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Abstract12

The purpose of this note is to introduce primitive ideals of semigroups13

and study some topological aspects of the corresponding structure spaces.14

We show that every structure space of a semigroup is T0, quasi-compact,15

and every nonempty irreducible closed subset has a unique generic point.16

Moreover, such a structure space is Hausdorff if and only if every primitive17

ideal of the semirgroup is minimal. Finally, we define continuous maps18

between structure spaces of semigroups.19
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1. Introduction22

Since the introduction of primitive rings in [17], primitive ideals have shown their23

immense importance in understanding structural aspects of rings and modules24

[19, 27], Lie algebras [24], enveloping algebras [8, 21], PI-algebras [20], quantum25

groups [22], skew polynomial rings [16], and others. In [18], Jacobson has in-26

troduced a hull-kernel topology (also known as Jacobson topology) on the set27

of primitive ideals of a ring, and has obtained representations of biregular rings.28

This Jacobson topology also turns out to play a key role in representation of29

finite-dimensional Lie algebras (see [8]).30

Compare to the above algebraic structures, after magmas (also known as31

groupoids), semigroups are the most basic ones. A detailed study of algebraic32

theory of semigroups can be found in one of the earliest textbooks [6] and [7] (see33
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also [11, 13, 15]), whereas specific study of prime, semiprime, and maximal ideals34

of semigroups are done in [2, 4, 26, 28]. Furthermore, various notions of radicals35

of semigroups have been studied in [1, 10, 29]. Readers may consider [5] for a36

survey on ideal theory of semigroups.37

The next question is of imposing topologies on various types of ideals of38

semigroups. To this end, hull-kernel topology on maximal ideals of (commutative)39

semigroups has been considered in [3], whereas the same on minimal prime ideals40

has been done in [23]. Using the notion of x-ideals introduced in [3], although in41

[14] a study of general notion of structure spaces for semigroups has been done,42

but having the assumption of commutativity restricts it to only certain types of43

ideals of semigroups, and hence did not have a scope for primitive ideals.44

In [9], the spectrum of prime elements has been studied in the context of45

a multiplicative lattice which itself consists of a semigroup structure. One can46

further extend the theory developed there by defining ideals in a multiplicative47

lattice; and by considering modules over such lattices, it is not hard to see that48

the notion of primitive ideals can be studied over multiplicative lattices. All49

these and some other aspects of primitive ideals of quantales (a special type of50

multiplicative lattices) will be considered in the forthcoming paper [12].51

The aim of this paper is to introduce primitive ideals of semigroups and endow52

Jacobson topology on primitive ideals to study some topological aspects of them.53

In order to have the notion of primitive ideals of semigroups, we furthermore54

need a notion of a module over a semigroup. We hope this notion of primitive55

ideals introduced here will in future shade some light on the structural aspects56

of semigroups.57

2. Primitive ideals58

A semigroup is a tuple (S, ·) such that the binary operation · on the set S is
associative. For all a, b ∈ S, we shall write ab to mean a · b. Throughout this
work, all semigroups are assumed to be noncommutative. If a semigroup S has
an identity, we denote it by 1 satisfying the property: s1 = s = 1s for all s ∈ S.
If A and B are subsets of S, then by the set product AB of A and B we shall
mean AB = {ab | a ∈ A, b ∈ B}. If A = {a} we write AB as aB, and similarly
for B = {b}. Thus

AB = ∪{Ab | b ∈ B} = ∪{aB | a ∈ A}.

A left (right) ideal of a semigroup S is a nonempty subset a of S such that59

Sa ⊆ a (aS ⊆ a). A two-sided ideal or simply an ideal is a subset which is both60

a left and a right ideal of S. In this work the word “ideal” without modifiers61

will always mean two-sided ideal and we shall denote the set of all ideals of a62
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semigroup S by Ideal(S). If X is a nonempty subset of a semigroup S, then the63

ideal 〈X〉 generated by X is the intersection of all ideals containing X. Therefore,64

〈X〉 = X ∪XS ∪ SX ∪XSX. (1)

We say an ideal a = 〈X〉 is of finite character if X is equal to the set-theoretic65

union of all the ideals generated by finite subsets ofX (cf. definition in [3, Chapter66

1, p. 4]). Note that in our context, all ideals are of finite character. This follows67

from the fact that the property “being of finite character”, in our context, should68

refers to the closure operator C(−) (see §3), and then equation (1) in [3, Chapter 1,69

p. 4] becomes: for any subset X ⊆ S, we have 〈X〉 = ∪{〈F 〉 | F ⊆ X,F finite }.70

But this is always true, namely the x-system of “classical” ideals is of finite71

character, thanks to the fact that for any subset X ⊆ S, one has an expression72

(1).73

To define primitive ideals of a semigroup S, we require the notion of a module74

over S, which we introduce now.75

A (left) S-module is an abelian group (M,+, 0) endowed with a map S×M →76

M (denoted by (s,m) 7→ sm) satisfying the identities:77

1. s(m+m′) = sm+ sm′;78

2. (ss′)m = s(s′m);79

3. s0 = 0,80

for all s, s′ ∈ S and for all m,m′ ∈ M . Henceforth the term “S-module” without81

modifier will always mean left S-module. If M , M ′ are S-modules, then an S-82

module homomorphism from M into M ′ is a group homomorphism f : M → M ′
83

such that f(sm) = sf(m) for all s ∈ S and for all m ∈ M. A subset N of M is84

called an S-submodule of the module M if85

1. (N,+) is a subgroup of (M,+);86

2. for all s ∈ S and for all n ∈ N , sn ∈ N.87

If a is an ideal of S, then the additive subgroup aM of M generated by the88

elements of the form {am | a ∈ a,m ∈ M} is an S-submodule. An S-module M89

is called simple (or irreducible) if90

1. SM = {
∑

simi | si ∈ S,mi ∈ M} 6= 0.91

2. There is no proper S-submodule of M other than 0.92

A (left) annihilator of an S-moduleM is AnnS(M) = {s ∈ S | sm = 0 for all m ∈93

M}. When M = {m}, we write AnnS({m}) as AnnS(m).94
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Lemma 1. An annihilator AnnS(M) is an ideal of S.95

Proof. For all s ∈ S and for all x ∈ AnnS(M) we have (sx)m = s(xm) = s0 = 0.96

Similarly, we have (xs)m = x(sm) = 0 because x ∈ AnnS(M) and sm ∈ M .97

Let S be a semigroup. A nonempty proper ideal p of S is said to be primitive98

if p = AnnS(M) for some simple S-module M . We denote the set of primitive99

ideals of a semigroup S by Prim(S). Let us provide some examples of primitive100

ideals of semigroups.101

Example 2. Consider the semigroup S of 2× 2 upper triangular matrices with102

real entries under matrix multiplication. An ideal103

p :=

{[

0 a
0 0

]

| a ∈ R

}

is a primitive ideal of S. The annihilator of the submodule consisting of scalar104

multiples of the identity matrix is p.105

Example 3. Consider the semigroup S = N0 ×N0 (non-negative integer pairs)106

under componentwise addition. A primitive ideal of S is p := {(0, b) | b ∈ N0}.107

The annihilator of the submodule generated by the action of S on the set {(a, 0) |108

a ∈ N0} is AnnS({(a, 0) | a ∈ N0}) = p.109

Example 4. Consider the semigroup S = (N,+), where N is the set of natural110

numbers. Let M = (Z,+, 0) be the additive group of integers. Define the action111

of S on M as n · m = nm for all n ∈ N and m ∈ Z. The trivial ideal 0 is a112

primitive ideal of S.113

Example 5. Let S be the semigroup of n×n non-negative integer matrices under114

matrix multiplication. For M = (Rn,+, 0), where 0 is the zero vector, define the115

action of S on M as A · v = Av for all A ∈ S and v ∈ R
n. The annihilator of M116

is the set of matrices with a row of zeros, denoted as117

AnnS(M) = {A ∈ S | ∃v 6= 0, Av = 0}.

A primitive ideal of S is p := {A ∈ S | some row of A is 0}.118

Example 6. Consider the free semigroup S generated by two elements a and b119

with the operation being string concatenation. Let M = (Z,+, 0) be the additive120

group of integers. Define the action of S on M by the concatenation of strings121

followed by addition, i.e., s ·m = sm, for all s ∈ S and m ∈ Z. A primitive ideal122

of S is p := {s ∈ S | b does not appear in s}.123
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A nonempty proper ideal q of a semigroup S is said to be prime if for any124

two ideals a, b of S and ab ⊆ q implies a ⊆ q or b ⊆ q, where the product ab of125

ideals a and b is defined to be the set of all finite sums
∑

iαjα (where iα ∈ a,126

jα ∈ b).127

The proof of the following result is easy to verify.128

Lemma 7. If a and b are any two ideals of a semigroup, then ab ⊆ a ∩ b.129

The following proposition gives an alternative formulation of prime ideals of130

semigroups. For a proof, see [26, Lemma 2.2].131

Proposition 8. Suppose S is a semigroup. Then the following conditions are132

equivalent:133

1. q is a prime ideal of S.134

2. aSb ⊆ q implies a ∈ q or b ∈ q for all a, b ∈ S.135

Primitive ideals and prime ideals of a semigroup are related as follows.136

Proposition 9. Every primitive ideal of a semigroup is a prime ideal.137

Proof. Suppose p is a primitive ideal and p = AnnS(M) for some simple S-
module M . Let a, b /∈ AnnS(M). Then am 6= 0 and bm′ 6= 0 for some m,m′ ∈ M.
Since M is simple, there exists an s ∈ S such that s(bm′) = m. Then

(asb)m′ = a(s(bm′)) = am 6= 0,

and hence asb /∈ AnnS(M). Therefore, AnnS(M) is a prime ideal by Lemma 8.138

139

In the next section we talk about Jacobson topology on the set of primitive140

ideals of a semigroup and discuss about some of the topological properties of the141

corresponding structure spaces.142

3. Jacobson topology143

We shall introduce Jacobson topology in Prim(S) by defining a closure operator144

for the subsets of Prim(S). Once we have a closure operator, closed sets are145

defined as sets which are invariant under this closure operator1. Suppose X is a146

subset of Ideal(S). Set DX =
⋂

q∈X q. We define the closure of the set X as147

C(X) = {p ∈ Prim(S) | p ⊇ DX} . (2)

1The origin of Kuratowski’s closure operator on the set of primitive ideals of a ring can be
traced back to [18].
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If X = {x}, we will write C({x}) as C(x). We wish to verify that the closure148

operation defined in (2) satisfies Kuratowski’s closure conditions and that is done149

in the following150

Proposition 10. The sets {C(X)}X⊆Ideal(S) satisfy the following conditions:151

1. C(∅) = ∅,152

2. C(X) ⊇ X,153

3. C(C(X)) = C(X),154

4. C(X ∪ Y ) = C(X) ∪ C(Y ).155

Proof. The proofs of (1)-(3) are straightforward, whereas for (4), it is easy to see
that C(X∪Y ) ⊇ C(X)∪C(Y ). To obtain the the other inclusion, let p ∈ C(X∪Y ).
Then

p ⊇ DX∪Y = DX ∩ DY .

Since DX and DY are ideals of S, by Lemma 7, it follows that

DXDY ⊆ DX ∩ DY ⊆ p.

Since by Proposition 9, p is prime, either DX ⊆ p or DY ⊆ p This means either156

p ∈ C(X) or p ∈ C(Y ). Thus C(X ∪ Y ) ⊆ C(X) ∪ C(Y ).157

The set Prim(S) of primitive ideals of a semigroup S topologized (the Jacob-158

son topology) by the closure operator defined in (2) is called the structure space of159

the semigroup S. It is evident from (2) that if p 6= p′ for any two p, p′ ∈ Prim(S),160

then C(p) 6= C(p′). Thus161

Proposition 11. Every structure space Prim(S) is a T0-space.162

Theorem 12. If S is a semigroup with identity then the structure space Prim(S)163

is quasi-compact.164

Proof. Suppose that {Kλ}λ∈Λ is a family of closed sets of the structure space165

Prim(S) such that
⋂

λ∈ΛKλ = ∅. This implies that the ideal
∨

λ∈ΛDKλ
generated166

by {DKλ
}
λ∈Λ must be equal to S. Indeed:

∨

λ∈ΛDKλ
6= S implies there exists a167

maximal ideal m in S such that DKλ
⊆ m for all λ ∈ Λ, whence m ∈

⋂

λ∈ΛKλ, a168

contradiction. Therefore, in particular, 1 = x1 · · ·xn, where xi ∈ DKλi
(1 6 i 6169

n). Hence,
∨

n

i=1DKλi
= S. This subsequently implies

⋂

n

i=1Kλi
= ∅. By finite170

intersection property, we then have the desired quasi-compactness.171

Recall that a nonempty closed subsetK of a topological spaceX is irreducible172

if K 6= K1 ∪ K2 for any two proper closed subsets K1,K2 of K. A maximal173

irreducible subset of a topological space X is called an irreducible component of174

X. A point x in a closed subset K is called a generic point of K if K = C(x).175
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Lemma 13. The irreducible closed subsets of a structure space Prim(S) are of176

the form: {C(p)}p∈Prim(S).177

Proof. Since {p} is irreducible, so is C(p). Suppose C({a}) is an irreducible closed
subset of Prim(S) and a /∈ Prim(S). Here, by C({a}), we mean C(X) with DX =
{a}. This implies there exist ideals b and c of S such that b * a and c * a, but
bc ⊆ a. Then

C(〈a, b〉) ∪ C(〈a, c〉) = C(〈a, bc〉) = C(a).

But C(〈a, b〉) 6= C(a) and C(〈a, c〉) 6= C(a), and hence C(a) is not irreducible.178

Proposition 14. Every irreducible closed subset of Prim(S) has a unique generic179

point.180

Proof. The existence of generic point follows from Lemma 13, and the uniqueness181

of such a point follows from Proposition 11.182

In the following proposition, we will find examples of irreducible components183

of a structure space.184

Proposition 15. If p is a minimal primitive ideal of S, then C(p) is an irreducible185

component of a structure space Prim(S). The converse also holds.186

Proof. If C(p) is not a maximal irreducible subset of Prim(S), then there exists a187

maximal irreducible subset C(p′) with p′ ∈ Prim(S) such that C(p) ( C(p′). This188

implies that p ∈ C(p′) and hence p′ ( p, contradicting the minimality property189

of p. To show the converse, let K be an irreducible component. By Lemma 13,190

K = C(p) for some primitive ideal p. If p is not minimal, then there is a primitive191

ideal q properly contained in p. Then, K ( C(q), contradicting the maximality192

of K.193

While the next corollary provides a characterization of Hausdorff structure194

spaces of semigroups, the author, however, hasn’t encountered any examples of195

semigroups where Prim(S) is not Hausdorff.196

Corollary 16. A structure space Prim(S) is Hausdorff if and only if every prim-197

itive ideal of S is minimal.198

Recall that a semigroup is called Noetherian if it satisfies the ascending chain199

condition on its ideals, whereas a topological space X is called Noetherian if the200

descending chain condition holds for closed subsets of X. A relation between these201

two notions is shown in the following202

Proposition 17. If a semigroup S is Noetherian, then Prim(S) is a Noetherian203

space.204
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Proof. It suffices to show that a collection of closed sets in Prim(S) satisfies the205

descending chain condition. Let C(a1) ⊇ C(a2) ⊇ · · · be a descending chain of206

closed sets in Prim(S). Once again, by C({a}), we mean C(X) with DX = {a}.207

Then, a1 ⊆ a2 ⊆ · · · is an ascending chain of ideals in S. Since S is Noetherian,208

the chain stabilizes at some n ∈ N. Hence, C(an) = C(an+k) for any k. Thus209

Prim(S) is Noetherian.210

Corollary 18. The set of minimal primitive ideals in a Noetherian semigroup is211

finite.212

Proof. By Proposition 17, Prim(S) is Noetherian, thus Prim(S) has a finitely213

many irreducible components. By Proposition 15, every irreducible closed subset214

of Prim(S) is of form C(p), where p is a minimal primitive ideal. Thus C(p) is215

irreducible components if and only if p is minimal primitive. Hence, S has only216

finitely many minimal primitive ideals.217

Proposition 19. Suppose φ : S → T is a semigroup homomorphism and define218

the map φ∗ : Prim(T ) → Prim(S) by φ∗(p) = φ−1(p), where p ∈ Prim(T ). Then219

φ∗ is a continuous map.220

Proof. To show φ∗ is continuous, we first show that f−1(p) ∈ Prim(S), whenever221

p ∈ Prim(T ). Note that φ−1(p) is an ideal of S and a union of kerφ-classes (see [11,222

Proposition 3.4]. Suppose p = AnnT (M) for some simple T -module. Then φ−1(p)223

is the annihilator of the simple T -module M obtained by defining sm := φ(s)m.224

Therefore f−1(p) ∈ Prim(S). Now consider a closed subset C(a) of Prim(S),225

where by C(a), we mean C(X) with DX = {a}. Then for any q ∈ Prim(T ), we226

have:227

q ∈ φ−1

∗ (C(a)) ⇔ φ−1(q) ∈ C(a) ⇔ a ⊆ φ−1(q) ⇔ q ∈ C(〈φ(a)〉),

and this proves the desired continuity of φ∗.228
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