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Abstract

The concept of a generalized relational hypersubstitution for algebraic
systems of type (τ, τ ′) is an extension of the concept of a generalized hy-
persubstitutions for universal algebra of type τ . The set of all generalized
relational hypersubstitutions for algebraic systems of type (τ, τ ′) together
with a binary operation defined on the set and its identity forms a monoid.
The properties of this structure are expressed by terms and relational terms.
In this paper, we study the semigroup properties of the monoid of type
((n), (m)) for arbitrary natural numbers n,m ≥ 2. In particular, we charac-
terize the idempotent as well as regular elements in this submonoid.
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1. Introduction

To study algebraic systems, the first main approach is to produce new algebraic
systems of the same type from given ones. The second main approach is to study
the semigroup properties of the new algebraic system. Let S be a semigroup, an
element e ∈ S is called idempotent if e2 = ee = e and the set of all idempotent
elements of a semigroup S is denoted by E(S). Let a be an element of a semigroup
S, then a is called regular if a = axa for some x ∈ S. A semigroup S is said
to be regular semigroup if every element of S is regular and a regular semigroup
with identity is called a regular monoid. In universal algebra, identities are used
to classify algebras into collections called varieties and hyperidentities are used
to classify varieties into collections called hypervarieties. The tool which is used
to study hyperidentities and hypervarieties is the concept of a hypersubstitution
introduced by Taylor [9]. The notation of a hypersubstitution was originated
by Denecke, Lau, Pöschel and Schweigert in 1991 [1]. The authors used this
concept for the characterization of solid varieties of type τ . A solid variety is a
variety which is closed under the following operation: Taking a universal algebra
(A, (fA

i )i∈I) of type τ = (ni)i∈I with the universe A and a family (fA
i )i∈I of ni-

ary operations fA
i on A for i ∈ I of a variety, then we replace the operation fA

i by
any ni-ary term operation σ(fi)

A, for i ∈ I, and obtain a new universal algebra
(A, (σ(fi)

A)i∈I), which also belongs to the variety. Hence, a hypersubstitution of
a given type τ = (ni)i∈I is a mapping which maps every ni-ary operation symbol
fi to an ni-ary term of the same type, for i ∈ I. Moreover, the set Hyp(τ) of
all hypersubstitutions of type τ together with an associative binary operation ◦h
forms a monoid, see more details in [1, 10]. In 2000, Leeratanavalee and Denecke
generalized the concept of a hypersubstitution to the concept of a generalized
hypersubstitution [3]. Further, a binary operation ◦G on the set HypG(τ) of all
generalized hypersubstitutions of type τ was introduced such that (HypG(τ), ◦G)
is a monoid.

On the other hand, we can consider algebraic systems in the sense of Mal’cev
[4]. An algebraic system of type (τ, τ

′

) is a triple (A, (fA
i )i∈I , (γ

A
j )j∈J) consisting

of a nonempty set A, a sequence (fA
i )i∈I of ni-ary operations defined on A and

a sequence (γAj )j∈J of mj-ary relations on A, where τ = (ni)i∈I is a sequence of

the arity of each operation fA
i and τ

′

= (mj)j∈J is a sequence of the arity of each
relation γAj . The pair (τ, τ

′

) is called the type of an algebraic system, see more
details in [5, 7].

In 2008 [2], Denecke and Phusanga introduced the concept of a hypersub-
stitution for algebraic systems which is a mapping that assigns any operation
symbol to a term and assigns any relation symbol to a formula which preserve
the arity. The set of all hypersubstitutions for algebraic systems of type (τ, τ

′

) is
denoted by Hyp(τ, τ

′

). They defined an associative operation ◦r on this set and
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proved that (Hyp(τ, τ
′

), ◦r, σid) forms a monoid where σid is an identity hyper-
substitution. In 2016 [6] Phusanga et al. extended this concept to generalized
hypersubstitutions for algebraic systems of type (τ, τ, ). Later, D. Phusanga and
J. Koppitz introduced the concept of a relational hypersubstitution for algebraic
systems of type (τ, τ ′) and proved that the set of all relational hypersubstitutions
for algebraic systems of type (τ, τ ′) together with an associative binary opera-
tion and the identity element forms a monoid [8]. There are several published
papers on algebraic properties of this monoid. In the presen paper, we determine
the set of all idempotent elements and regular elements of generalized relational
hypersubstitutions for algebraic systems of type (τ, τ ′) = ((n), (m)).

Next, we recall the concept of an n-ary term of type τ . Let X := {x1, . . .}
be a countably infinite set of symbols called variables. For each n ≥ 1, let
Xn := {x1, . . . , xn} be an n-element set which is called an n-element alphabet.
Let {fi : i ∈ I} be the set of ni-ary operation symbols indexed by the indexed set
I, where ni ≥ 1 is a natural number. Let τ be a function which assigns to every
fi the number ni as its arity. The function τ = (ni)i∈I is called a type. An n-ary
term of type τ is defined inductively as follows.

(i) Every variable xk ∈ Xn is an n-ary term of type τ .

(ii) If t1, . . . , tni
are n-ary terms of type τ and fi is an ni-ary operation symbol,

then fi(t1, . . . , tni
) is an n-ary term of type τ .

We denote the set of all n-ary terms of type τ which contains x1, . . . , xn and is
closed under finite application of (ii), by Wτ (Xn) and Wτ (X) :=

⋃
n∈N+ Wτ (Xn)

be the set of all terms of type τ .

2. The monoid of generalized relational hypersubstitutions for

algebraic systems

Any generalized relational hypersubstitution for algebraic systems is a mapping
that assigns any operation symbol to a term and assigns any relation symbol
to a relational term which does not necessarily preserves the arity. Let (τ, τ ′)
be a type. An n-ary relational term of type (τ, τ ′) and a generalized relational
hypersubstitution for algebraic systems are defined as follows.

Definition [5]. Let I, J be indexed sets. If i ∈ I, j ∈ J and t1, t2, . . . , tmj

are n-ary terms of type τ = (ni)i∈I and γj is an mj-ary relation symbol, then
γj(t1, t2, . . . , tmj

) is an n-ary relational term of type (τ, τ
′

) = ((ni)i∈I , (mj)j∈J).

We denote the set of all n-ary relational terms of type (τ, τ
′

) by F ∗

τ ′(Wτ (Xn))
and F ∗

τ ′(Wτ (X)) :=
⋃

n∈N F ∗

τ ′(Wτ (Xn)) be the set of all relational terms of type

(τ, τ
′

).
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A generalized relational hypersubstitution for algebraic systems of type (τ, τ
′

)
is a mapping

σ : {fi| i ∈ I} ∪ {γj | j ∈ J} → Wτ (X) ∪ F ∗

τ ′(Wτ (X)).

The set of all generalized relational hypersubstitutions for algebraic systems of
type (τ, τ

′

) is denoted by RelhypG(τ, τ
′

). To define a binary operation on this
set, we define inductively the concept of a superposition of terms Sn : Wτ (X) ×
(Wτ (X))n → Wτ (X) by the following steps. For any t, t1, . . . , tni

, s1, . . . , sn ∈
Wτ (X),

(i) if t = xj for 1 ≤ j ≤ n, then Sn(t, s1, . . . , sn) := sj ,

(ii) if t = xj for n < j, then Sn(t, s1, . . . , sn) := xj,

(iii) if t = fi(t1, . . . , tni
), then Sn(t, s1, . . . , sn) := fi(S

n(t1, s1, . . . , sn), . . . ,
Sn(tni

, s1, . . . , sn)).

For any F = γj(s1, . . . , smj
) ∈ F ∗

τ ′(Wτ (X)), We define the superposition of
relational terms Rn : (Wτ (X)∪F ∗

τ ′(Wτ (X)))×(Wτ (X))n → Wτ (X)∪F ∗

τ ′ (Wτ (X))
by

(i) Rn(t, t1, . . . , tn) := Sn(t, t1, . . . , tn),

(ii) Rn(F, t1, . . . , tn) := γj(S
n(s1, t1, . . . , tn), . . . , S

n(smj
, t1, . . . , tn)).

Every generalized relational hypersubstitution for algebraic systems σ can
be extended to a mapping σ̂ : Wτ (X) ∪ F ∗

τ ′(Wτ (X)) → Wτ (X) ∪ F ∗

τ ′(Wτ (X)) as
follows:

(i) σ̂[xi] := xi for i ∈ N,

(ii) σ̂[fi(t1 . . . , tni
)] := Sni(σ(fi), σ̂[t1], . . . , σ̂[tni

]), where i ∈ I and t1, . . . , tni
∈

Wτ (X), i.e., any occurrence of the variable xk in σ(fi) is replaced by the
term σ̂[tk], 1 ≤ k ≤ ni,

(iii) σ̂[γj(s1 . . . , smj
)] := Rmj (σ(γj), σ̂[s1], . . . , σ̂[smj

]), where j ∈ J , s1, . . . , smj
∈

Wτ (X), i.e., any occurrence of the variable xk in σ(γj) is replaced by the
term σ̂[sk], 1 ≤ k ≤ mj .

We define a binary operation ◦g on RelhypG(τ, τ
′

) by σ ◦g α := σ̂ ◦ α where
◦ is the usual composition of mappings and σ, α ∈ RelhypG(τ, τ

′

). Let σid be
the hypersubstitution which maps each ni-ary operation symbol fi to the term
fi(x1, . . . , xni

) and maps each mj-ary relation symbol γj to the relational term
γj(x1, . . . , xmj

).

Throughout this paper, we focus the algebraic systems of type ((n), (m)).
Let f be an n-ary operation symbol and γ be an m-ary relation symbol. We
denote the generalized relational hypersubstitution for algebraic systems of type
((n), (m)) which maps f to a term t ∈ W(n)(X) and maps γ to a relational term
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F ∈ F ∗

(m)(W(n)(X)) by σt,F .

For t ∈ W(m)(X) and F ∈ F ∗

(m)(W(n)(X)), we introduce the following nota-
tion:

var(t):= the set of all variables occurring in the term t.
var(F ):= the set of all variables occurring in the relational term F .

In 2015, Wongpinit and Leeratanavalee [11] introduced the concept of the
i−most of terms as follows.

Definition [11]. Let τ = (n) be a type with an n-ary operation symbol f ,
t ∈ W(n)(X) and 1 ≤ i ≤ n. An i−most(t) is defined inductively as follows:

(i) if t is a variable, then i−most(t) = t,

(ii) if t = f(t1, . . . , tn) where t1, . . . , tn ∈ W(n)(X), then i − most(t) := i −
most(ti).

Example 1. Let τ = (3) with ternary operation symbol f . Let t = f(f(x5, x1,
x2), x3, f(x8, x1, x9)). Then 1 − most(t) = 1 − most(f(x5, x1, x2)) = x5, 2 −
most(t) = 2−most(x3) = x3 and 3−most(t) = 3−most(f(x8, x1, x9)) = x9.

Lemma 2 [11]. Let s, t ∈ W(n)(X). If j−most(t) = xk ∈ Xn and k−most(s) =
xi, then j −most(σ̂t[s]) = xi.

Example 3. Let τ = (3) be a type. Let s = f(x2, x7, f(x4, x3, x1)) ∈ W(3)(X)
and a hypersubstitution σt with t = f(x3, f(x5, x3, x2), x8) ∈ W(3)(X). Then
we have 2 − most(t) = 2 − most(f(x5, x3, x2)) = x3 and 3 − most(s) = 3 −
most(f(x4, x3, x1)) = x1. Consider

σ̂t[s] = σ̂t[f(x2, x7, f(x4, x3, x1))]

= S3(σt(f), x2, x7, S
3(σt(f), x4, x3, x1))

= S3(t, x2, x7, f(x1, f(x5, x1, x3), x8))

= f(f(x1, f(x5, x1, x3), x8), f(x5, f(x1, f(x5, x1, x3), x8), x7), x8)

= f(t1, t2, t3)

where t1 = f(x1, f(x5, x1, x3), x8), t2 = f(x5, f(x1, f(x5, x1, x3), x8), x7) and t3 =
x8. Then 2 − most(σ̂t[s]) = 2 − most(f(x5, f(x1, f(x5, x1, x3), x8), x7)) = 2 −
most(f(x1, f(x5, x1, x3), x8)) = 2 −most(f(x5, x1, x3)) = x1. So 3 −most(s) =
x1 = 2 − most(σ̂t[s]). Hence, we can see that if 2 − most(t) = x3, then 3 −
most(s) = 2−most(σ̂t[s]).

The above lemma can be applied to any generalized relational hypersubsti-
tution for algebraic systems of type ((n), (m)), such as the following: Let s, t ∈
W(n)(X) and F ∈ F ∗

(m)(W(n)(X)). If i −most(t) = xj , then i−most(σ̂t,F [s]) =

j −most(s).
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3. All idempotent elements in RelhypG((n), (m))

In this section, we especially focus on idempotent elements of RelhypG((n), (m)),
for natural numbers n,m ≥ 2. For any σt,F ∈ RelhypG((n), (m)), where t ∈
W(n)(X) and F ∈ F ∗

(m)(W(n)(X)), σt,F is called idempotent if and only if σt,F ◦g
σt,F = σt,F . Then if σt,F is idempotent, we have

(σt,F ◦g σt,F )(f) = σ̂t,F [t] = t and

(σt,F ◦g σt,F )(γ) = σ̂t,F [F ] = F .

Theorem 4. Let t = xi ∈ Xn and F = γ(s1, . . . , sm) ∈ F ∗

(m)(W(n)(X)). Then

σt,F is idempotent if and only if one of the following conditions are satisfied:

(i) var(F )∩Xm = {xb1 , . . . , xbj} such that i−most(sbl) = xbl for all l = 1, . . . , j,

(ii) var(F ) ∩Xm = ∅.

Proof. Let σt,F is idempotent. Then t = σ̂t,F [t] and F = σ̂t,F [F ]=Rm(F, σ̂t,F [s1],
. . . , σ̂t,F [sm]). Assume that var(F ) ∩Xm 6= ∅, let var(F ) ∩Xm = {xb1 , . . . , xbj}
we will show that i−most(sbl) = xbl for all l = 1, . . . , j. Consider

Rm(F, σ̂t,F [s1], . . . , σ̂t,F [sm]) = γ(Sn(s1, σ̂xi,F [s1], . . . , σ̂xi,F [sm]), . . . ,

Sn(sm, σ̂xi,F [s1], . . . , σ̂xi,F [sm]))

= γ(Sn(s1, i−most(s1), . . . , i−most(sm)), . . . ,

Sn(sm, i−most(s1), . . . , i−most(sm))).

Since var(F ) ∩ Xm 6= ∅ and F = σ̂t,F [F ], we know that xbl ∈ var(F ) for all
l = 1, . . . , j is replaced by σ̂t,F [sbl ]. So i−most(sbl) = σ̂t,F [sbl ] = xbl .

Conversely, if i−most(sbl) = xbl for all l = 1, . . . , j, then

(σt,F ◦g σt,F )(γ) = σ̂t,F [σt,F [F ]]

= γ(Sn(s1, i−most(s1), . . . , i−most(sm)), . . . ,

Sn(sm, i−most(s1), . . . , i−most(sm))).

We substitue xbl in the relational term F by i−most(sbl) = xbl for all l = 1, . . . , j.
So F = Rm(F, σ̂t,F [s1], . . . , σ̂t,F [sm]). If var(F ) ∩ Xn = ∅, then it is easily seen
that (σt,F ◦g σt,F )(γ) = F = σt,F (γ). By straightforward calculations, we obtain
(σt,F ◦g σt,F )(f) = t = σt,F (f). Therefore, σt,F is idempotent.

Theorem 5. Let t ∈ W(n)(X\Xn) and F = γ(s1, . . . , sm) ∈ F ∗

(m)(W(n)(X)).
Then σt,F is idempotent if and only if one of the following conditions are satisfied:

(i) var(F ) ∩Xm = {xb1 , . . . , xbj} such that sbl = xbl for all l = 1, . . . , j,

(ii) var(F ) ∩Xm = ∅.
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Proof. Let σt,F is idempotent. Then t = σ̂t,F [t] and F =!σ̂t,F [F ]=Rm(F, σ̂t,F [s1],
. . . , σ̂t,F [sm]). Assume that var(F ) ∩Xm 6= ∅, let var(F ) ∩Xm = {xb1 , . . . , xbj}
and sbl 6= xbl , say sbl = xbk . Consider

Rm(F, σ̂t,F [s1], . . . , σ̂t,F [sm]) = Rm(F, σ̂t,F [s1], . . . , σ̂t,F [sbl ], . . . , σ̂t,F [sm])

= Rm(F, σ̂t,F [s1], . . . , xbk , . . . , σ̂t,F [sm]).

Since var(F ) ∩ Xm 6= ∅ and F = σ̂t,f [F ], we know that xbl ∈ var(F ) for all
l = 1, . . . , j is replaced by σ̂t,F [sbl ]. So F 6= Rm(F, σ̂t,F [s1], . . . , σ̂t,F [sm]), which
is a contradiction.

Conversely, if sbl = xbl for all l = 1, . . . , j, then

(σt,F ◦g σt,F )(γ) = σ̂t,F [σt,F [F ]]

= Rm(F, σ̂t,F [s1], . . . , σ̂t,F [sbl ], . . . , σ̂t,F [sm])

= Rm(F, σ̂t,F [s1], . . . , xbk , . . . , σ̂t,F [sm]).

Since we substitute xbl in the relational term F by σ̂t,F [sbl ] = xbl for all l =
1, . . . , j. So F = Rm(F, σ̂t,F [s1], . . . , σ̂t,F [sm]). If var(F ) ∩ Xm = ∅, it is easy
to check that F = Rm(F, σ̂t,F [s1], . . . , σ̂t,F [sm]). By straightforward calculations,
we obtain (σt,F ◦g σt,F )(f) = t = σt,F (f). Therefore, σt,F is idempotent.

Theorem 6. Let t ∈ W(n)(X)\X such that var(t) ∩Xn = {xa1 , . . . , xai} where

tak = xak for all k = 1, . . . , i and F = γ(s1, . . . , sm) ∈ F ∗

(m)(W(n)(X)). Then σt,F
is idempotent if and only if one of the following conditions are satisfied:

(i) var(F ) ∩Xm = {xb1 , . . . , xbj} such that sbl = xbl for all l = 1, . . . , j,

(ii) var(F ) ∩Xm = ∅.

Proof. Let σt,F is idempotent. Then t = Sn(t, σ̂t,F [t1], . . . , σ̂t,F [tn]) and F =
Rm(F, σ̂t,F [s1], . . . , σ̂t,F [sm]). Assume that var(F ) ∩ Xm 6= ∅, let var(F ) ∩
Xm = {xb1 , . . . , xbj} we will show that sbl = xbl for all l = 1, . . . , j. Let
sbl ∈ W(n)(Xn\X). Consider

xbl = σ̂t,F [sbl ]

= Rm(F, σ̂t,F [s1], . . . , σ̂t,F [sm])

= Rm(f(s1, . . . , sm), σ̂t,F [s1], . . . , σ̂t,F [sm])

= γ(Sm(s1, σ̂t,F [s1], . . . , σ̂t,F [sm]), . . . , Sm(sm, σ̂t,F [s1], . . . , σ̂t,F [sm])) /∈ Xm.

So sbl ∈ Xm for all l = 1, . . . , j. If sbl = xq ∈ Xm, then xbl = σ̂t,F [sbl ] =
σ̂t,F [xq] = xq. Hence sbl = xbl .
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Conversely, let tak = xak for all k = 1, . . . , i and sbl = xbl for all l = 1, . . . , j,
then

(σt,F ◦g σt,F )(f) = σ̂t,F [t]

= Sn(t, σ̂t,F [t1], . . . , σ̂t,F [tak ], . . . , σ̂t,F [tn])

= Sn(t, σ̂t,F [t1], . . . , xak , . . . , σ̂t,F [tn]).

Since we substitute xak in the term t by σ̂t,F [tak ] = xak for all k = 1, . . . , i. So
t = Sn(t, σ̂t,F [t1], . . . , σ̂t,F [tn]). Similarly, we have (σt,F ◦gσt,F )(γ) = F = σt,F (γ).
If var(F ) ∩ Xm = ∅, it is easy to check that F = Rm(F, σ̂t,F [s1], . . . , σ̂t,F [sm]).
Hence (σt,F ◦g σt,F )(γ) = F = σt,F (γ). Therefore, σt,F is idempotent.

4. All regular elements in RelhypG((n), (m))

In this section, we determine all regular elements of RelhypG((n), (m)), for natu-
ral numbers n,m ≥ 2. For any σt,F ∈ RelhypG((n), (m)), where t ∈ W(n)(X) and
F ∈ F ∗

(m)(W(n)(X)), σt,F is call regular if there exists σu,H ∈ RelhypG((n), (m))

such that σt,F ◦g σu,H ◦g σt,F = σt,F . Then if σt,F is regular, σ̂t,F [σ̂u,H [t]] = t and
σ̂t,F [σ̂u,H [F ]] = F .

Lemma 7. Let t, u ∈ W(n)(X) and F,H ∈ F ∗

(m)(W(n)(X)) such that F = σ̂t,F [H]

with xj ∈ var(F ). Then we have:

(i) if t = xk ∈ Xn, then k −most(hj) = xj ;

(ii) if t ∈ W(n)(X)\X, then hj = xj.

Proof. Let F = σ̂t,F [H] with xj ∈ var(F ). We will show that (i), (ii) hold.

(i) Let t = xk ∈ Xn and F = Rm(F, σ̂xk,F [h1], . . . , σ̂xk ,F [hm]) = Rm(F, k −
most(h1), . . . , k − most(hm)). Since xj ∈ var(F ) and F = σ̂t,F [H], we have to
replace a variable xj in the relational term F by k−most(hj). So k−most(hj) =
xj .

(ii) Let t ∈ W(n)(X)\X and F = Rm(F, σ̂t,F [h1], . . . , σ̂t,F [hm]). Since xj ∈
var(F ) and F = σ̂t,F [H], we have to replace a variable xj in the relational term
F by σ̂t,F [hj ]. So hj = xj . Therefore the proof is complete.

Example 8. Let (τ, τ ′) = ((3), (3)) with a ternary operation symbol f and a
ternay relation symbol γ.

Case (i). Let t = x2, F = γ(x1, f(x3, x1, x5), x7) and H = γ(f(x5, x1, x8),
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x1, x3). Consider

(σt,F ◦g σu,H)(γ) = σ̂t,F [H]

= R3(F, σ̂t,F [f(x5, x1, x8)], σ̂t,F [x1], σ̂t,F [x3])

= R3(F, S3(t, x5, x1, x8), x1, x3)

= R3(F, x1, x1, x3)

= γ(x1, f(x3, x1, x5), x7)

Case (ii). Let t = f(x3, x5, x7), F = γ(x1, f(x3, x1, x5), x7) and H = γ(x1,
x9, x3). Consider

(σt,F ◦g σu,H)(γ) = σ̂t,F [H]

= R3(F, σ̂t,F [x1], σ̂t,F [x9], σ̂t,F [x3])

= R3(F, x1, x9, x3)

= γ(x1, f(x3, x1, x5), x7)

Theorem 9. Let t = xi ∈ Xn and F = γ(s1, . . . , sm) ∈ F ∗

(m)(W(n)(X)). Then

σt,F is regular if and only if one of the following conditions are satisfied:

(i) var(F )∩Xm = {xb1 , . . . , xbj} such that k−most(sb′
l
) = xbl where {b′1, . . . , b

′

j}
⊆ {1, . . . ,m},

(ii) var(F ) ∩Xm = ∅.

Proof. Let σt,F is regular. Then there exists σu,H ∈ RelhypG((n), (m)) such that
σt,F = σt,F ◦g σu,H ◦g σt,F . Assume that var(F ) ∩Xm 6= ∅, let var(F ) ∩Xm =
{xb1 , . . . , xbj} we will show that k−most(sb′

l
) = xbl for all l = 1, . . . , j. Consider

(σu,H ◦g σt,F )(γ) = σ̂u,H [F ]

= Rm(H, σ̂u,H [s1], . . . , σ̂u,H [sm])

= γ(Sm(h1, σ̂u,H [s1], . . . , σ̂u,H [sm]), . . . ,

Sm(hm, σ̂u,H [s1], . . . , σ̂u,H [sm]))

= γ(a1, . . . , am),

where ai = Sm(hi, σ̂u,H [s1], . . . , σ̂u,H [sm]) for all i = 1, . . . ,m. Since F =
σ̂xi,F [σ̂u,H [F ]] = σ̂xi,F [γ(a1, . . . , am)] and var(F ) ∩ Xm = {xb1 , . . . , xbj}, by
Lemma 7(i) we have i−most(abl) = xbl for all l = 1, . . . , j. So

xbl = i−most(abl)

= i−most(Sm(hbl , σ̂u,H [s1], . . . , σ̂u,H [sm]))

= Sm(i−most(hbl), i−most(σ̂u,H [s1]), . . . , i−most(σ̂u,H [sm])).
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Let i−most(hbl) = xb′
l
for some b′l = b1, . . . , bj and i−most(u) = xk ∈ Xm. By

Lemma 2, we have xbl = Sm(xb′
l
, i − most(σ̂u,H [s1]), . . . , i − most(σ̂u,H [sn])) =

i−most(σ̂u,H [sb′
l
]) = k −most(sb′

l
).

Conversly, choose σu,H ∈ RelhypG((n), (m)) such that u = xk,H = γ(h1, . . . ,
hm) where hbl = xb′

l
for all l = 1, . . . , j. Consider

(σt,F ◦g σu,H ◦g σt,F )(γ) = σ̂t,F [σ̂u,H [F ]]

= σ̂t,F [R
m(H, σ̂xk ,H [s1], . . . , σ̂xk,H [sm])]

= σ̂t,F [R
m(γ(h1, . . . , hm), k −most(s1), . . . ,

k −most(sm))]

= σ̂t,F [γ(S
m(h1, k −most(s1), . . . , k −most(sm)), . . . ,

Sm(hm, k −most(s1), . . . , k −most(sm)))]

= σ̂t,F [γ(a1, . . . , am)]

where ai = Sm(hi, k −most(s1), . . . , k −most(sm)) for all i = 1, . . . ,m.

Case I. k −most(sb′
l
) = xbl . So

σ̂t,F [γ(a1, . . . , am)] = Rm(F, σ̂t,F [a1], . . . , σ̂t,F [am])

= Rm(F, σ̂t,F [a1], . . . , σ̂t,F [S
m(hbl , k −most(s1), . . . ,

k −most(sm))], . . . , σ̂t,F [am])

= Rm(F, σ̂t,F [a1], . . . , σ̂t,F [S
m(xb′

l
, k −most(s1), . . . ,

k −most(sm))], . . . , σ̂t,F [am])

= Rm(F, σ̂t,F [a1], . . . , σ̂t,F [k −most(sb′
l
)], . . . , σ̂t,F [am])

= Rm(F, σ̂t,F [a1], . . . , σ̂t,F [xbl ], . . . , σ̂t,F [am])

= F ; since xbl ∈ var(F ) must be replaced by σ̂t,F [abl ] = xbl .

Case II. var(F ) ∩Xm = ∅. So

σ̂t,F [γ(a1, . . . , am)] = Rm(F, σ̂t,F [a1], . . . , σ̂t,F [am]) = F.

It is esely to calculate that (σt,F ◦g σu,H ◦g σt,F )(f) = σ̂t,F (f). Therefore σt,F is
regular.

Theorem 10. Let t ∈ W(n)(X\Xn) and F = γ(s1, . . . , sm) ∈ F ∗

(m)(W(n)(X)).
Then σt,F is regular if and only if one of the following conditions are satisfied:

(i) var(F ) ∩ Xm = {xb1 , . . . , xbj} such that sb′
l
= xbl where {b′1, . . . , b

′

j} ⊆
{1, . . . ,m},

(ii) var(F ) ∩Xm = ∅.
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Proof. Let σt,F is regular. Then there exists σu,H ∈ RelhypG((n), (m)) such
that σt,F = σt,F ◦g σu,H ◦g σt,F . Assume var(F ) ∩Xm 6= ∅, let var(F ) ∩Xm =
{xb1 , . . . , xbj} and sb′

l
6= xxl

. Consider

(σt,F ◦g σu,H ◦g σt,F )(γ) = σ̂t,F [σ̂u,H [F ]]

= σ̂t,F [R
m(H, σ̂u,H [s1], . . . , σ̂u,H [sm])]

= σ̂t,F [γ(S
m(h1, σ̂u,H [s1], . . . , σ̂u,H [sm]), . . . ,

Sm(hm, σ̂u,H [s1], . . . , σ̂u,H [sm]))]

= σ̂t,F [γ(a1, . . . , am)]

= Rm(F, σt,F [a1], . . . , σt,F [am])

= Rm(γ(s1, . . . , sm), σt,F [a1], . . . , σt,F [am])

= γ(Sm(s1, σ̂t,F [a1], . . . , σ̂t,F [am]), . . . ,

Sm(sm, σ̂t,F [a1], . . . , σ̂t,F [am])).

By Lemma 7(ii), we have σ̂t,F [abl ] = xbl . Since xbl ∈ var(F ), we have to re-
place a variable xbl in the relational term F by σ̂t,F [abl ]. Consider σ̂t,F [abl ] =
σ̂t,F [S

m(hbl , σu,H [s1], . . . , σ̂u,H [sm])] implies that hbl ∈ Xm for all l = 1, . . . , j.
Therefore there exists b′l ∈ {1, . . . ,m} such that hbl = xb′

l
. Then

σ̂t,F [abl ] = σ̂t,F [S
n(xb′

l
, σ̂u,H [s1], . . . , σ̂u,H [sb′

l
], . . . , σ̂u,H [sm])]

= σ̂t,F [σ̂u,H [sb′
l
]]

6= xbl .

So (σt,F ◦g σu,H ◦g σu,H)(γ) = σ̂t,F [γ(a1, . . . , am) 6= F . Conversly, choose σu,H ∈
RelhypG((n), (m)) with u = f(u1, . . . , un) and H = γ(h1, . . . , hm) such that
hbl = xb′

l
for all l = 1, . . . , j. Consider

(σt,F ◦g σu,H ◦g σt,F )(γ) = σ̂t,F [σ̂u,H [F ]]

= σ̂t,F [R
m(H, σ̂u,H [s1], . . . , σ̂u,H [sm])]

= σ̂t,F [R
m(γ(h1, . . . , hm), σ̂u,H [s1], . . . , σ̂u,H [sm])]

= σ̂t,F [γ(S
m(h1, σ̂u,H [s1], . . . , σ̂u,H [sm]), . . . ,

Sm(hm, σ̂u,H [s1], . . . , σ̂u,H [sm]))]

= σ̂t,F [γ(a1, . . . , am)]

where ai = Sm(hi, σ̂u,H [s1], . . . , σ̂u,H [sm]) for all i = 1, . . . ,m.
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Case I. sb′
l
= xbl for all l = 1, . . . , j. So

σ̂t,F [γ(a1, . . . , am)] = Rm(F, σ̂t,F [a1], . . . , σ̂t,F [am])

= Rm(F, σ̂t,F [a1], . . . , σ̂t,F [S
m(hbl , σ̂u,H [s1],

. . . , σ̂u,H [sm])], . . . , σ̂t,F [am])

= Rm(F, σ̂t,F [a1], . . . , σ̂t,F [S
m(xb′

l
, σ̂u,H [s1],

. . . , σ̂u,H [sm])], . . . , σ̂t,F [am])

= Rm(F, σ̂t,F [a1], . . . , σ̂t,F [σ̂u,H [sb′
l
]], . . . , σ̂t,F [am])

= Rm(F, σ̂t,F [a1], . . . , σ̂t,F [xbl ], . . . , σ̂t,F [am])

= F ; since xbl ∈ var(F ) must be replaced by σ̂t,F [abl ] = xbl .

Case II. var(F ) ∩Xn = ∅. So

σ̂t,F [γ(a1, . . . , am)] = Rm(F, σ̂t,F [a1], . . . , σ̂t,F [am]) = F.

It is esely to calculate that (σt,F ◦g σu,H ◦g σt,F )(f) = σ̂t,F (f). Therefore σt,F is
regular.

Theorem 11. Let t ∈ W(n)(X)\X such that var(t) ∩ Xn = {xa1 , . . . , xai}
where ta′

k
= xak where {a′1, . . . , a

′

i} ⊆ {1, . . . , n} and F = γ(s1, . . . , sm) ∈
F ∗

(m)(W(n)(X)). Then σt,F is regular if and only if one of the following conditions

are satisfied:

(i) var(F ) ∩ Xm = {xb1 , . . . , xbj} such that sb′
l
= xbl where {b′1, . . . , b

′

j} ⊆
{1, . . . ,m},

(ii) var(F ) ∩Xm = ∅.

Proof. Let σt,F is regular. Then there exists σu,H ∈ RelhypG((n), (m)) such
that σt,F = σt,F ◦g σu,H ◦g σt,F . The proof is similar to Theorem 10. Conversly,
choose σu,H ∈ RelhypG((n), (m)) with u = f(u1, . . . , un) such that uak = xa′

k
for

all k = 1, . . . , i and H = γ(h1, . . . , hm) such that hbl = xb′
l
for all l = 1, . . . , j.

Consider

(σt,F ◦g σu,H ◦g σt,F )(f) = σ̂t,F [σ̂u,H [t]]

= σ̂t,F [S
n(f(u1, . . . , un), σ̂u,H [t1], . . . , σ̂u,H [tn])]

= σ̂t,F [f(S
n(u1, σ̂u,H [t1], . . . , σ̂u,H [tn]), . . . ,

Sn(un, σ̂u,H [t1], . . . , σ̂u,H [tn]))]

= σ̂t,F [f(w1, . . . , wn)]

where wj = Sn(uj , σ̂u,H [t1], . . . , σ̂u,H [tn]) for all j = 1, . . . , n. Since uak = xa′
k
for

all k = 1, . . . , i. So
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σ̂t,F [f(w1, . . . , wn)] = Sn(t, σ̂t,F [w1], . . . , σ̂t,F [wn])

= Sn(t, σ̂t,F [w1], . . . , σ̂t,F [S
n(uak , σ̂u,H [t1],

. . . , σ̂u,H [tn])], . . . , σ̂t,F [wn])

= Sn(t, σ̂t,F [w1], . . . , σ̂t,F [S
n(xa′

k
, σ̂u,H [t1],

. . . , σ̂u,H [tn])], . . . , σ̂t,F [wn])

= Sn(t, σ̂t,F [w1], . . . , σ̂t,F [σ̂u,H [ta′
k
]], . . . , σ̂t,F [wn])

= Sn(t, σ̂t,F [w1], . . . , σ̂t,F [xak ], . . . , σ̂t,F [wn])

= t; since xak ∈ var(t) must be replaced by σ̂t,F [wak ] = xak .

Similarly, we have (σt,F ◦gσu,H ◦gσu,H)(γ) = σ̂t,F (γ). Therefore σt,F is regular.
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