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Introduction28

The concept of an Almost Distributive Lattice (ADL) was introduced by Swamy29

and Rao [9] and the concept of an ideal in an ADL was introduced analogous30

1Corresponding author.
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to that in a distributive lattice and it was observed that the set PI(R) of all31

principal ideals of R forms a distributive lattice. This provided a path to extend32

many existing concepts of lattice theory to the class of ADLs. In [3], the authors33

thoroughly investigated certain significant properties of dual annihilators, dual34

annihilator filters and µ-filters of almost distributive lattices. In [8], the concepts35

of coaxial filters and strongly coaxial filters are introduced in a distributive lattice36

and studied its properties.37

The notions of coaxial filters and strongly coaxial filters are introduced in38

this paper in terms of dual annihilators of ADLs, analogous to that in a dis-39

tributive lattice. Dual annihilators and maximum ideals of ADLs are utilized to40

characterize dually normal ADLs once more. For each ADL filter to become a41

coaxial filter, a set of equivalent conditions is derived. The concept of normal42

prime filters is presented, and it can be seen that every normal prime filter is43

both a coaxial filter and a minimum prime filter. Some coaxial filter features are44

derived in terms of inverse homomorphic images and cartesian products. The45

concept of ADLs that are weakly dually normal is introduced. For every weakly46

dually normal ADL to become a dually normal ADL, some analogous require-47

ments are derived. For each ADL filter to become a strongly coaxial filter, a set48

of equivalent conditions is derived. Finally, for the class of all strongly coaxial49

filters of an ADL to constitute a sublattice of the filter lattice, a set of analogous50

conditions is deduced.51

1. Preliminaries52

First, we recall certain definitions and properties of ADLs that are required in53

the paper. We begin with ADL definition as follows.54

Definition [9]. An Almost Distributive Lattice with zero or simply ADL is an55

algebra (R,∨,∧, 0) of type (2, 2, 0) satisfying:56

(1) (a ∨ b) ∧ c = (a ∧ c) ∨ (b ∧ c);57

(2) a ∧ (b ∨ c) = (a ∧ b) ∨ (a ∧ c);58

(3) (a ∨ b) ∧ b = b;59

(4) (a ∨ b) ∧ a = a;60

(5) a ∨ (a ∧ b) = a;61

(6) 0 ∧ a = 0;62

(7) a ∨ 0 = a, for all a, b, c ∈ R.63

Example 1. Every non-empty set X can be regarded as an ADL as follows. Let64
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a0 ∈ X. Define the binary operations ∨,∧ on X by65

a ∨ b =

{

a if a 6= a0
b if a = a0

a ∧ b =

{

b if a 6= a0
a0 if a = a0.

66

Then (X,∨,∧, a0) is an ADL (where a0 is the zero) and is called a discrete ADL.67

If (R,∨,∧, 0) is an ADL, for any x, y ∈ R, define a ≤ b if and only if x = x∧y68

(or equivalently, x ∨ y = y), then ≤ is a partial ordering on R.69

It can be observed that an ADL[9] R satisfies almost all the properties of a70

distributive lattice except the right distributivity of ∨ over ∧, commutativity of ∨,71

commutativity of ∧. Any one of these properties make an ADL R a distributive72

lattice. As usual, an element m ∈ R is called maximal if it is a maximal element73

in the partially ordered set (R,≤). That is, for any x ∈ R, m ≤ x ⇒ m = x. The74

set of all maximal elements of an ADL R is denoted by Mmax.elt.75

Theorem 2 [9]. Let R be an ADL and m ∈ R. Then the following are equivalent:76

(1) m is maximal with respect to ≤;77

(2) m ∨ x = m, for all a ∈ R;78

(3) m ∧ x = x, for all x ∈ R;79

(4) x ∨m is maximal, for all x ∈ R.80

As in distributive lattices [1, 2], a non-empty subset U of an ADL R is called81

an ideal of R if x ∨ y ∈ U and x ∧ a ∈ U for any x, y ∈ U and a ∈ R. Also, a82

non-empty subset F of R is said to be a filter of R if x∧ y ∈ F and a∨x ∈ F for83

x, y ∈ F and a ∈ R.84

The set I(R) of all ideals of R is a bounded distributive lattice with least85

element {0} and greatest element R under set inclusion in which, for any U, V ∈86

U(R), U ∩V is the infimum of U and V while the supremum is given by U ∨V :=87

{x ∨ y | x ∈ U, y ∈ V }. A proper ideal L of R is called a prime ideal if, for any88

a, b ∈ R, a ∧ b ∈ L ⇒ a ∈ L or b ∈ L. A proper ideal (filter) L of R is called a89

prime ideal(filter) if, for any a, b ∈ R, a ∧ b ∈ L(a ∨ b ∈ L) ⇒ a ∈ L or b ∈ L. A90

proper ideal (filter) P of R is said to be maximal if it is not properly contained91

in any proper ideal (filter) of R. It can be observed that every maximal ideal92

(filter) of R is a prime ideal (filter). Every proper ideal (filter) of R is contained93

in a maximal ideal (filter). For any subset A of R the smallest ideal containing A94

is given by (A] := {(
∨n

i=1 ei)∧ a | ei ∈ A, a ∈ R and n ∈ N}. If A = {e}, we write95

(e] instead of (A]. Similarly, for any A ⊆ R, [A) := {a ∨ (
∧n

i=1 ei) | ei ∈ A, a ∈ R96

and n ∈ N} is the smallest filter containing A. If A = {e}, we write [e) instead of97

[A). The set F(R) of all filters of R forms a bounded distributive lattice, where98

F ∩ S is the infimum and F ∨ S = {x ∧ y | x ∈ F, y ∈ S} is the supremum in99

F(R).100
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For any a, b ∈ R, it can be verified that (a]∨(b] = (a∨b] and (a]∩(b] = (a∧b].101

Hence the set PI(R) of all principal ideals of R is a sublattice of the distributive102

lattice I(R) of ideals of R.103

Theorem 3 [5]. Let U be an ideal and F a filter of R such that U ∩F = ∅. Then104

there exists a prime ideal L such that U ⊆ L and L ∩ F = ∅.105

An ADL R is called a dually normal [6] if every prime ideal of R is contained106

in a unique maximal ideal of R. In that characterized topologically in terms of107

its maximal ideals and prime ideals. Some necessary and sufficient conditions for108

the space of maximal ideals to be dually normal are obtained.109

Theorem 4 [7]. A prime filter L of an ADL R with maximal elements is minimal110

if and only if to each a ∈ L there exists b /∈ L such that a∨ b is maximal element.111

For any subset G of an ADL R with maximal elements, the dual annihilator112

of G is define as the set G+ = {a ∈ R | a∨ x is maximal, for all x ∈ G}. For any113

subset G of R, G+ is a filter of R with G ∩G+ = Mmax.elt.114

Lemma 5 [3]. Let R be an ADL with maximal elements. For any subsets G and115

B of R, the following properties hold:116

(1) G ⊆ B implies B+ ⊆ G+;117

(2) G ⊆ G++;118

(3) G+++ = G+;119

(4) G+ = R if and only if G ⊆ Mmax.elt.120

In case of filters, we have the following result.121

Proposition 6 [3]. Let R be an ADL R with maximal elements. For any filters122

F, S and T of R, the following properties hold:123

(1) F+ ∩ F++ = Mmax.elt;124

(2) F ∩ S = Mmax.elt implies F ⊆ S+;125

(3) (F ∨ S)+ = F+ ∩ S+;126

(4) (F ∩ S)++ = F++ ∩ S++.127

It is clear that ([a))+ = (a)+. Then clearly (0)+ = Mmax.elt. The following128

corollary is a direct consequence of the above results.129

Corollary 7 [3]. Let R be an ADL with maximal elements. For any x, y, z ∈ R,130

(1) x ≤ y implies (x)+ ⊆ (y)+;131

(2) (x ∧ y)+ = (x)+ ∩ (y)+;132
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(3) (x ∨ y)++ = (x)++ ∩ (y)++;133

(4) (x)+ = R if and only if x is maximal.134

A filter F of an ADL R with maximal elements is called a dual annihilator135

filter [3] if F = F++. A filter F of an ADL R with maximal elements is called136

a µ-filter of R if x ∈ F implies (x)++ ⊆ F for all x ∈ R. Every dual annihilator137

filter of an ADL is a µ-filter.138

2. Coaxial filters of ADLs139

The notion of coaxial filters in ADLs is introduced in this section. The class140

of dually normal ADLs is defined by dual annihilators. For each ADL filter to141

become a coaxial filter, a set of analogous conditions is derived. Also, the notion142

of strongly coaxial filters in ADLs is introduced in this section. For the class143

of all strongly coaxial filters to become a sublattice to the filter lattice, a set of144

equivalent conditions is derived.145

Definition. For any subset G of an ADL R, define

G� = {a ∈ R | (x)+ ∨ (a)+ = R for all x ∈ G}.

Clearly M�

max.elt = R and R� = Mmax.elt. For any x ∈ R, we denote146

({x})� by (x)�. Then it is obvious that (0)� = Mmax.elt and (m)� = R, where147

m ∈ Mmax.elt. Clearly G ∩G� = Mmax.elt.148

Proposition 8. For any subset G of an ADL R with maximal element m, G�
149

is a filter of R.150

Proof. Clearly m ∈ G�. Let a, b ∈ G�. Then (a)+ ∨ (x)+ = R = (b)+ ∨ (x)+,151

for all x ∈ G. Now (a ∧ b)+ ∨ (x)+ = {(a)+ ∩ (b)+} ∨ (x)+ = {(a)+ ∨ (x)+} ∩152

{(b)+ ∨ (x)+} = R ∩ R = R. Hence a ∧ b ∈ G�. Let a ∈ G�. Then we get153

(a)+ ∨ (x)+ = R, for all x ∈ G. Let b be any element of R. Since a ≤ a ∨ b, we154

get that (a)+ ⊆ (b ∨ a)+ and R = (a)+ ∨ (x)+ ⊆ (b ∨ a)+ ∨ (x)+. That implies155

(b ∨ a)+ ∨ (x)+ = R. Hence b ∨ a ∈ G�. Therefore G� is a filter of R.156

Lemma 9. For any two subsets G and B of an ADL R with maximal elements,157

the following properties hold:158

(1) G ⊆ B implies B� ⊆ G�;159

(2) G ⊆ G��;160

(3) G��� = G�;161

(4) G� = R if and only if G ⊆ Mmax.elt.162
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We get the following result easily when using the filters.163

Proposition 10. For any two filters F and S of an ADL R, (F ∨S)� = F�∩S�.164

The following corollary is a direct consequence of the above results.165

Corollary 11. Let R be an ADL with maximal elements. For any x, y ∈ R, we166

have the the following:167

(1) x ≤ y implies (x)� ⊆ (y)�;168

(2) (x ∧ y)� = (x)� ∩ (y)�;169

(3) (x)� = R if and only if x is maximal.170

For any filter F of an ADL R, it is easy to see that F� ⊆ F+. However, a171

set of equivalent conditions is given for every filter to satisfy the reverse inclusion172

which is not true in general.173

Example 12. Let R = {0, 1, 2, 3, 4, 5, 6, 7} and define ∨, ∧ on R as follows:174

∧ 0 1 2 3 4 5 6 7

0 0 0 0 0 0 0 0 0

1 0 1 2 3 4 5 6 7

2 0 1 2 3 4 5 6 7

3 0 3 3 3 0 0 3 0

4 0 4 5 0 4 5 7 7

5 0 4 5 0 4 5 7 7

6 0 6 6 3 7 7 6 7

7 0 7 7 0 7 7 7 7

∨ 0 1 2 3 4 5 6 7

0 0 1 2 3 4 5 6 7

1 1 1 1 1 1 1 1 1

2 2 2 2 2 2 2 2 2

3 3 1 2 3 1 2 6 6

4 4 1 1 1 4 4 1 4

5 5 2 2 2 5 5 2 5

6 6 1 2 6 1 2 6 6

7 7 1 2 6 4 5 6 7

175

Then (R,∨, ∧) is an ADL. Consider a filter F = {1, 2, 6}. Clearly, F+ =176

{1, 2, 4, 5} and F� = {1, 2, 4}. Hence F� = F+.177

The following result drives to another characterization of dually normal ADL.178

Theorem 13. Let R be an ADL with maximal elements. Then the following179

assertions are equivalent:180

(1) R is a dually normal ADL;181

(2) for any x, y ∈ R with x ∨ y is a maximal element, (x)+ ∨ (y)+ = R;182

(3) for any filters F, S of R, F ∩ S = Mmax.elt if and only if F ⊆ S�;183

(4) for any filter F of R, F� = F+;184

(5) for any x ∈ R, (x)� = (x)+;185

(6) for any two maximal ideals P and Q of R, there exist x /∈ P and y /∈ Q such186

that x ∧ y = 0.187
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Proof. (1) ⇒ (2): Assume that R is a dually normal ADL. Then every prime188

ideal of R is contained in a unique maximal ideal of R. Let x, y ∈ R with189

x ∨ y is maximal. Suppose (x)+ ∨ (y)+ 6= R. Then there exists a prime ideal190

L such that {(x)+ ∨ (y)+} ∩ L = ∅. Then L ∨ (x] is an ideal of R such that191

L ⊆ L ∨ (x]. Suppose y ∈ L ∨ (x]. Then y = f ∨ x for some f ∈ L. Hence192

f ∨x = (f ∨x)∨x = y ∨x. Since x∨ y is maximal, we have that t∨ a is maximal193

and which implies f ∈ (x)+ ⊆ (x)+∨(y)+. Thus f ∈ {(x)+∨(y)+}∩L, which is a194

contradiction. Therefore y /∈ L∨(x], which means that L∨(x] is a proper ideal of195

R. Then there exists a maximal ideal P1 such that L∨ (x] ⊆ P1. Similarly, there196

exists a maximal ideal P2 such that L∨ (y] ⊆ P2. Since x∨ y is maximal, we get197

y /∈ P1 and x /∈ P2. Therefore P1 6= P2. Thus the prime ideal L is contained in198

two distinct maximal ideals, which is a contradiction to the hypothesis. Therefore199

(x)+ ∨ (y)+ = R.200

(2) ⇒ (3): Assume condition (2). Let F and S be two filters of R. Suppose201

F ∩ S = Mmax.elt. Let a ∈ F . For any x ∈ S, we get a ∨ x ∈ F ∩ S = Mmax.elt.202

Hence a∨x is maximal. By condition (2), we get (a)+ ∨ (x)+ = R. Thus a ∈ S�.203

Therefore F ⊆ S�. Conversely, suppose that F ⊆ S�. Let a ∈ F ∩ S. Then204

a ∈ F ⊆ S�. Hence a ∈ S∩S� = Mmax.elt, which means a is maximal. Therefore205

F ∩ S = Mmax.elt.206

(3) ⇒ (4): Assume condition (3). Let F be a filter of R. Clearly F� ⊆ F+.207

Conversely, let a ∈ F+. Hence, for any x ∈ F , we have208

a ∨ x is maximal ⇒ [a) ∩ [x) = Mmax.elt209

⇒ [a) ⊆ (x)� by (3)210

⇒ [a) ⊆ (x)� for all x ∈ F211

⇒ a ∈ F�
212

which gives that F+ ⊆ F�. Therefore F+ = F�.213

(4) ⇒ (5): It is obvious.214

(5) ⇒ (6): Assume condition (5). Let P and Q be two distinct maximal215

ideals of R. Choose a ∈ P −Q. Since a /∈ Q, we get Q∨ (a] = R. Hence, x∨ a is216

maximal, for some x ∈ Q. Since x∨a is maximal, by (5), we get a ∈ (x)+ = (x)�.217

Hence (a)+ ∨ (x)+ = R. Then 0 ∈ (x)+ ∨ (a)+. Then there exist e ∈ (x)+ and218

f ∈ (a)+ such that e ∧ f = 0. Since e ∈ (x)+ and f ∈ (a)+, we get e ∨ x and219

f ∨ a are maximal elements. If e ∈ Q, then e ∨ x ∈ Q, which is a contradiction.220

If f ∈ P , then f ∨ a ∈ P , which is also a contradiction. Therefore there exist221

f /∈ P and e /∈ Q such that e ∧ f = 0.222

(6) ⇒ (1): Assume condition (6). Let L be a prime ideal of R. Let P1 and P2223

be two maximal ideals of R such that L ⊆ P1 and L ⊆ P2. Suppose P1 6= P2. By224

(6), there exist a, b ∈ R such that a /∈ P1 and b /∈ P2 such that a ∧ b = 0. Since225
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a /∈ P1 and b /∈ P2, we get that a /∈ L and b /∈ L. Therefore, we get 0 = a∧ b /∈ L,226

which is a contradiction. Hence, L should be contained in a unique maximal227

ideal. Therefore R is a dually normal ADL.228

Definition. A filter F of an ADL R is called a coaxial filter if for all a, b ∈229

R, (a)� = (b)� and a ∈ F imply that b ∈ F .230

Clearly each (a)�, a ∈ R is a coaxial filter of R. It is evident that any filter231

F of an ADL R is a coaxial filter if it satisfies (a)�� ⊆ F for all a ∈ F .232

Theorem 14. The following assertions are equivalent in an ADL R:233

(1) every filter is a coaxial filter;234

(2) every principal filter is a coaxial filter;235

(3) every prime filter is a coaxial filter;236

(4) for x, y ∈ R, (x)� = (y)� implies [x) = [y).237

Proof. (1) ⇒ (2): It is clear.238

(2) ⇒ (3): Assume that every principal filter is a coaxial filter. Let L be a239

prime filter of R. Suppose (x)� = (y)� and x ∈ L. Then clearly [x) ⊆ L. Since240

(x)� = (y)� and [x) is a coaxial filter, we get that y ∈ [x) ⊆ L. Therefore L is a241

coaxial filter.242

(3) ⇒ (4): Assume that every prime filter of R is a coaxial filter. Let x, y ∈ R243

such that (x)� = (y)�. Suppose [x) 6= [y). Without loss of generality assume that244

[x) * [y). Consider Σ = { F ∈ F(R) | x∨ y ∈ F and x /∈ F }. Clearly, Σ satisfies245

the hypothesis of the Zorn’s Lemma and hence Σ has a maximal element, say L.246

We now prove that L is a prime filter in R. Let a, b ∈ R be such that a /∈ L and247

b /∈ L. Hence L ⊂ L ∨ [a) and L ⊂ L ∨ [b). Therefore by the maximality of L,248

L ∨ [a) and L ∨ [b) are not in Σ. Hence x ∈ L ∨ [a) and x ∈ L ∨ [b). Therefore,249

we have250

x ∈ { L ∨ [a) } ∩ { L ∨ [b) }251

= L ∨ { [a) ∩ [b) }252

= L ∨ [a ∨ b).253

If a ∨ b ∈ L, then x ∈ L ∨ [a ∨ b) = L, which is a contradiction to that x /∈ L.254

Thus we get a ∨ b /∈ L. Hence L is a prime filter. Therefore by hypothesis (3),255

we can get that L is a coaxial filter of R. Since L ∈ Σ, we get that x ∨ y ∈ L256

and x /∈ L. Since L is prime, we get y ∈ L. Since y ∈ L and L is coaxial, we get257

x ∈ L, which is a contradiction to x /∈ L. Therefore [x) = [y).258

(4) ⇒ (1): Assume condition (4). Let F be a filter of R. Suppose x, y ∈ R be259

such that (x)� = (y)�. Then by (4), we get that [x) = [y). Suppose x ∈ F . Then260

we get y ∈ [y) = [x) ⊆ F . Therefore F is a coaxial filter of R.261
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In the following, normal prime filters are introduced262

Definition. A prime filter L of an ADL R is called a normal prime filter if to263

each a ∈ L, there exists a′ /∈ L such that (a)� ∨ (a′)� = R.264

Proposition 15. Every normal prime filter is a minimal prime filter.265

Proof. Let L be a normal prime filter of an ADL R. Suppose a ∈ L. Since266

L is normal, there exists a′ /∈ L such that (a)� ∨ (a′)� = R. Hence we get267

R = (a)� ∨ (a′)� ⊆ (a ∨ a′)�. Thus by Corollary 11(3), we get that a ∨ a′ is268

maximal. Therefore L is a minimal prime filter of R.269

In general, every minimal prime filter need not be a normal filter.270

From the example-12, consider a prime filter L = {1, 2, 3, 6}. Clearly, we have271

that for any a ∈ L there exists an element a′ /∈ L such that (a)� ∨ (a′)� = R.272

Hence a prime filter L is not normal.273

However, in the following, we establish a sufficient condition for every mini-274

mal prime filter to become a normal prime filter.275

Proposition 16. If R is a dually normal ADL, then every minimal prime filter276

of R is a normal prime filter.277

Proof. Assume that R is a dually normal ADL and L is a minimal prime filter278

of R. Let a ∈ L. Then there exists a′ /∈ L such that a ∨ a′ is maximal. Since R279

is a dually normal ADL, we get (a)� ∨ (a′)� = (a)+ ∨ (a′)+ = R. Therefore L is280

a normal prime filter in R.281

Proposition 17. Let L be a normal prime filter of an ADL R. Then for each282

a ∈  L, we have the following property:283

a /∈ L if and only if (a)� ⊆ L.284

Proof. Let L be a normal prime filter of R and a ∈ R. Suppose a /∈ L. Let285

f ∈ (a)�. Then R = (f)+ ∨ (a)+ ⊆ (f ∨ a)+. Hence f ∨ a is maximal. Since286

L is prime and a /∈ L, we must have f ∈ L. Therefore (a)� ⊆ L. Conversely,287

assume that (a)� ⊆ L. Suppose a ∈ L. Since L is normal prime, there exists288

a′ /∈ L such that (a)� ∨ (a′)� = R. Hence R = (a)� ∨ (a′)� ⊆ (a)+∨ (a′)+. Hence289

a′ ∈ (a)� ⊆ L, which is a contradiction. Therefore a /∈ L.290

Theorem 18. Every normal prime filter of an ADL is a coaxial filter.291

Proof. Let L be a normal prime filter of R. Suppose a, b ∈ R such that (a)� =292

(b)� and a ∈ L. Since L is normal, there exists a′ /∈ L such that (a)�∨(a′)� = R.293

Hence R = (a)� ∨ (a′)� = (b)� ∨ (a′)� ⊆ (b∨ a′)�. Hence by Corollary 11(3), we294

get b ∨ a′ is maximal and b ∨ a′ ∈ L. Since L is prime and a′ /∈ L, it yields that295

b ∈ L. Therefore L is a coaxial filter.296
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We provide a necessary and sufficient condition for the inverse image of a297

coaxial filter to become a coaxial filter again in the following result.298

Theorem 19. Let f be a homomorphism of ADLs from R onto R′. Then the299

following conditions are equivalent:300

(1) if S is a coaxial filter of R′, then f−1(S) is a coaxial filter in R;301

(2) for each a ∈ R′, f−1((a)�) is a coaxial filter in R.302

Proof. (1) ⇒ (2): Assume that f−1(S) is a coaxial filter in R for each coaxial303

filter S of R′. Since (a)� is a coaxial filter in R′ for each a ∈ R′, we get from (1)304

that f−1((a)�) is a coaxial filter in R.305

(2) ⇒ (1): Assume that f−1((a)�) is a coaxial filter in R for each a ∈ R′.306

Let S be a coaxial filter of R′. Then clearly f−1(S) is a filter in R. Let a, b ∈ R307

be such that (a)� = (b)� and a ∈ f−1(S). Then f(a) ∈ S. For any x ∈ R′, we308

get309

x ∈ (f(a))� ⇔ f(a) ∈ (x)�310

⇔ a ∈ f−1((x)�)311

⇔ b ∈ f−1((x)�) since f−1((x)�) is coaxial in R312

⇔ f(b) ∈ (x)�313

⇔ x ∈ (f(b))�.314

Hence (f(a))� = (f(b))�. Since f(a) ∈ S and S is a coaxial filter, we get f(b) ∈ S.315

Hence b ∈ f−1(S). Therefore f−1(S) is a coaxial filter in R.316

The properties of direct products of ADL coaxial filters are discussed. First,317

we require the following lemma, whose proof is straightforward.318

Lemma 20. Let R1 and R2 be two ADLs. For any (x, y), (z, d) ∈ R1 × R2, we319

have the following properties:320

(1) (x, y)+ = (x)+ × (y)+;321

(2) (x, y)+ ∨ (z, d)+ = (x ∨ z, y ∨ d)+;322

(3) (x, y)� = (x)� × (y)�.323

Theorem 21. Let R = R1×R2 be the product of ADLs (R1,∨,∧, 0) and (R2,∨,∧, 0).324

If F1 and F2 are coaxial filters of R1 and R2 respectively, then F1×F2 is a coaxial325

filter of R1 ×R2. Conversely, every coaxial filter of R1 ×R2 can be expressed as326

F = F1 × F2 where F1 and F2 are coaxial filters of R1 and R2, respectively.327

Proof. Let F1 and F2 be the coaxial filters of R1 and R2 respectively. Then328

clearly F1 × F2 is a filter of R1 × R2. Let x, z ∈ R1 and y, d ∈ R2 be such329
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that (x, y)� = (z, d)� and (x, y) ∈ F1 × F2. Then x ∈ F1 and y ∈ F2. Since330

(x, y)� = (z, d)�, we get (x)� × (y)� = (z)� × (d)� and hence (x)� = (z)� and331

(y)� = (d)�. Since F1 is a coaxial filter and x ∈ F1, we get that z ∈ F1. Similarly,332

we get d ∈ F2. Hence (z, d) ∈ F1 × F2. Therefore F1 × F2 is a coaxial filter in333

R1 ×R2.334

Conversely, let F be a coaxial filter of R1 × R2. Suppose m1 and m2 are335

maximal elements of R1 and R2 respectively. Consider F1 = {x ∈ R1 | (x,m2) ∈336

F} and F2 = {x ∈ R2 | (m1, x) ∈ F}. Clearly, F1 is a filter in R1. Let a, b ∈ R1337

be such that (a)� = (b)� and a ∈ F1. Then (a,m2) ∈ F . Since (a)� = (b)�, we338

get (a,m2)
� = (a)� × (m2)

� = (b)� × (m2)
� = (b,m2)

�. Since F is a coaxial339

filter in R1 × R2, we get (b,m2) ∈ F . Hence b ∈ F1. Therefore F1 is a coaxial340

filter in R1. Similarly, we can obtain that F2 is a coaxial filter in R2.341

We now prove that F = F1 × F2. Clearly F ⊆ F1 × F2. Conversely, let342

(x1, x2) ∈ F1 × F2. Then x1 ∈ F1 and x2 ∈ F2. Hence (x1,m2) ∈ F and343

(m1, x2) ∈ F . Hence (x1, 0) = (m1, 0)∧ (x1,m2) ∈ F and also (0, x2) = (0,m2)∧344

(m1, x2) ∈ F . Thus (x1, x2) = (x1, 0) ∨ (0, x2) ∈ F . Therefore F1 × F2 ⊆ F .345

We will now discuss the concept of weakly dually normal ADL.346

Definition. An ADL R is called a weakly dually normal if it satisfies the property347

(a)+ ∨ (b)+ = (a)� ∨ (b)�, for all a, b ∈ R.348

Every dually normal ADL is clearly a weakly dually normal ADL. In general,349

the reverse is not true. However, a set of equivalent conditions is derived for every350

weakly dually normal ADL to become a dually normal ADL in the following.351

Theorem 22. Let R be a weakly dually normal ADL. Then the following are352

equivalent:353

(1) R is a dually normal ADL;354

(2) for a, b ∈ R, (a)� ∨ (b)� = (a ∨ b)�;355

(3) for a, b ∈ R, a ∨ b is maximal implies (a)� ∨ (b)� = R.356

Proof. (1) ⇒ (2): Assume that R is a dually normal ADL. Let a, b ∈ R. Since357

R is dually normal, by Theorem 13, we get (a)�∨ (b)� = (a)+∨ (b)+ = (a∨b)+ =358

(a ∨ b)�.359

(2) ⇒ (3): It is clear.360

(3) ⇒ (1): Assume that condition (3) is satisfied. Let a, b ∈ R be such that361

a ∨ b is maximal. Since R is weakly dually normal, we get R = (a)� ∨ (b)� =362

(a)+ ∨ (b)+. By Theorem 13, it yields that R is dually normal.363

Corollary 23. A weakly dually normal ADL in which every prime filter is normal364

is a dually normal ADL.365
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Proof. Let R be a weakly dually normal ADL in which every prime filter is366

normal. Let a, b ∈ R be such that a ∨ b is maximal. Suppose (a)� ∨ (b)� 6= R.367

Then there exists a prime filter L such that (a)� ∨ (b)� ⊆ L. Then (a)� ⊆ L and368

(b)� ⊆ L. Since L is normal, by Proposition 17, we get a /∈ L and b /∈ L. Hence369

a∨ b is a maximal and a∨ b /∈ L which is a contradiction. Thus (a)� ∨ (b)� = R.370

By the main theorem, R is a dually normal ADL.371

The notion of strongly coaxial filters in ADLs is introduced in the following.372

Definition. For any filter F of an ADL R, define ξ(F ) as373

ξ(F ) = {a ∈ R | (a)� ∨ F = R}.374

The following lemma is an immediate consequence from the above definition.375

Lemma 24. For any two filters F, S of an ADL R, we have376

(1) ξ(F ) ⊆ F ;377

(2) F ⊆ S implies ξ(F ) ⊆ ξ(S);378

(3) ξ(F ∩ S) = ξ(F ) ∩ ξ(S).379

Proof. (1) Let a ∈ ξ(F ). Then (a)� ∨ F = R. Hence a = x ∧ y for some380

x ∈ (a)� ⊆ (a)+ and y ∈ F . Then a ∨ x is maximal and a ∨ y ∈ F . Thus381

a = a ∨ a = a ∨ (x ∧ y) = (a ∨ x) ∧ (a ∨ y) = a ∨ y ∈ F . Therefore ξ(F ) ⊆ F .382

(2) and (3) can be easily verified.383

In general, ξ(ξ(F )) and F need not be the same for any filter F of an ADL.384

It can be seen in the following example:385

386

From the example-12, consider a filter F = {1, 2, 6}. We have that ξ(F ) =387

{1, 2, 7} and hence ξ(ξ(F )) = {1, 2, 7}. Therefore ξ(ξ(F )) 6= F.388

Proposition 25. For any filter F of an ADL R with maximal elements, ξ(F ) is389

a filter of R.390

Proof. Clearly m ∈ ξ(F ), for any maximal element m of R. Let a, b ∈ ξ(F ).391

Then (a)� ∨F = R and (b)� ∨F = R. Hence (a∧ b)� ∨F = {(a)� ∩ (b)�}∨F =392

{(a)�∨F}∩{(b)�∨F} = R. Hence a∧b ∈ ξ(F ). Let a ∈ ξ(F ). Then (a)�∨F = R.393

Let y be any element of R. Since a ≤ a ∨ b, we get (a)� ⊆ (b ∨ a)�. Then394

R = (a)� ∨ F ⊆ (b ∨ a)� ∨ F . Thus b ∨ a ∈ ξ(F ). Therefore ξ(F ) is a filter of R.395

396

Definition. A filter F of an ADL R is called strongly coaxial if F = ξ(F ).397

Proposition 26. Every strongly coaxial filter is a coaxial filter.398
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Proof. Let F be a strongly coaxial filter of an ADL R. Then F = ξ(F ). Let399

a, b ∈ R be such that (a)� = (b)� and a ∈ F = ξ(F ). Then clearly (a)� ∨F = R.400

Hence (b)� ∨ F = R and so b ∈ ξ(F ) = F . Thus F is a coaxial filter of R.401

In general, the converse of the above proposition is not true. In the following402

theorem, however, we establish a set of equivalent conditions for every ADL filter403

to become strongly coaxial.404

Theorem 27. Consider the following assertions in an ADL R:405

(1) every prime filter is normal;406

(2) every filter is strongly coaxial;407

(3) every prime filter is strongly coaxial.408

Then (1) ⇒ (2) ⇒ (3). If R is a weakly dually normal ADL, then all the above409

conditions are equivalent.410

Proof. (1) ⇒ (2): Assume that every prime filter is normal. Let F be a filter411

of R. Clearly ξ(F ) ⊆ F . Let a ∈ F . Suppose (a)� ∨ F 6= R. Then there exists412

a prime filter L of R such that (a)� ∨ F ⊆ L. Hence (a)� ⊆ L and a ∈ F ⊆ L.413

Since L is normal and (a)� ⊆ L, by Proposition 17, we get that a /∈ L, which is414

a contradiction to that a ∈ L. Hence (a)� ∨ F = R. Thus a ∈ ξ(F ). Therefore415

F is strongly coaxial.416

(2) ⇒ (3): It is obvious.417

Suppose that R is a weakly dually normal ADL.418

(3) ⇒ (1): Assume that every prime filter is strongly coaxial. Let L be419

a prime filter of R. Then by our assumption, ξ(L) = L. Let a ∈ L. Then420

(a)� ∨ L = R. Hence x ∧ y = 0 for some x ∈ (a)� and y ∈ L. Since x ∈ (a)�421

and R is a weakly dually normal ADL, we get (a)� ∨ (x)� = (a)+ ∨ (x)+ = R.422

Suppose x ∈ L. Then 0 = x ∧ y ∈ L, which is a contradiction. Thus x /∈ L and423

hence L is a normal prime filter of R.424

Theorem 28. The following assertions are equivalent in an ADL R:425

(1) (a)� ∨ (a)�� = R for all a ∈ R;426

(2) every filter of the form F = F�� is strongly coaxial;427

(3) for each a ∈ R, (a)�� is strongly coaxial.428

Proof. (1) ⇒ (2): Assume condition (1). Let F be a filter of R such that429

F = F��. Clearly ξ(F ) ⊆ F . Conversely, let a ∈ F . Clearly (a)�� ⊆ F��.430

Hence R = (a)� ∨ (a)�� ⊆ (a)� ∨ F�� = (a)� ∨ F . Thus a ∈ ξ(F ). Therefore F431

is a strongly coaxial filter of R.432

(2) ⇒ (3): It is obvious.433
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(3) ⇒ (1): Assume condition (3). Then we get ξ((a)��) = (a)��. Since434

a ∈ (a)��, we get (a)� ∨ (a)�� = R.435

Definition. For any maximal filter P of an ADL R, define Ω(P ) = {a ∈436

R | (a)� * P}.437

For any maximal filter P of an ADL R, it can be easily observed that ξ(P ) =438

Ω(P ). Thus it can be easily seen that the set Ω(P ) is a filter of R such that439

Ω(P ) ⊆ P . Let us denote that MaxFR is the set of all maximal filter of an ADL440

R. For any filter F of an ADL R, let us consider that π(F ) = {P ∈ MaxFR | F ⊆441

P}.442

Theorem 29. Suppose π(F ) is finite for any filter F of an ADL R. Then443

ξ(F ) =
⋂

P∈π(F )Ω(P ).444

Proof. Let a ∈ ξ(F ) and F ⊆ P where P ∈ MaxFR. Then R = (a)� ∨ F ⊆445

(a)� ∨ P . Suppose (a)� ⊆ P , then P = R, which is a contradiction. Hence446

(a)� * P . Thus a ∈ Ω(P ) for all P ∈ π(F ). Therefore ξ(F ) ⊆
⋂

P∈π(F )Ω(P ).447

Conversely, let a ∈
⋂

P∈π(F )Ω(P ). Then a ∈ Ω(P ) for all P ∈ π(F ). Suppose448

(a)� ∨ F 6= R. Then there exists a maximal filter P0 such that (a)� ∨ F ⊆ P0.449

Hence (a)� ⊆ P0 and F ⊆ P . Since F ⊆ P0, by hypothesis, we get a ∈ Ω(P0).450

Hence (a)� * P0, which is a contradiction. Hence (a)� ∨F = R. Thus a ∈ ξ(F ).451

Therefore
⋂

P∈π(F )Ω(P ) ⊆ ξ(F ).452

From the above theorem, it can be easily observed that ξ(F ) ⊆ Ω(P ) for453

every P ∈ π(F ). In the following, we derive a set of equivalent conditions for the454

class of all strongly coaxial filters of an ADL to become a sublattice of the filter455

lattice F(R) of the ADL R.456

Theorem 30. Suppose π(F ) is finite for any filter F of an ADL R. Then the457

following assertions are equivalent:458

(1) for any P ∈ MaxFR, Ω(P ) is maximal;459

(2) for any F, S ∈ F(R), F ∨ S = R implies ξ(F ) ∨ ξ(S) = R;460

(3) for any F, S ∈ F(R), ξ(F ) ∨ ξ(S) = ξ(F ∨ S);461

(4) for any two distinct maximal filters P and Q, Ω(P ) ∨ Ω(Q) = R;462

(5) for any P ∈ MaxFR, P is the unique member of MaxFR such that Ω(P )463

⊆ P .464

Proof. (1) ⇒ (2) : Assume condition (1). Then clearly Ω(P ) = P for all P ∈465

MaxFR. Let F, S ∈ F(R) be such that F ∨ S = R. Suppose ξ(F ) ∨ ξ(S) 6= R.466
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Then there exists a maximal filter P such that ξ(F )∨ξ(S) ⊆ P . Hence ξ(F ) ⊆ P467

and ξ(S) ⊆ P . Now468

ξ(F ) ⊆ P ⇒
⋂

Q∈π(F )

Ω(Q) ⊆ P469

⇒ Ω(Pi) ⊆ P for some Pi ∈ π(F ) (since P is prime)470

⇒ Pi ⊆ P by condition (1)471

⇒ F ⊆ P since Pi ∈ π(F ).472

Similarly, we can get S ⊆ P . Hence R = F ∨ S ⊆ P , which is a contradiction.473

Therefore ξ(F ) ∨ ξ(S) = R.474

(2) ⇒ (3) : Assume condition (2). Let F, S ∈ F(R). Clearly ξ(F ) ∨ ξ(S) ⊆475

ξ(F ∨ S). Let a ∈ ξ(F ∨ S). Then ((a)� ∨ F ) ∨ ((a)� ∨ S) = (a)� ∨ F ∨ S = R.476

Hence by condition (2), we get ξ((a)� ∨S)∨ ξ((a)� ∨S) = R. Thus a ∈ ξ((a)� ∨477

F ) ∨ ξ((a)� ∨ S). Hence a = r ∧ e for some r ∈ ξ((a)� ∨ F ) and e ∈ ξ((a)� ∨ S).478

Now479

r ∈ ξ((a)� ∨ F ) ⇒ (r)� ∨ (a)� ∨ F = R480

⇒ R = ((r)� ∨ (a)�) ∨ F ⊆ (r ∨ a)� ∨ F481

⇒ (r ∨ a)� ∨ F = R482

⇒ r ∨ a ∈ ξ(F ).483

Similarly, we can get e ∨ a ∈ ξ(S). Hence484

a = a ∨ a485

= a ∨ (r ∧ e)486

= (a ∨ r) ∧ (a ∨ e) ∈ ξ(F ) ∨ ξ(S).487

Hence ξ(F ∨ S) ⊆ ξ(F ) ∨ ξ(S). Therefore ξ(F ) ∨ ξ(S) = ξ(F ∨ S).488

(3) ⇒ (4) : Assume condition (3). Let P and Q be two distinct maximal489

filters of R. Choose a ∈ P −Q and b ∈ Q− P . Since a /∈ Q, there exists a1 ∈ Q490

such that a∧a1 = 0. Since b /∈ P , there exists b1 ∈ P such that b∧ b1 = 0. Hence491

(a ∧ b1) ∧ (b ∧ a1) = (a ∧ a1) ∧ (b ∧ b1) = 0. Now492

R = ξ(R)493

= ξ([0))494

= ξ([(a ∧ b1) ∧ (b ∧ a1)))495

= ξ([a ∧ b1) ∨ [b ∧ a1))496

= ξ([a ∧ b1)) ∨ ξ([b ∧ a1)) By condition (4)497

⊆ Ω(P ) ∨ Ω(Q) since [a ∧ b1) ⊆ P, [b ∧ a1) ⊆ Q.498
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Therefore Ω(P ) ∨ Ω(Q) = R.499

(4) ⇒ (5) : Assume condition (4). Let P ∈ MaxFR. Suppose Q ∈ MaxFR500

such that Q 6= P and Ω(Q) ⊆ P . Since Ω(P ) ⊆ P , by hypothesis, we get501

R = Ω(P ) ∨ Ω(Q) = P , which is a contradiction. Therefore P is the unique502

maximal filter such that Ω(P ) is contained in P .503

(5) ⇒ (1) : Let P ∈ MaxFR. Suppose Ω(P ) is not maximal. Let P0 be a504

maximal filter of R such that Ω(P ) ⊆ P0. We have always Ω(P0) ⊆ P0, which is505

a contradiction to the hypothesis. Therefore Ω(P ) is maximal.506

References507

[1] G. Birkhoff, Lattice Theory, Amer. Math. Soc. Colloq. Publ. XXV (Providence,508

USA, 1967).509

[2] G. Gratzer, General Lattice Theory (Academic Press, New York, Sanfransisco,510

1978).511

https://doi.org/10.1007/978-3-0348-7633-9512

[3] N. Rafi and Ravi Kumar Bandaru, µ-filters of almost distributive lattices, Chamchuri513

J. Math. 10 (2018) 53–65.514

[4] R. Sirisetti and G. Jogarao, Normal filters in almost distributive lattices, J. Internat.515

Math. Virtual Institute 7 (2017) 37–51.516

[5] G.C. Rao, Almost Distributive Lattices, Doctoral Thesis (Dept. of Mathematics,517

Andhra University, Visakhapatnam, 1980).518

[6] G.C. Rao, N. Rafi and Ravi Kumar Bandaru, Topological characterization of Dually519

Normal Almost Distributive Lattices, Asian-European J. Math. 5(3) (2012) 1250043520

(9 pages).521

https://doi.org/10.1142/S179355711250043X522

[7] G.C. Rao and S. Ravi Kumar, Minimal prime ideals in an ADL, Int. J. Contemp.523

Sci. 4 (2009) 475–484.524

[8] M. Sambasiva Rao, Coaxial filters of distributive lattices, Archivum Mathematicum,525

to appear in 4(59) (2023)).526

https://doi.org/10.5817/AM2023-5-397527

[9] U.M. Swamy and G.C. Rao, Almost Distributive Lattices, J. Aust. Math. Soc. Ser.528

A, 31 (1981) 77–91.529

https://doi.org/10.1017/S1446788700018498530

This article is distributed under the terms of the Creative Commons Attribution 4.0 International
License https://creativecommons.org/licenses/by/4.0/

Powered by TCPDF (www.tcpdf.org)

https://doi.org/10.1007/978-3-0348-7633-9
https://doi.org/10.1142/S179355711250043X
https://doi.org/10.5817/AM2023-5-397
https://doi.org/10.1017/S1446788700018498
https://creativecommons.org/licenses/by/4.0/
http://www.tcpdf.org

