consider the250

equation tx1+sx2 = i− j, i.e., g(pα∗
∗ )x1+g(β)x2 = gα, i.e., (pα∗

∗ )x1+(β)x2 = α.251

We have two cases: pα∗
∗ ∤ β and pα∗

∗ |β and we contend that in each case252

T ∧ S ≺ S.253

Suppose that, pα∗
∗ ∤ β, then (pα∗

∗ , β) = 1. Therefore, the equation (pα∗
∗ )x1 +254

βx2 = α will always have a solution. In this case T ∧ S = ⟨ad, azb⟩, where255

d = 2n(
2n∏

x∈Up
αx
x

,
2n.p

α∗∗∏
x∈Up

αx
x β

) = β
∏

x∈Up
αx
x . Note that, |S|

|S∧T | = pα∗
∗ . Consequently,256

T ∧ S ≺ S.257

Now suppose that pα∗
∗ |β. If the equation (pα∗

∗ )x1 + βx2 = α for x1, x2 ∈ Z258

has a solution, then pα∗
∗ |α. Now as

(∏
x∈Upαx

x

pα∗
∗

, pα∗
∗

)
= 1 implies

∏
x∈Up

αx
x |i − j259

and also
∏

x∈Up
αx
x |s′. Consequently, T ∨ S = ⟨ag, aib⟩ = ⟨at, aib⟩ = T (as g1 =260

(t, s′, i − j) = t and r =
(
2n
g1
, g1

)
= 1 then g = g1

r = g1 = t) which is not261

true since T ≺ T ∨ S. Therefore pα∗
∗ ∤ α and so the equation does not have262

a solution. As such S ∧ T is not a Type (2) subgroup of Dn and we must263
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have S ∧ T = ⟨al⟩, for l = 2α+1n(
2n∏

x∈Up
αx
x

,
2n.p

α∗∗∏
x∈Up

αx
x

∏
p
αq
q

) =
2α.

∏
x∈Upαx

x
∏

p
αq
q

pα∗
∗

= 2αs′.264

Therefore, ⟨al⟩ = ⟨a2αs′⟩ ≺ ⟨as′ , ajb⟩ = S. Note that, |S|
|T∧S|= 2α+1 and hence265

T ∧ S ≺ S for such choice of S and T .266

A lattice is said to be complemented if every element has a complement. In267

what follows, we have a Theorem about LH(Dn).268

Theorem 2.9. Let Dn be the dihedral group with 2n elements where n =269

2α
∏m

i=1 p
αi
i . Then, the lattice LH(Dn) is complemented.270

Proof. In order to show that LH(Dn) is complemented, it is sufficient to show271

that every cyclic Hall subgroup has a complement in LH(Dn).272

Note that, if a cyclic subgroup ⟨ah⟩ is also a Hall subgroup, then it is necessary273

that h = 2α
∏

M pαx
x such that x ∈ M ⊆ {1, 2, . . . ,m}. Moreover, if a dihedral274

subgroup ⟨ah, aib⟩ is also a Hall subgroup, then it is necessary that h =
∏

N pαx
x275

such that x ∈ N ⊆ {1, 2, . . . ,m}.276

Let A = ⟨ak⟩ be a cyclic Hall subgroup, then k = 2α
∏

U pαx
x such that277

x ∈ U ⊆ {1, 2, . . . ,m}. Choose the subgroup B = ⟨at, aib⟩ where t = n
k . But278

then g = (k, t) = 1 and so A ∨ B = ⟨ag, aib⟩ = Dn. Moreover l = [k, t] = n279

this implies A ∧ B = ⟨al⟩ = ⟨an⟩ = I. Therefore, every cyclic Hall subgroup has280

complement and so every dihedral Hall subgroup has a complement.281

It is known that the number of subgroups of Dn for n ≥ 3 is |L(Dn)| =282

Number of divisors of n + Sum of divisors of n. Along the same line, we have283

the following formula for the number of Hall subgroups of Dn, i.e., |LH(Dn)|.284

Theorem 2.10. For any n ≥ 3, |LH(Dn)| = 2z +
∏z

m=1 (1 + pαm
m ) where n =285

2α
∏z

m=1 p
αm
m , where p is prime and z is the number of odd primes dividing n.286

Proof. Let n = 2α
∏z

m=1 p
αm
m , p being prime. If H is a cyclic Hall subgroup287

of Dn, then |H| =
∏

x∈S⊆{1,2,...,z} p
αx
x and |H| is not a multiple of 2. Note288

that, number of subgroups whose order is divisible by single odd prime is given289

by
(
z
1

)
. Similarly, number of subgroups whose order contains exactly two odd290

prime factors is given by
(
z
2

)
. Consequently, number of cyclic Hall subgroups=291 (

z
0

)
+
(
z
1

)
+
(
z
2

)
+
(
z
3

)
+ · · ·+

(
z
z

)
= 2z.292

Now consider a dihedral Hall subgroupH then |H| = 2α+1
∏

x∈S⊆{1,2,...,z} p
αx
x .293

If H1 be a dihedral Hall subgroup whose order is divisible by single odd prime say294

p1, then H1=
〈
a
∏z

m=2 p
αm
m , aib

〉
and number of subgroups whose order is equal to295

order of H1 is
∏z

m=2 p
αm
m . Consequently, the number of all such subgroups whose296

order is divisible by exactly single odd prime is equal to
∑

x∈S⊂{1,2,...,z}
∏

pαx
x such297
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that |S| = z−1. Similarly, if H2 is a dihedral Hall subgroup whose order is divis-298

ible by exactly two odd prime factors, say p1 and p2, then H2 =
〈
a
∏z

m=3 p
αm
m , aib

〉
299

and the number of subgroups whose order is equal to order of H2 is
∏z

m=3 p
αm
m .300

Consequently, number of all such subgroups whose order contains exactly two301

odd primes is equal to
∑

x∈S⊂{1,2,...,z}
∏

pαx
x such that |S| = z−2. As such, num-302

ber of all such dihedral Hall subgroups considering the number of prime divisors303

involved is given by
∑z

m=1 p
αm
m +

∑
x∈S1⊂{1,2,...,z}

∏
pαx
x +

∑
x∈S2⊂{1,2,...,z}

∏
pαx
x +304 ∑

x∈S⊂{1,2,...,z}
∏

pαx
x +· · ·+

∑
x∈Sz−1⊂{1,2,...,z}

∏
pαx
x +1 =

∏z
m=1

(
1+pαm

m

)
, where305

|Si| = z − i for i = 1, 2, . . . , z − 1.306

Therefore, number of Hall subgroups ofDn= |LH(Dn)| = 2z+
∏z

m=1 (1 + pαm
m ),307

whenever n = 2α
∏z

m=1 p
αm
m .308

3. Hall subgroups of finite nilpotent groups309

In this section, properties of collection of Hall subgroups of finite nilpotent groups310

are investigated.311

We recall the following characterization, see Grätzer [5].312

Theorem 3.1. A modular lattice is distributive if and only if it does not a sub-313

lattice isomorphic to diamond (M3).314

Remark. For every Hall subgroup K of G, LH(K) is a sublattice of LH(G)315

whenever LH(G) is a lattice.316

Theorem 3.2. Let G be a finite group. Then LH(G) is a distributive lattice if317

and only if G is a nilpotent group.318

Proof. Let G be a finite nilpotent group, we first show that LH(G) is a sublattice319

of L(G). Let |G| =
∏m

i=1 p
αi
i and the subgroups H, K are Hall subgroups of G.320

Note that, G is nilpotent if and only if it is direct product of its Sylow p-subgroups,321

i.e., G = G1×G2×· · ·×Gm =
∏m

i=1Gi, where each Gi is the Sylow pi-subgroup of322

G. Also, Note that,each Gi is unique being part of direct product and so normal323

in G.324

Claim I. H ∧K is a Hall subgroup.325

Let H =
∏

i∈S1
Gi and K =

∏
i∈S2

Gi such that S1, S2 ⊆ {1, 2, . . . ,m} are326

unique of its order being normal in G. But then the subgroup H ∩ K = T =327 ∏
i∈S1∩S2

Gi is the Hall subgroup of G and so H ∩K is a Hall subgroup.328

Claim II. H ∨K is a Hall subgroup.329

Let H =
∏

i∈S1
Gi and K =

∏
i∈S2

Gi such that S1, S2 ⊆ {1, 2, . . . ,m} are330

unique of its order being normal in G. But then the subgroup ⟨H,K⟩ = T =331
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∏
i∈S1∪S2

Gi is the Hall subgroup of G and so ⟨H,K⟩ is a Hall subgroup. This332

proves that LH(G) is a sublattice of L(G).333

Note that, each Hall subgroup is normal as it is join of Sylow p-subgroups334

and every Sylow p-subgroup is unique as G is direct product of its Sylow p-335

subgroups being nilpotent. Consequently, LH(G) is a sublattice of LN(G) which336

implies that LH(G) is modular since LN(G) is a modular lattice and sublattice337

of modular lattice is modular. We show that LH(G) does not contain diamond338

(M3) as its sublattice.339

Suppose LH(G) contains a diamond as its sublattice. Note that,the five340

subgroups Hi, i ∈ {1, 2, . . . , 5} in M3 as depicted in Figure 3.1. The each one of341

the five subgroups are of different orders these are of different orders.342

H1

H2 H3 H4

H5

Figure 3.1. Figure M3.

Now H2∨H3 = H2H3 = H4∨H3 = H4H3 = H2∨H4 = H4H2. Consequently,343

|H4H3| = |H4H2| = |H2H3| = |H5|, but then |H4H3| = |H4||H3|
|H4∩H3| = |H4H2| =344

|H4||H2|
|H4∩H2| which implies |H2| = |H3|, a contradiction.345

Conversely, suppose that LH(G) is a distributive lattice. We contend that,346

G is direct product of its Sylow p-subgroups. If not, then there exists a prime p347

such that p||G| and a Sylow p-subgroup of G is not normal. Let P1 and P2 be348

two Sylow p-subgroups of G, then these are also Hall subgroups.349

Note that, |G| is divisible by at least two primes since every finite group with350

prime power order is nilpotent.351

Case I. Let |G| = pαqβ where p, q are distinct primes. Choose a subgroup352

Q of G such that Q is a Sylow q-subgroup, which is also a Hall subgroup. Note353

that,P1 ∧LH Q = P2 ∧LH Q = P1 ∧LH P2 = {e} and P1 ∨LH Q = P2 ∨LH354

Q = P1 ∨LH P2 = G. Moreover P1, P2, Q Hall subgroup. Consequently, LH(G)355

contains sublattice S = {{e}, P1, P2, Q,G} isomorphic to M3, a contradiction to356

the fact that LH(G) is distributive.357

Case II. Let |G| = pαqβ1
1 · · · qβm

m where p, qi’s are distinct primes. Since358

LH(G) is a lattice, P1 ∨LH P2 = T is a Hall subgroup of G, let |T | = pα
∏

i∈X qβi
i359
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for a subset X ⊆ {1, 2, . . . ,m}. Note that, if there exists a Hall subgroup Q of360

order
∏

i∈X qβi
i then this subgroup is such that p ∤ |Q| is a co-atom in LH(T ). If361

not, then consider a subgroup Q which is Hall subgroup with order
∏

i∈Y⊂X qβi
i .362

SuchQ exists, since at least we have a Sylow qi-subgroup which is a Hall subgroup.363

Also, such Q is co-atom in LH(T ) and p ∤ |Q|.364

Now, consider the subset {{e}, P1, P2, Q, T} with P1 ∧LH Q = P2 ∧LH Q =365

P1 ∧LH P2 = {e} and P1 ∨LH Q = P2 ∨LH Q = P1 ∨LH P2 = T , which forms a366

sublattice isomorphic to M3 of LH(T ) and so, LH(T ) is not distributive. Con-367

sequently, LH(G) is not distributive, a contradiction.368

Therefore, G is direct product of its Sylow p-subgroups and so nilpotent.369

In the next Lemma the number of Hall subgroups of finite nilpotent groups370

is obtained.371

Lemma 3.3. Let G be a finite nilpotent group and |G| =
∏m

i=1 p
αi
i , then |LH(G)|372

= 2m.373

Proof. Note that, if G is a finite nilpotent group and π is any set of primes, then374

G has a Hall π-subgroup. Moreover, by Theorem 3.2, we have the unique Hall375

π-subgroup for each set π of primes. Consequently, the number of distinct Hall376

subgroups of G is
(
m
0

)
+
(
m
1

)
+
(
m
2

)
+
(
m
3

)
+ · · ·+

(
m
m

)
= 2m.377
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