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Abstract

In this paper, the structures of Hall subgroups of finite metacyclic and
nilpotent groups are studied. It is proved that the collection of all Hall
subgroups of a metacyclic group is a lattice and a group G is nilpotent if
and only if its collection of Hall subgroups forms a distributive lattice. Also,
lower semimodularity and complementation are studied in a collection of
Hall subgroups of D,, for different values of n.
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1. INTRODUCTION AND NOTATION

Throughout this article, G denotes a finite group. It is known that the set
of all subgroups of a given finite group G forms a lattice denoted by L(G) with
HAK = HNK and HVK = (H, K) for subgroups H, K of G. The interrelations
between the theory of lattices and the theory of groups have been studied by many
researchers, see Pélfy [10], Schmidt [12], Suzuki [14]. For the group theoretic
concepts and notations, we refer to Birkhoff [1], Luthar and Passi [8], Schmidt
[12].

!This work is supported by CSIR, under SRF (09/137(0621)/2019-EMR-I), Ministry of Sci.
and Tech., Govt. of India.
2Corresponding author.
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2 S. MITKARI AND V. KHARAT

There are a few types of subgroups such as Hall subgroups whose collections
may form lattices and these lattices can be used to study the properties of groups.
Accordingly, a study for collection of Hall subgroups of metacyclic and nilpotent
groups has been carried out.

The following notations are used throughout this article.

e LH(G) — Collection of all Hall subgroups of G.

e LN(G) — Collection of all normal subgroups of G, which is a sublattice of
L(G).

e |G| — Order of G.

e |L(G)| — Number of subgroups of G - Cardinality of L(G).

e ¢ — Neutral (Identity) element in G.

e [m,r] —lecm of m and 7.

e (m,r)— ged of m and 7.

e ALy —glb. in LH(G).

e Vry —lLub. in LH(G).

e H < K — H is covered by K.

e D, — Dihedral group of order 2n : (a, b | a" = e = b?, ba = a~'b).

The following definition of a Hall subgroup of a finite group is essentially due
to Hall [6].

Definition 1.1 [6]. A Hall subgroup of a finite group is a subgroup whose order
is coprime to its index.

Remark 1.2. Every Sylow p-subgroup of a finite group is a Hall subgroup.

The collection of Hall subgroups of a group is not necessarily a lattice, i.e.,
we have a group G in which LH(G) does not form a lattice.

Consider L(A7) and its collection LH (A7) of all Hall subgroups of A7. Note
that, the subgroups H = ((123) (23456)) and K = ((123), (23457)) are iso-
morphic to Ag and so Hall subgroups of A7. Moreover, HAK = ((123), (2345))

is isomorphic to As. Note that, (|H N K|, %) = (120,42) =6 and so H A K

is not a Hall subgroup.

Also, the subgroups 7' = ((23 45 6)) and S = ((2 4 3 5 6)) are Sylow
5-subgroups of A7. Note that, T'V S = H A K which is not a Hall subgroup of
A7. Consequently, join of TV S as well as meet of H App K does not exists
and therefore LH (A7) is not a lattice.

Next consider, the lattice depicted in Fig 1.1 which is the Hasse diagram of
L(S4). Note that, LH(S,) = L(S,) for n < 3. The Hasse diagram of LH(S})
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STRUCTURES OF HALL SUBGROUPS OF FINITE METACYCLIC AND ... 3

is depicted in Figure 1.2, and it is a lattice. Observe that for Pbg and Pa7 in
LH(Sn), we have Pog A Poy = Mjg in L(S4), but Mg §é LH(S4) and as such,
LH(S,) is not a sublattice of L(Sy).

Figure 1.2. LH(S4).

So it is necessary to investigate the groups for which LH(G) is a lattice and
similarly, LH (G) is a sublattice of L(G). It is also worth studying some properties
of LH(G) in these situations.

Faigle, et al. (see [4, 11, 13]) studied strong lattices of finite length in which
the join-irreducible elements play a key role.

For the following definition and other relevant definitions in lattice theory we
refer to Birkhoff [1], Grétzer [5] and Stern [13].

Definition 1.3 [13]. An element j of a lattice L is called join-irreducible if, for
all z,y € L, j =2 Vyimplies j =z or j =y.
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4 S. MITKARI AND V. KHARAT

For a lattice L of finite length J(L) denotes the set of all non-zero join-
irreducible elements.

We introduce the concept of join-irreducible subgroups as follows.

Definition 1.4. A subgroup of a group G is said to be join-irreducible if it is a
join-irreducible element of L(G).

We note that,every cyclic subgroup of prime power order of a finite group is
a join-irreducible subgroup.
From this fact and Lemma 2 of [15], the following Lemma follows.

Lemma 1.5. A subgroup of a finite group is a join-irreducible subgroup if and
only if it is a cyclic subgroup of prime power order.

The following concept of a strong element was coined by Faigle [4]; see also
[13].

Definition 1.6 [4]. Let L be a lattice of finite length. A join-irreducible element
j # 0 is called a strong element if the following condition holds for all z € L:
(St) j <azVj~ = j <z, where j~ denotes the uniquely determined lower cover
of j.

A lattice is said to be strong if every join-irreducible element of it is strong.
Remark 1.7. The condition (St) in the definition of a strong element is equiva-
lent to the following; see [13] for more details.

(St’) For every g < j€ J(L), x € L, j <z V q implies j < x.

The following characterization of strong lattices is due to Richter and Stern
[11].

Theorem 1.8 [11]. A lattice L of finite length is strong if and only if it does not
contain a special pentagon sublattice with j € J(L).

jNzT

Figure 1.3. Special Pentagon.



100

101

102

103

104

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

STRUCTURES OF HALL SUBGROUPS OF FINITE METACYCLIC AND ... )

Proof of the following Lemma follows from Theorem 1.8.

Lemma 1.9. Let L be a finite lattice. If atoms are the only join-irreducible
elements in L, then L is strong.

Theorem 1.10. Let G be a group, if LH(G) is a lattice, then LH(G) is strong.

Proof. In view of the Lemma 1.9, it is sufficient to prove that only atoms are
join-irreducible elements. Let |G| =[]~ p;"* and J € LH(G) a join-irreducible
Hall subgroup. Then |J| = p{* for some prime ¢ € {1,2,...,m} and [J7| =
pft_l € L(G). Note that, |J~| = {e} in LH(G). Consequently, if a subgroup J
is join-irreducible in LH(G) then it is an atom. [ ]

Note that, there exists a strong lattice which is not a Hall subgroup lattice
of any finite group. Figure 1.4 depicts a strong lattice, which is not a LH (G) for
any finite group G.

{e}

Figure 1.4. C}

2. HALL SUBGROUPS IN FINITE METACYCLIC GROUPS

In this section, the collection of Hall subgroups of metacyclic group is investigated.
Following is the definition of a metacyclic group, see [2].

Definition 2.1 [2]. A finite group G is a metacyclic if it contains a cyclic normal
subgroup N such that % is also cyclic.

It is observed that a metacyclic group can be written G = SN with S < G
and N < G such that both S and N are cyclic. Such a product is a metacyclic
factorization of G.

Note that, Hall subgroups of a metacyclic group G are obtained with the
help of its metacyclic factorization. and so we have the following result which is
a Lemma 5.3 of [7].
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6 S. MITKARI AND V. KHARAT

Lemma 2.2 [7]. Let G be a finite group with a metacyclic factorization G = SN,
to each set m of primes, the subgroup H = Sy Ny is the unique Hall w-subgroup
of G such that S = HNS, N = NNH and so H=(HNS)(HNN).

As observed, the collection of Hall subgroups of a finite group need not form a
lattice in general but in case of metacyclic group it forms a lattice as the following
result shows.

Theorem 2.3. If G is a finite metacyclic group, then LH(G) is a lattice. How-
ever, it is not necessarily a sublattice of L(G).

Proof. Let G be a finite metacyclic group, in order to show that LH(G) is a
lattice, we prove that given two Hall subgroups H and K of G, H Ay K and
H Vg K exist.

Case 1. Let H and K be two distinct Hall m; and me-subgroups respectively
corresponding to metacyclic factorization SN of G.

In view of Lemma 2.2, the subgroups H = S;, N, and K = S;, N, are the
unique Hall 771 and ma-subgroups of G such that S, = HNS, Ny, = HNN, Sy, =
KNS, Ny, = KNN. Therefore, H=(HNS)(HNN) and K = (KNS)(KNN).
Now, for the set m = m N w9 of primes, there is the unique Hall w-subgroup say
T =5:N=(T'nS)(T'NN). Note that, T is the unique largest Hall subgroup of
G which is contained in both H and K. Consequently, H A K = T. Similarly,
for the set 7’ = m U my of primes there is the unique Hall 7/-subgroup say
R = SN = (RNS)(RNN). Note that, R is the unique smallest Hall subgroup
of G which contains both H and K. Therefore, H Vg K = R.

Case I1. Let H and K be two distinct Hall 1 and ms-subgroups respectively
corresponding to two different metacyclic factorizations SN and S'N’.

In view of the Lemma 2.2, H = (HNS)(HNN) = Sy Ny, and K =
(KNS)KNN') =S, N;,. Furthermore, each one of H and K is an unique
Hall 71 and me-subgroups corresponding to two metacyclic factorizations SN and
S’ N’ respectively. Now, corresponding to each prime p; € m; there is the unique
Sylow p;-subgroup say P;, corresponding to factorization SN of G and similarly,
corresponding to each prime p; € mo there is the unique Sylow pj-subgroup say
Q;, corresponding to factorization SN’ of G.

Note that, the subgroup H' = Sy Amy Nrnm, then H' is a subgroup of H.
If H' is also a subgroup of K then H’ is the largest Hall subgroup of G which
is contained in both H and K. Consequently, H A,y K = H'. If H' is not a
subgroup of K, then choose the set m of primes of p; € m Ny such that each
Sylow p;-subgroup P; of G contained in both H and K. Note that, if P is a Hall
m-subgroup of H then P O VF;. Since every non-trivial Hall subgroup is join of
Sylow subgroups we have P = VF;. And so, it is contained in both H and K.
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As such P is the unique largest Hall subgroup of G corresponding to metacyclic
factorization SN as well as S’N’ and so, H Ay K = Vp,exP;.

Similarly, choose the subgroup H' = Sy, ur, Nryur, then H is the subgroup
of H'. If K is also a subgroup of H' then H' is the smallest Hall subgroup of
G which contains both H and K and therefore H Vg K = H'. If K is not a
subgroup of H', choose the least set ©’ of primes 7’ with w1 U mg C 7/ such that
H, K C Vp,exP;. Let R be a Hall subgroup of G such that Ve P; C R is the
unique Hall 7/-subgroup corresponding to metacyclic factorizations SN as well
as S’N’. Note that, R is the least Hall subgroup which contains H and K and
so, HVrg K = R.

Hence LH(G) is a lattice whenever G is metacyclic.

Consider a dihedral group D,,, which is metacyclic group. In [9] it is noted
that LH(D,,) is a lattice but not necessarily a sublattice of L(D,,). [ ]

Remark 2.4. Note that, a metacyclic group G may not have a unique metacyclic
factorization, e.g., D,. However, if G has unique meatcyclic factorization then
LH(G) is a sublattice of L(G), e.g. Zpq. Also, for every finite group G whose
order is square-free, LH(G) is a sublattice of L(G).

We note that,dihedral groups are metacyclic and so LH (D)) is a lattice.
However, LH (D,,) is a lattice is proved independently in [9] using the classification
of the subgroups given in [3] as follows;

Theorem 2.5 [3]. Every subgroup of Dy, is cyclic or dihedral. A complete listing
of the subgroups is as follows:

(1) (a?), where d|n, with index 2d,
(2) (a*,a’d), where kln and 0 <i < k — 1, with index k.
Every subgroup of D,, occurs exactly once in this listing.

Remark 2.6. 1. A subgroup of D,, is said to be of Type (1) if it is cyclic subgroup
as stated in (1) of Theorem 2.5.

2. A subgroup of D, is said to be of Type (2) if it is dihedral subgroup as
stated in (2) of Theorem 2.5.

A study of collection of Hall subgroups of D,, namely LH(D,,) is carried out
by Mitkari et. al. in [9], where the binary operations Ary and Vg in LH(D,,)
are defined as per the classification of subgroups of D,, as follows.

Let n =2*T[", pi".

1. If T = (a') for some s, t € N and S = (a®) are Hall subgroups of Type
(1), then T Vg S = (a9) where g = (s,t) and T Apy S = {(a'), where | = [s, ].

2. If T = (a®) is a Hall subgroup of Type (1) and S = (a®a’b) is a Hall
subgroups of Type (2) for some s, t € N, then TV S = (a9, a’b) where g = (s, 1)
and T Apy S = (a'), where [ = [s,t].
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8 S. MITKARI AND V. KHARAT

3. If T = (a',a’b) and S = (a®,a’b) are Hall subgroups of Type (2) for some
s, t €N, then TVyyS = (a9, a'b) where g = Land gy = (t,5,i—j), r = (%,gl)
and

(a®), if tx + sy = k — j has no integer solution
o 2a+1n
TApy S — where s = ash
(a?, aF—mwop), if tx + sy = k — j has an integer solution
2n

where d = g

where (x0,y0) is an integer solution of an equation tx + sy = k — j.

Now, we establish some lattice theoretic property such as lower semimodular-
ity, complementation, atomic covering condition and Mac-lanes exchange prop-
erty in the subgroup lattice LH (D,,).

Definition 2.7 [13]. A lattice L is said to be lower semimodular, for every
T, SeL,ifT'<TVS,thenTANS=<S.

Theorem 2.8. The lattice LH(D,,) is lower semimodular.

Proof. Let T and S € LH(D,,) be such that T < TV S.
Claim. TAS < S.

Consider n = 2% [, p;" where each p; is an odd prime. Note that, if a
Type (1) subgroup H of D,, generated by a” is also a Hall subgroup, then it is
necessary that h = 2% [[ ., ps® for some subset M C {1,2,...,m}. Moreover,
if a Type (2) subgroup H of D,, generated by {a”,a’b} is also a Hall subgroup,
then it is necessary that h =[] . ps® for some subset N C {1,2,...,m}.

Case 1. Let T = {(a'), where t = 2¢ HweUg{LQ,m,m} Pe®.

Subcase 1(i). If S = (a”) where s = 2] cyyciio m) py” then TV S = (a9)

where g = (s,t). In view of T < T Vv S, Note that,(a') < (a?) if and only if

g= p% = 26!1_[;@# and p, is an odd prime dividing n with largest power ..

We have gls (sagf gk = s where k € Z) and p%* { s since T'Z S.

Now S AT = (a'), where | = [s,t] = [gk,gp¢*] = gkpl* = sp¥* (D« 1 5).
Consequently, T A S = (a®**") < (a®).

Subcase T1(ii). Let S = (a*,a’b) for some subset M C {1,2,...,m} where
s = [yewcqio,...m) py? such that 7' < TV S. Note that, TV S = (a9, a’b)
where g = (s,t). Since T < T V S we have (a') < (a9 a'b) if and only if
9= 5= = [Leer 05" Asgls' ((say gk = s’ where k € Z), i.e., [T,cp 05 [ T cw Py
and so [[,cp ™ [[excw P’ = Hyewpgy. Now consider T'A S = {(a') where
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I = [¢,t] = [gk,2%] = 2%gk = 2%’ (21 s'). Consequently, T A S = (a®*¥) <

s i\ IS|  _ 9a+1
(a®,a'b) = S, as oA = 20

Case I1. Let T = (a*, a’b) where t =[],y p5=.

Subcase I1(i). Let S = (a®) where s = 2 Hyevpf;y such that T'< T'v S. We
have TV S = (a%,a’b) where g = (s,t). Since T < T V S, we have {(a’,a’b) <
(a9, a'b) if and only if g = pé* = Hz;f%pé“. Note that, g|s ((say gk = s where
k€ Z)and T ¢ S which implies p{* 1 s.

Now consider S AT = (a) Wh%re I = I[s,t] = [9q,9p%] = gqp¥ = sp&~
(p2* 1 s). Consequently, T A S = (a*P+") < (a®) = S.

Subcase 11(ii). Let S be a dihedral subgroup with |S| = |T| and T'< TV S.
Then S = (a’, a’b). Note that,S VT = (a?,a'b) = (a9, a’b). Since T < TV S, we
have (a,a'b) < (a?,a’b) if and only if g = pé* = mgfil’f)y. Note that, i, 7 <t
and so ¢ — j < t. Consider the equation tx1 + txo =i — j for 1, x9 € Z and this
equation does not have a solution as i — j < ¢, t {i — j. Therefore, T A S is a
cyclic subgroup, suppose that T A S = (a') where | = (|276:\+,|15r|0) = (Zgﬁ) = 2%

tt
Therefore, S AT = (a'*"). Note that, |5l/S\‘T| = 2°F1 and hence T A S < S for such
choice of S and T'.
Now suppose S be a dihedral subgroup such that |T'| # |S| and T < T Vv S,

say S = <asl,ajb> where s’ = Hyevpgy for some y € V' C {1,2,...,m}. Note
that, SV T = (a% a'b) where g = £ and g, = (t,s,i — j),r = (3—?,91) Since

Qo
= er+*p;c' Now as

T < TV S we have (al, a’b) < (a9,a’b) if and only if g = oo -
gls’ and g|i — j there exists o, 8 € Z we have ag = i—j and Sg = s’. Consider the

equation txy + sxe =i —j, i.e., g(p¢*)x1+ 9(B)r2 = gav, i.e., (p¥*)x1+ (B)z2 = .

We have two cases: p¢* { 8 and p*|8 and we contend that in each case
TANS<S.
Suppose that, p¢* t 3, then (p*, 3) = 1. Therefore, the equation (p{*)x; +

Brz = a will always have a solution. In this case T A S = (a?,a?b), where

2n.pf* ’ |S/\T|

d- = . ) Bll,eupie. Note that, (i = p¢*. Consequently,

H;ceUPgm ’H;ceUP%mB

TNS=<S.
Now suppose that pQ+

B. If the equation (p¢*)z1 + fre = «a for x1,29 € Z
has a solution, then p¢*|a. Now as (Hzlfiflﬁpg%,pf*) = 1 implies [ cypo=|i —j
and also [[,.ype=|s’. Consequently, TV S = (a%,a'b) = (a',a’b) =T (as g1 =
(t,s'yi—j) =t and r = <?]—?,gl) = 1 then g = & = g1 = t) which is not
true since T < T'Vv S. Therefore p?* { a and so the equation does not have
a solution. As such S AT is not a Type (2) subgroup of D, and we must
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10 S. MITKARI AND V. KHARAT

have S AT = (a'), for [ = 2% n _ Plleurs” Mre” _ 20
’ ( 2n 2n.pg* ) pe* '

Mecv?rz™ Tecurs® rg?
Therefore, (a') = (a***") < (a*,a’b) = S. Note that, %: 22F1 and hence
T A S < S for such choice of S and T [ ]

A lattice is said to be complemented if every element has a complement. In
what follows, we have a Theorem about LH (D,,).

Theorem 2.9. Let D, be the dihedral group with 2n elements where n =
20T, pi*. Then, the lattice LH(D,,) is complemented.

(2

Proof. In order to show that LH(D,,) is complemented, it is sufficient to show
that every cyclic Hall subgroup has a complement in LH (D,,).

Note that, if a cyclic subgroup (a”) is also a Hall subgroup, then it is necessary
that h = 2% [[,, p3* such that x € M C {1,2,...,m}. Moreover, if a dihedral
subgroup (a", a'b) is also a Hall subgroup, then it is necessary that h = [ poe
such that z € N C {1,2,...,m}.

Let A = (aF) be a cyclic Hall subgroup, then k& = 2 [I p&= such that
z € U C{1,2,...,m}. Choose the subgroup B = (a‘,a’b) where t = %. But
then g = (k,t) = 1 and so AV B = (a%,a’b) = D,,. Moreover | = [k,t] = n
this implies A A B = (a') = (a") = I. Therefore, every cyclic Hall subgroup has
complement and so every dihedral Hall subgroup has a complement. [ |

It is known that the number of subgroups of D,, for n > 3 is |L(D,)| =
Number of divisors of n + Sum of divisors of n. Along the same line, we have
the following formula for the number of Hall subgroups of D,, i.e., |LH(D,,)].

Theorem 2.10. For any n > 3, |LH(D,,)| = 2* + [[,,_, (1 + p%") where n =

20115, pom, where p is prime and z is the number of odd primes dividing n.

Proof. Let n = 2*T[. _, p%m~, p being prime. If H is a cyclic Hall subgroup
of Dy, then |H| = [[,cocqio, . .3Pe” and [H| is not a multiple of 2. Note
that, number of subgroups whose order is divisible by single odd prime is given
by (‘.i) Similarly, number of subgroups whose order contains exactly two odd
prime factors is given by (;) Consequently, number of cyclic Hall subgroups=
@+G+@+E++0) =2

Now consider a dihedral Hall subgroup H then |H| = 2! [liescpia,.. .y P2
If H1 be a dihedral Hall subgroup whose order is divisible by single odd prime say

p1, then Hi= <anfn:2 Pl aib> and number of subgroups whose order is equal to

order of Hy is [[;,_,pSr. Consequently, the number of all such subgroups whose
order is divisible by exactly single odd prime is equal to > ¢~ (1,22} [[p%= such



298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

STRUCTURES OF HALL SUBGROUPS OF FINITE METACYCLIC AND ... 11

that |S| = z—1. Similarly, if Hy is a dihedral Hall subgroup whose order is divis-
ible by exactly two odd prime factors, say p; and po, then Hy = <aan:3 pl" , aib>
and the number of subgroups whose order is equal to order of Hs is [];,_5 pS.
Consequently, number of all such subgroups whose order contains exactly two
odd primes is equal to 3 cgq19. .3 [1 P2 such that [S| = z—2. As such, num-
ber of all such dihedral Hall subgroups considering the number of prime divisors
involved is given by 37 _, pim +Z;ceslc{1,2,...,z} [1p2" +ZIES2C{1,2,...,3} [Ips"+
ZxESC{lQ,‘..,z} [Ipge+- '+Zx€Sz_1C{l,2,...,z} [1p5+1=T1;,—; (1+p5r), where
|Sil=2z—ifori=1,2,...,2—1.
Therefore, number of Hall subgroups of D,,= |LH (D,,)| = 2*+[[;,_, (1 + p&m),

whenever n = 2*[]7 _; p&m. ]

3. HALL SUBGROUPS OF FINITE NILPOTENT GROUPS

In this section, properties of collection of Hall subgroups of finite nilpotent groups
are investigated.
We recall the following characterization, see Grétzer [5].

Theorem 3.1. A modular lattice is distributive if and only if it does not a sub-
lattice isomorphic to diamond (Ms).

Remark. For every Hall subgroup K of G, LH(K) is a sublattice of LH(G)
whenever LH(G) is a lattice.

Theorem 3.2. Let G be a finite group. Then LH(G) is a distributive lattice if
and only if G is a nilpotent group.

Proof. Let G be a finite nilpotent group, we first show that LH (G) is a sublattice
of L(G). Let |G| =[]~ p;" and the subgroups H, K are Hall subgroups of G.
Note that, G is nilpotent if and only if it is direct product of its Sylow p-subgroups,
e, G =G xGax--xG,yy = Hﬁl G, where each Gj is the Sylow p;-subgroup of
G. Also, Note that,each G; is unique being part of direct product and so normal
in G.

Claim I. H A K is a Hall subgroup.

Let H = [[;cs, Gi and K = [];cg, Gi such that Sy, S2 C {1,2,...,m} are
unique of its order being normal in G. But then the subgroup H N K =T =
[Lics,ns, Gi is the Hall subgroup of G and so H N K is a Hall subgroup.

Claim II. H vV K is a Hall subgroup.

Let H = [[;cq, Gi and K = [],cq, Gi such that S1,S52 C {1,2,...,m} are
unique of its order being normal in G. But then the subgroup (H,K) = T =
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[Lics,us, Gi is the Hall subgroup of G and so (H, K) is a Hall subgroup. This
proves that LH(G) is a sublattice of L(G).

Note that, each Hall subgroup is normal as it is join of Sylow p-subgroups
and every Sylow p-subgroup is unique as G is direct product of its Sylow p-
subgroups being nilpotent. Consequently, LH (G) is a sublattice of LN (G) which
implies that LH(G) is modular since LN (G) is a modular lattice and sublattice
of modular lattice is modular. We show that LH(G) does not contain diamond
(M3) as its sublattice.

Suppose LH(G) contains a diamond as its sublattice. Note that,the five
subgroups H;, i € {1,2,...,5} in M3 as depicted in Figure 3.1. The each one of
the five subgroups are of different orders these are of different orders.

Hs

Hoy Hy

Hy

Figure 3.1. Figure Ms.

Now HoV Hs = HyHs = HyVH; = HyHs = HyV Hy = HyH>. Consequently,

Hy||H:
\HyHy| = |HyHy| = |HyHs| = |Hs|, but then |HyHs| = [l = |HyH,| =
Hy||H2

|H4NH2|

Conversely, suppose that LH(G) is a distributive lattice. We contend that,
G is direct product of its Sylow p-subgroups. If not, then there exists a prime p
such that p||G| and a Sylow p-subgroup of G is not normal. Let P; and P» be
two Sylow p-subgroups of GG, then these are also Hall subgroups.

which implies |Hs| = |Hs|, a contradiction.

Note that, |G| is divisible by at least two primes since every finite group with
prime power order is nilpotent.

Case 1. Let |G| = p®¢® where p,q are distinct primes. Choose a subgroup
Q@ of G such that @ is a Sylow g-subgroup, which is also a Hall subgroup. Note
that,Pi ALy @ = Po Aty Q@ = Py Apg Po = {e} and Py Vg Q = P> Vg
Q = P, Vg P, = G. Moreover Py, P, @ Hall subgroup. Consequently, LH(G)
contains sublattice S = {{e}, P1, P», @, G} isomorphic to M3, a contradiction to
the fact that LH(G) is distributive.

Case 11. Let |G| = po‘q'f1 e qﬁ{" where p,¢;’s are distinct primes. Since
LH(G) is a lattice, P, Vg P> = T is a Hall subgroup of G, let [T'| = p* [[;cx qBi

)
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for a subset X C {1,2,...,m}. Note that, if there exists a Hall subgroup @ of
order [ [;cx qZ-Bi then this subgroup is such that p{ |Q] is a co-atom in LH(T). If
not, then consider a subgroup () which is Hall subgroup with order [], .y x qf L

Such @ exists, since at least we have a Sylow g;-subgroup which is a Hall subgroup.
Also, such @ is co-atom in LH(T') and p t|Q)|.

Now, consider the subset {{e}, P1, P»,Q,T} with Py Ay Q = Po Apg Q =
P Apg Py = {6} and PLVrg Q = Po Vg Q = Py Vg P, = T, which forms a
sublattice isomorphic to M3 of LH(T') and so, LH(T') is not distributive. Con-
sequently, LH(G) is not distributive, a contradiction.

Therefore, GG is direct product of its Sylow p-subgroups and so nilpotent. m

In the next Lemma the number of Hall subgroups of finite nilpotent groups
is obtained.

Lemma 3.3. Let G be a finite nilpotent group and |G| =[]~ pi", then |LH(G)|

=2".

Proof. Note that, if G is a finite nilpotent group and 7 is any set of primes, then
G has a Hall m-subgroup. Moreover, by Theorem 3.2, we have the unique Hall
m-subgroup for each set m of primes. Consequently, the number of distinct Hall
subgroups of G is () + (7) + (5) + (5) +---+ () = 2™ (]

m
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