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Abstract

We show that idempotent elements of a dually residuated lattice ordered
semigroup (a DRl-semigroup) form a Brouwerian algebra. Further we show
that for any idempotent elements x, y such that x ≤ y the interval [x; y] is
also a DRL-semigroup.
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1. Introduction

Dually residuated lattice ordered semigroups were introduced in the mid-60’s
by Swamy (cf. [3]) as a common generalization of commutative lattice ordered
groups and Brouwerian algebras. They are closely related to the multi-valued
logic. The class of dually residuated lattice ordered semigroups is a variety and it
contains Boolean algebras, Brouwerian algebras, BL-algebras, MV-algebras and
commutative l-groups.

Here is the original definition given in [3].

Definition. An algebra A = (A; 0;+;−;∧;∨) of type 〈0; 2; 2; 2; 2〉 is a Dually
Residuated Lattice Ordered Semigroup (abbreviated, a DRl-semigroup) if the
following holds (cf. [3]):

1. (A; 0;+;∧;∨) is a commutative lattice ordered monoid i.e.,

(i) (A; 0;+) is a commutative monoid,

(ii) (A;∧;∨) is a lattice (the induced order is denoted by ≤),
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(iii) (x ∧ y) + z = (x+ z) ∧ (y + z) for all x, y, z ∈ A,

(iv) (x ∨ y) + z = (x+ z) ∨ (y + z) for all x, y, z ∈ A,

2. (x− y) + y ≥ x and if z + y ≥ x then z ≥ x− y for all x, y, z ∈ A,

3. (x− y) ∨ 0 + y ≤ x ∨ y for all x, y ∈ A,

4. x− x ≥ 0 for each x ∈ A.

In the following theorem we summarize some basic properties of DRl-semi-
groups as they were shown in [3].

Theorem 1. Let A = (A; 0;+;−;∧;∨) be a DRl-semigroup and x, y, z ∈ A.
Then the following hold:

(i) x− x = 0 and x− 0 = x,

(ii) (x+ y)− y ≤ x,

(iii) (x− y) ∨ 0 + y = x ∨ y,

(iv) (x− y)− z = x− (y + z),

(v) x+ y = x ∧ y + x ∨ y,

(vi) x ≤ y implies x− z ≤ y − z and z − x ≥ z − y.

Proof. This theorem is the restatement of Lemmas 1, 2, 3, 6, 9 and 13 of [3].

Denote by Idm(A) the set of all additively idempotent elements of a DRl-
semigoup A, i.e., Idm(A) = {x ∈ A|x+ x = x}. Clearly 0 ∈ Idm(A) and if there
exists a greatest element in A (denoted by 1) then 1 ∈ Idm(A).

Further, for x, y ∈ A such that x ≤ y denote by [x; y] the interval in A with
the endpoints x and y, i.e., [x; y] = {z ∈ A|x ≤ z ≤ y}.

In [2] Rach̊unek showed that Idm(A) in a bounded representable DRl-semi-
group is a Brouwerian algebra. In this paper we will prove that Rach̊unek’s
proposition holds in a general case, i.e., that idempotent elements in any DRl-
semigroup form a Brouwerian algebra. Further, we will show that any interval
between idempotent elements is also a DRl-semigroup.

Recall from [3] that a Brouwerian algebra is a system B = (B;≤;−) where
(B;≤) is a lattice with a least element and for all x, y ∈ B there exists a least
element z ∈ B such that y ∨ z ≥ x (z is denoted by x− y).

2. Structure of idempotent elements

Before proceeding to the main results let us prove a few technical assertions that
will be needed.



On idempotent elements of dually residuated lattice ... 481

Lemma 2. Let A = (A; 0;+;−;∧;∨) be a DRl-semigroup and x ∈ Idm(A).
Then x ≥ 0.

Proof. By Theorem 1(i) and (ii) we have 0 = x − x = (x + x) − x ≤ x, i.e.,
x ≥ 0.

Lemma 3. Let A = (A; 0;+;−;∧;∨) be a DRl-semigroup, x ∈ Idm(A), y ∈ A
and y ≥ 0. Then x+ y = x ∨ y.

Proof. By Theorem 1(iii) and (v) we have x+ y = (x∧ y) + (x∨ y) = (x∧ y) +
((y−x)∨ 0) +x ≤ ((y− x)∨ 0) +x+x = ((y− x)∨ 0)+ x = x∨ y. On the other
hand, from x, y ≥ 0 it follows x+ y ≥ x, y and therefore x+ y ≥ x ∨ y.

Theorem 4. Let A = (A; 0;+;−;∧;∨) be a DRl-semigroup. Then Idm(A) is a

lattice ordered monoid with the least element 0. Moreover,

x+ y = x ∨ y(1)

for all x, y ∈ Idm(A).

Proof. Clearly 0 ∈ Idm(A). Assume that x, y ∈ Idm(A). From (x+y)+(x+y) =
(x+ x) + (y+ y) = x+ y we have (x+ y) ∈ Idm(A). Further, (x∧ y)+ (x∧ y) ≤
x+ x = x and (x ∧ y) + (x ∧ y) ≤ y + y = y imply (x ∧ y) + (x ∧ y) ≤ x ∧ y. On
the other hand, x, y ≥ 0 implies x∧ y ≥ 0 and therefore (x∧ y)+ (x∧ y) ≥ x∧ y.
Consequently (x ∧ y) + (x ∧ y) = x ∧ y. Finally, x, y ≥ 0 implies x + y ≤
(x ∨ y) + (x ∨ y) ≤ (x+ y) + (x+ y) = x+ y and therefore (1) holds.

Lemma 5. Let A = (A; 0;+;−;∧;∨) be a DRl-semigroup and x, y ∈ Idm(A).
Then x− y ≥ 0.

Proof. Since (x−y)+y ≥ x and x ≥ 0, (x−y)+y ≥ 0. Theorem 1(iii) and Lemma
3 imply y ≤ x∨y = ((x−y)∨0)+y = ((x−y)+y)∨y = ((x−y)+y)+y = (x−y)+y
and therefore by Theorem 1(i) we conclude x− y ≥ y − y = 0.

Lemma 6. Let A = (A; 0;+;−;∧;∨) be a DRl-semigroup, x, y ∈ Idm(A), z ∈ A
and 0 ≤ z ≤ x. Then the following holds:

(y − x)− z = y − x.(2)

Proof. By Theorem 1(iv) we have (y − x) − z = y − (x + z) and x = x + 0 ≤
x+ z ≤ x+ x = x implies x = x+ z. Hence (2) holds.

Lemma 7. Let A = (A; 0;+;−;∧;∨) be a DRl-semigroup and x, y ∈ Idm(A).
Then the following holds:

0 ≤ ((y − x) + (y − x))− (y − x) ≤ x ∧ (y − x).(3)
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Proof. By axiom 1(iii) and Lemma 5 we have (x∧(y−x))+(y−x) = (x+(y−x))∧
((y−x)+(y−x)) = (((y−x)∨0)+x)∧((y−x)+(y−x)) = (x∨y)∧((y−x)+(y−x))≥
y∧ ((y−x)+ (y−x)) = (y+y)∧ ((y−x)+ (y−x)). Theorem 1(i) and (vi) imply
y = y− 0 ≥ y − x and therefore (y + y)∧ ((y − x) + (y − x)) = (y − x) + (y − x).
Putting it together we have (x∧ (y−x))+ (y−x) ≥ (y−x)+ (y−x). Moreover,
by Theorem 1(iii) x∧ (y − x) ≥ ((y − x) + (y− x))− (y− x). Finally, by Lemma
5 we have (((y−x)+ (y−x))− (y−x))+ (y−x) ≥ (y−x)+ (y−x) ≥ y−x and
Theorem 1(i) implies ((y − x) + (y − x))− (y − x) ≥ (y − x)− (y − x) = 0.

3. Results

Theorem 8. Let A = (A; 0;+;−;∧;∨) be a DRl-semigroup. Then Idm(A) is a

Brouwerian algebra.

Proof. By Theorem 4 it follows that Idm(A) is closed under operations +,∧ and
∨ and that 0 ∈ Idm(A). Now we will show that Idm(A) is also closed under −.
Assume that x, y ∈ Idm(A) and denote α = ((y−x)+(y−x))−(y−x). By Lemma
7 we have 0 ≤ α ≤ x∧ (y − x) ≤ x and therefore x = x+ 0 ≤ x+α ≤ x+ x = x,
i.e., x = x + α. Further, by Theorem 1(iii) and Lemmas 5, 6 and 7 we have
y− x = (y− x)∨ α = (((y − x)−α)∨ 0) +α = ((y− x)∨ 0) +α = (y − x) +α =
(y−x)+((y−x)+(y−x))−(y−x) ≥ (y−x)+(y−x), i.e., (y−x) ≥ (y−x)+(y−x).
The identity (y − x) ≤ (y − x) + (y − x) follows by Lemma 5.

Lemma 9. Let A = (A; 0;+;−;∧;∨) be a DRl-semigroup, x, y ∈ Idm(A) and

x ≤ y. Then the interval [x; y] equipped with the operations +,∧ and ∨ is a

commutative lattice ordered monoid with the least element x and the greatest

element y.

Proof. Assume that u, v ∈ [x; y]. From x ≤ u ≤ y and x ≤ v ≤ y it follows
x ≤ u∧v ≤ u∨v ≤ u+v ≤ y+y = y and therefore [x; y] is closed under +,∧ and
∨. Obviously, x and y is the least and the greatest element of [x; y], respectively.
Further, by Lemma 3 we have u+ x = u∨ x = u, i.e., x is the neutral element of
[x; y].

Remark 10. The interval [x; y] from Lemma 9 may not be closed under the
operation − i.e., [x; y] may not be a DRl-semigroup. Indeed, if x > 0 and
z ∈ [x; y] then z − z = 0 /∈ [x; y].

However, the following theorem shows that [x; y] equipped with a naturally
modified operation − (denoted by −∗) is a DRl-semigroup.

Theorem 11. Let A = (A; 0;+;−;∧;∨) be a DRl-semigroup, x, y ∈ Idm(A)
and x ≤ y. Then the structure ([x; y];x; +;−∗;∧;∨) where u −∗ v = (u − v) ∨ x
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for all u, v ∈ [x; y] is a DRl-semigroup with the least element x and the greatest

element y.

Proof. By Lemma 9 we know that ([x; y];x; +;∧;∨) is a commutative lattice
ordered monoid with the least element x and the greatest element y. Hence the
axiom (1) is satisfied. Assume that u, v ∈ [x; y] and denote u−∗v = (u−v)∨x. By
Theorem 1(vi) we have y = y∨x ≥ (y−v)∨x ≥ (u−v)∨x ≥ x, i.e., (u−∗v) ∈ [x; y].
Further, Theorem 1(iii), Lemma 3 and Lemma 5 imply (u−∗ v) + v = ((u− v) ∨
x) + v = ((u − v) + v) ∨ (x + v) = (((u − v) ∨ 0) + v) ∨ (x ∨ v) = (u ∨ v) ∨ v =
u ∨ v ≥ u. If z ∈ [x; y] and z + v ≥ u then obviously z ≥ u − v and z ≥ x, i.e.,
z ≥ (u−v)∨x = u−∗v. Hence the axiom (2) is satisfied. By Lemmas 2, 3 and 5 we
have ((u−∗v)∨0)+v = (((u−v)∨x)∨0)+v = ((u−v)∨x)+v = ((u−v)+x)+v =
(u − v) + (x+ v) = (u − v) + (x ∨ v) = (u − v) + v = ((u − v) ∨ 0) + v ≤ u ∨ v.
Hence the axiom (3) is satisfied. The axiom (4) is redundant and is implicitly
satisfied (cf. [1]).
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