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Abstract8

Here we set forth the varieties Vn and their connection with the varieties9

En of epigroups. A new congruence, akin, which relates similar elements10

in a semigroup, is introduced and used to reduce epigroups keeping their11

subgroup structure. We devise a recipe to study the conditions for these12

processes.13
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1. Introduction16

To introduce the varieties Vn, we recall some standard definitions and notations.17

We generally follow Howie [3], although many of the results can be found in other18

references.19

Let S be a semigroup. Here, and hereafter, unless stated otherwise S should20

be considered as a semigroup. An element a of S is called regular if there exists21

x in S such that axa = a. We say that a† is an inverse of a regular element a22

if aa†a = a and a†aa† = a†. Here we used the † symbol instead of the usual ′23

in order to avoid conflict with the pseudo-inverse one, see next paragraph. All24

regular elements have an inverse and all elements with inverse are regular. If all25

elements of S are regular, then S is called regular.26

Whenever there is a positive integer n where an belongs to a subgroup of27

S, the element a of S is known as an epigroup element. The smallest n with28

this property is called the index of a and is represented by ind(a). If ind(a) =29

1, then a is considered as completely regular, and if all the elements of S are30

completely regular, then the semigroup is said to be completely regular. The31

Green’s equivalence H− class Han is the maximal subgroup of S containing an.32
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Let e denote the identity element of Han , then both ae = ea and am, with m ≥ n,33

are elements of Han [4]. We define a′ as pseudo-inverse of a by a′ = (ae)−1, where34

(ae)−1 denotes the inverse of ae in the group Han [4, 7]. If every element of a35

semigroup is an epigroup element, then the semigroup itself is said to be an36

epigroup. Every finite semigroup, and in fact every periodic semigroup, is an37

epigroup.38

The following identities hold in all epigroups [7]:39

x′xx′ = x′,(1.1)40

xx′ = x′x,(1.2)41

x′′′ = x′,(1.3)42

xx′x = x′′,(1.4)43

(xy)′x = x(yx)′,(1.5)44

(xp)′ = (x′)p.(1.6)45

Although usually quoted that p in equation (1.6) should be prime, it can be46

shown that it can have any natural value. Therefore, if p = a.b (with a and b47

primes) we have:48

(xp)′ = (xa.b)′ = ((xa)b)′ = ((xa)′)b = ((x′)a)b = (x′)a.b = (x′)p.49

From equations (1.2) and (1.4) we can show that xx′′ = x′′x, as50

xx′′ = xxx′x = xx′xx = x′′x,51

and, as a consequence of this and of equation (1.3), all the multiple pseudo-52

inverses of the same element commute between each other.53

From the above identities, other relations in epigroups important for this54

work can be deduced,55

xe = x′′,(1.7)56

xme ∈ Hxn ,∀m ∈ N,(1.8)57

xmx′′ ∈ Hxn ,∀m ∈ N,(1.9)58

where, as above, e denotes the identity element of the Hxn subgroup.59

We can view an epigroup (S, ·) as a unary semigroup (S, ·,′ ) where x 7→ x′ is60

the map sending each element to its pseudo-inverse [5, 6, 7]. For each n ∈ N, let61

En denote the variety (equational class) of all unary semigroups (S, ·,′ ) satisfying62

equation (1.1), (1.2) and xn+1x′ = xn. The following observation will be useful63

later.64

Lemma 1 (See [2], Lemma 1). For each n ∈ N, the variety En is precisely the65

variety of unary semigroups satisfying (1.1), (1.2) and xn−1x′′ = xn.66
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Each En is a variety of epigroups, and the inclusions En ⊂ En+1 hold for all n.67

Every finite semigroup is contained in some En, and E1 is the variety of completely68

regular semigroups.69

2. Starting point70

The variety V appears in [1] as a variety of unary semigroups, which also gen-71

eralizes completely regular semigroups, satisfying (1.1), (1.2), x′′y = xy and72

xy′′ = xy.73

Later Kinyon and Borralho [2] introduced the family of varieties of unary74

semigroups. For each n ∈ N, the variety Vn is defined by (1.1), (1.2),75

xyn−1y′′ = xyn, and(2.1)76

x′′xn−1y = xny.(2.2)77

There [2], they state that completely regular semigroups can be defined con-78

ceptually (unions of groups) or as unary semigroups satisfying certain identities.79

The epigroup varieties Vn only have a definition as unary semigroups. Since they80

are closed under taking variants [2, Theorem 6], they are clearly interesting vari-81

eties interlacing the varieties En [?, See]2.4]borralho2020variants. Thus one might82

ask the following.83

Problem 1 (See [2]). Is there a conceptual characterization of the varieties Vn,84

or even just V1, analogous to the characterizations of E1?85

From [2, (2.4)] we have the following chain of varieties86

E1 ⊂ V1 ⊂ E2 ⊂ V2 ⊂ E3 · · · .87

3. The akin binary relation88

To better understand the role of the Vn varieties, we found convenient to define89

the binary relation akin, A, in a semigroup S as90

(3.1) A = {(a, b) ∈ S2 : xa = xb ∧ ay = by, ∀x, y ∈ S}.91

The binary relations leftakin (LA) and rightakin (RA) can also be defined by92

using only xa = xb or ay = by in equation (3.1) respectively, but these relations93

are not important for the purpose of this work. As usual, we will quote aAb to94

express that (a, b) ∈ A.95

Although related to the Green’s relations L and R and H, these LA, RA96

and A relations are more restrictive. They force the corresponding elements of97
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each column, or line in the Cayley table to be equal, instead of the sets of these98

elements including a and b. By other words, we can state that the akin relation99

is concerned with the identity of the elements, xa = xb or ay = by, ∀x, y ∈ S,100

while the Green’s relations are related to the sets S1a = S1b or aS1 = bS1.101

Two extreme cases must be referred. The first one, when aA b ⇒ a = b,102

which arises for example in monoid epigroups. In this case A is the equality103

relation of S, 1S . Another extreme situation occurs in, e.g., null semigroups104

where aA b,∀a, b ∈ S, then A = S × S is the universal relation in S.105

Of particular importance is the case when aA b and a 6= b. Then the a and106

b columns and lines of the Cayley table of the semigroup S are, respectively,107

identical. The semigroup S does not need to be commutative but a2 = ab = ba =108

b2 and, as a consequence, all the expressions involving only a and b having the109

same number of terms will give the same result. Also, in this occurrence, a and110

b cannot belong to the same subgroup of S, which do not have identical lines or111

columns, neither belong to different subgroups of S as a2 = b2. In addition, if112

one of them, e.g., a, belongs to a subgroup of S, then ind(a)=1 and ind(b)=2, as113

b2 will belong to the same group of a. Both a and b will be elements of the same114

Ke unipotency class [7] of S. In an epigroup, if none of them are elements of a115

subgroup of S, they will have the same index, as an = bn. In all cases, if S is116

an epigroup, they will have the same pseudoinverse as a.eg = b.eg, being eg the117

equipotent element of their unipotency class.118

As an example, consider the monogenic transformation semigroup T = 〈α〉 =119

{α,α2, α3, α4} with120

α =

(
1 2 3 4 5
2 3 4 5 4

)

, α2 =

(
1 2 3 4 5
3 4 5 4 5

)

,121

122

α3 =

(
1 2 3 4 5
4 5 4 5 4

)

, α4 =

(
1 2 3 4 5
5 4 5 4 5

)

123

and the composition operation, ◦. The Cayley table of this semigroup is124

(3.2)

◦ α α2 α3 α4

α α2 α3 α4 α3

α2 α3 α4 α3 α4

α3 α4 α3 α4 α3

α4 α3 α4 α3 α4.

125

Looking at this table we easily realise that α2Aα4. One of these elements,126

α4, is regular and belongs to the subgroup {α3, α4} while, as expected, ind(α2)=2127

as α2 ◦α2 = α4. It is interesting to see how two different maps of a set into itself128
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can give akin elements on a transformation semigroup. The maps α2 and α4 only129

differ on the image of 1 which is 3 or 5, respectively, while the image of 3 is the130

same of the image of 5 in all the maps of this semigroup.131

It is easy to find that the akin binary relation in an equivalence as it is132

reflexive, aA a, symmetric, aA b ⇒ bA a, and transitive, aA b ∧ bA c ⇒ aA c. So,133

the set S can be divided into equivalence classes defined as134

(3.3) Aa = {b ∈ S : aA b}.135

We can consider two kinds of akin equivalence classes. Those with one single136

element, which is only akin to itself, we call singular akin classes; and those with137

more than one element, which are akin between themselves, we call pluri akin138

classes.139

In addition, the akin equivalence preserves the semigroup operation being140

a compatible equivalence, i.e., aA b ⇒ axAbx ∧ yaAyb, since by the definition141

(3.1) if aA b, then ax = bx and ya = yb and the akin relation is reflexive. As142

a consequence, the akin binary relation is a congruence and defines a quotient143

semigroup of S, S/A. If A is the equality relation of S, i.e., all akin classes are144

singular, there is no effect, and the semigroup S and S/A are isomorphic, but145

when there is at least a pair (a, b) ∈ A ∧ a 6= b, i.e., at least one akin class is146

pluri, we call this process an akin reduction, or simply reduction if there is no147

confusion, of S and represent it as Sr = S/A.148

This akin reduction generates a new semigroup, Sr, where each singular149

classes will be represented by its own element, and each element of a pluri class150

will be replaced by a new one representing that class. As a consequence, the re-151

sult of the semigroup operation in Sr will be the same as in S, if it is an element152

of a singular class, and will be the representative of the class when the result of153

the operation in S is an element of a pluri class. Accordingly, the Cayley table154

of the Tr = T/A of example 3.2 is155

(3.4)

◦ α α2,4 α3

α α2,4 α3 α2,4

α2,4 α3 α2,4 α3

α3 α2,4 α3 α2,4,

156

where we used the symbol α2,4 to represent any element of the Aα2 akin class.157

This process can be repeated if the reduced semigroup has new pluri akin158

classes. We note, however, that any akin class has at most one subgroup element159

and, as a consequence, the subgroup structure of the semigroup is conserved in160

these reduction procedures.161



6 J. Brandao and M. Borralho

4. The Vn varieties162

According to the definition of the varities Vn we can say that163

S ∈ Vn ⇔ xn−1x′′Axn,∀x ∈ S.164

Similarly to the ”index” of the elements of epigroups [7], we can define an165

a-index of an element x in an epigroup, S, as n such that xn−1x′′ y = xn y ∧166

y xn−1x′′ = y xn,∀y ∈ S or, using the akin relation, the smallest natural num-167

ber such that xn−1x′′Axn. This a-index will be denoted as a-ind(x). Also,168

similarly to epigroups, where ind S = max{ind(x),∀x ∈ S}, if the a-indeces of169

an epigroup S are bounded, we can define a v-index of this epigroup, as v-ind170

S = max{a-ind(x),∀x ∈ S}. The subscript m will be used to signal an element x171

of S with ind(xm) = indS and a-ind(xm) = v-indS.172

Although the akin relation could be applied to all elements of the epigroup,173

we are more interested in the akin class of xnm, which defines the En and Vn174

varieties. We note, however, that most of the sentences regarding the xm can be175

applied to any other element of the epigroup, taking into account its own index176

and a-index instead of the epigroup indexes.177

Regarding the relation between the En and Vn varieties of an epigroup, i.e.,178

the v-index and the index of the epigroup, two different cases can occur for an179

epigroup S:180

• In case I, v-indS = n = indS, i.e., xn−1
m x′′mAxnm and xn−1

m x′′m = xnm. Both181

xn−1
m x′′m and xnm are the same element of a subgroup of S and the akin class182

of xnm is singular.183

• In case II, v-indS = n = indS − 1. Thus, xn−1
m x′′mAxnm, but xn−1

m x′′m 6= xnm,184

being, by 1.9, xn−1
m x′′m an element of a subgroup of S, but not xnm. These185

semigroups can be object of akin reduction processes.186

As stated above, all monoid epigroups will be in case I, while the null epi-187

groups will be case II.188

In addition to these general remarks, it is important to study the conditions189

for the relation between the v-index of an epigroup and its index.190

Here and henceforth, except otherwise stated, we consider S an epigroup with191

index n ≥ 2, indS ≥ 2. Note that if ind S = 1, then all the elements of S are192

regular and the v-index should also be one. Following Lemma 1, in S there will193

be, at least, one element h = xn−1
m x′′m = xnm. Also, in S, there are two different194

elements f = xn−2
m x′′m and g = xn−1

m , which when operated with xm will give195

xmf = fxm = xmg = gxm = h. f and g must be different, otherwise by 1 indS196

should be n− 1. In order to assess if S is a Case I or a Case II epigroup, we need197

to consider the conditions that must be fulfilled for these two elements to be akin198

to each other, (fA g) and a-ind(xm) = ind(xm)− 1, i.e., v-indS = indS − 1. For199
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this purpose, we are going to focus our attention on the right and left products200

of xm by S, xmS and Sxm.201

Theorem 4.1 (Necessary condition). For v-indS = indS − 1, it is necessary202

that xm /∈ xmS ∧ xm /∈ Sxm.203

Proof. Supposing that there exists an element u ∈ S such that xmu = xm, then204

fu = xn−2
m x′′m

︸︷︷︸
u = xn−2

m xmx′mxm
︸ ︷︷ ︸

u = xn−2
m xmx′m (xmu)

︸ ︷︷ ︸
= xn−2

m xmx′mxm
︸ ︷︷ ︸

205

= xn−2
m x′′m = f206

gu = xn−1
m

︸ ︷︷ ︸
u = xn−2

m xmu = xn−2
m (xmu)

︸ ︷︷ ︸
= xn−2

m xm
︸ ︷︷ ︸

= xn−1
m = g.207

As a consequence, the right multiplications of these two elements by u should208

give different results and they wouldn’t be akin to each other. We should attain209

the same conclusion with the left multiplication of xm.210

We can express this necessary condition as211

(4.1) a-ind(xm) = ind(xm)− 1 ⇒ xmS ⊆ S \ {xm} ∧ Sxm ⊆ S \ {xm}.212

Also by using these products, we can find a sufficient condition for fA g.213

Theorem 4.2 (Sufficient condition). For an epigroup S ∈ En, the condition214

xmS = Sxm = S \ {xm} is a sufficient condition for S ∈ Vn−1.215

Proof. As xmS = Sxm = S \ {xm}, all the products xmu, u ∈ S (and those216

of uxm, u ∈ S) will be different except for u ∈ {f, g}. We can say it because217

#(Sxm) = #(S \ {xm}) = #S − 1. Then only two elements of Sxm can be equal218

and these are fxm = gxm = h. This result can be expressed by219

(4.2) xmu = xmv ⇒ u = v ∨ {u, v} = {f, g},∀u, v ∈ S.220

As a consequence, we can also say that221

(4.3) ∀y ∈ S \ {xm, h} ∃!u ∈ S : y = xmu,222

and conclude that when the two elements, f and g, are right (or left) multiplied223

by any other element of S, say y, the result will be the same. This can be seen224

as:225

• If y = xm then fxm = gxm = h.226

• if y = f then ff = xn−2
m x′′mxn−2

m x′′m. Considering that x′′m = xmeg, where eg227

is the idempotent of the group of xnm = h, then228

xn−2
m x′′mxn−2

m x′′m = x2n−2
m e2g = x2n−2

m229

and, by the same rationality, gf = xn−1
m xn−2

m x′′m = x2n−2
m . So ff = gf .230
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• Similarly, if y = g then gf = gg.231

• Otherwise, using y = xmu,232

fy = xn−2
m x′′my = xn−2

m x′′mxm
︸ ︷︷ ︸

u = xn−2
m xmx′′mu = xn−1

m x′′mu = hu233

gy = xn−1
m y = xn−1

m xm
︸ ︷︷ ︸

u = xnmu = hu,234

and fy = gy.235

A similar result should be obtained by left multiplication. Then236

(4.4) Sxm = xmS = S \ {xm} ⇒ xn−2
m x′′mAxn−1

m ,237

and a-ind(xm) = n− 1, i.e., S ∈ Vn−1.238

As a consequence, when an epigroup S satisfies the condition Sxm = xmS =239

S \{xm}, we can apply the reduction process to define a new epigroup Sr = S/A.240

As described above, in this process the two distinct f and g elements of S,241

f = xn−2
m x′′mA g = xn−1

m , will be replaced by a representative of their akin class,242

w = xn−2
m x′′m = xn−1

m , which, by 1.9, is an subgroup element of Sr. Thus, in the243

Sr epigroup ind(xm) = n− 1.244

If the index of S is greater or equal to 3, then indSr ≥ 2 and we can focus245

our attention on this Sr epigroup, again.246

Taking into account that xmS = Sxm = S \{xm} and that Sr = S \Af ∪{w}247

we can conclude that xmSr = Srxm = Sr \ {xm}.248

As stated above when proving Theorem 4.2, all the products xmu, u ∈ S are249

different except for u ∈ {f, g}, which when operated with xm give h and none250

produces xm. So, there are two different elements in S, u = xn−3
m x′′m and v = xn−2

m ,251

which when operated with xm give f and g. In Sr, the elements f and g have been252

replaced by w. As a consequence, in this epigroup Sr, u, and v when operated253

with xm give the same result, w, and all the others will give different results but254

none produce xm. We conclude that #(Srxm) = #(Sr \ {xm}) = #Sr − 1, and255

Srxm = Sr \ {xm}.256

Then, by Theorem 4.2 u = xn−3
m x′′mA v = xn−2

m and a-ind(xm) = n− 2.257

The new epigroup Sr can be an object of another reduction process and so258

on. In general, we can say that, when an epigroup S, with ind(xm) ≥ 2, satisfies259

the condition Sxm = xmS = S \ {xm}, we can apply the akin reduction process260

successively until ind(xm) = 1.261

The above referred monogenic transformation semigroup (T, ◦), with T =262

〈α〉 = {α,α2, α3, α4} and ◦ defined by the Cayley table 3.2, can be seen as an263

example of the application of Theorems 4.1 and 4.2.264

This semigroup T is an epigroup with a subgroup G = {α3, α4}. As α◦α◦α =265

α3, we conclude that indT = ind(α) = 3 with xm = α, x′′m = α′′ = α3. T ∈ E3266
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and verifies the condition α ◦ α ◦ α3 = α ◦ α ◦ α. From the Cayley table 3.2, we267

conclude that α ◦ T = T ◦ α = {α2, α3, α4} = T \ {α}, which satisfies both the268

necessary and sufficient conditions for v-indT = indT − 1.269

The two above referred akin elements α2 and α4 are respectively α ◦ α3 and270

α ◦ α. So v-indT = a-ind(α) = 2 and T ∈ V2, being v-indT = indT − 1, as271

expected from Theorem 4.2.272

This result supports that the semigroup T can be reduced until ind(α) = 1.273

A further reduction of Tr, see example 3.4, will give the semigroup Trr,274

(4.5)

◦ α1,3 α2,4

α1,3 α2,4 α1,3

α2,4 α1,3 α2,4,

275

where we used the symbols α1,3 and α2,4 to represent any element of the Aα and276

Aα2 akin classes respectively. Trr is now a completely regular semigroup and, as277

a consequence, Trr ∈ E1 and Trr ∈ V1. We can see that the group structure of the278

semigroup T has been conserved in Trr, as stated before. The information of this279

reduction process can be complemented by the computation of T 3 = {α3, α4}.280

We can see that in these reduction processes the group elements are conserved.281

If we add the identity element α0,282

α0 =

(
1 2 3 4 5
1 2 3 4 5

)

,283

to T , we obtain the monoid semigroup T 1 whose Cayley table is284

(4.6)

◦ α0 α α2 α3 α4

α0 α0 α α2 α3 α4

α α α2 α3 α4 α3

α2 α2 α3 α4 α3 α4

α3 α3 α4 α3 α4 α3

α4 α4 α3 α4 α3 α4.

285

This T 1 semigroup does not satisfy the necessary condition 4.1 as α ◦ T 1 =286

T 1 ◦ α = {α,α2, α3, α4} * T 1 \ {α}, i.e., α ∈ α ◦ T 1. Now, α2 is not akin to α4,287

the akin classes of all elements of T 1 are singular and v-indT = indT .288

5. Generalising289

In this work we started studying the varieties En and Vn. As a result, we took290

particular attention on xm, which determines the varieties of the epigroup. De-291

spite that, most of the above considerations can be applied to any element of the292
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epigroup, a, considering its own index and a-index, independently of the index293

and v-index of the epigroup, S.294

Adapting the above statements about xm we can say.295

Proposition 5.1. The expressions, a-ind(a) = n = ind(a) − 1 and an−1a′′A an,296

but an−1a′′ 6= an, are equivalent.297

In this case, the epigroup S can be object of an akin reduction process.298

And the necessary and sufficient conditions will be:299

Proposition 5.2 (necessary). It is necessary that a /∈ aS ∧ a /∈ Sa to a-ind(a) =300

n = ind(a)− 1.301

Proposition 5.3 (sufficient). It is sufficient that Sa = aS = S \ {a} for the302

expression an−1a′′A an ∧ an−1a′′ 6= an to be accomplished.303

We can add that, when an epigroup S, with ind(a) ≥ 2, satisfies this sufficient304

condition, we can apply the akin reduction process successively until ind(a) = 1.305

The semigroup (U, ◦), where U = {1, 2, 3, 4, 5, 6, 7, 8} and ◦ is defined by the306

Cayley table307

(5.1)

◦ 1 2 3 4 5 6 7 8

1 3 2 4 2 2 2 2 2
2 2 2 2 2 2 2 2 2
3 4 2 2 2 2 2 2 2
4 2 2 2 2 2 2 2 2
5 2 2 2 2 6 7 8 7
6 2 2 2 2 7 8 7 8
7 2 2 2 2 8 7 8 7
8 2 2 2 2 7 8 7 8 ,

308

illustrates this generalization.309

This semigroup has two subgroups, namely, {2} and {7, 8}. As ind(1) = 4310

and a-ind(1) = 3, we conclude that xm = 1, v-indU = indU − 1, and 2A 4 (as311

12 1′′ = 2 and 13 = 4). In addition to this xm other element of U satisfy similar312

relations, ind(5) = 3 and a-ind(5) = 2 = ind(5) − 1 and 6A 8 (as 5 5′′ = 8 and313

52 = 6). Both 1 and 5 satisfy the Proposition 5.1 an−1a′′A an, but an−1a′′ 6= an,314

and the Proposition 5.2, a /∈ aU ∧ a /∈ Ua. As a consequence, both can be used315

for akin reduction processes316

After some akin reduction processes, we obtain the semigroup (U red, ◦) whose317

Cayley table is318

(5.2)

◦ 2̄ 7̄ 8̄

2̄ 2̄ 2̄ 2̄
7̄ 2̄ 8̄ 7̄
8̄ 2̄ 7̄ 8̄ ,

319
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where 2̄ stands for an element of {1, 2, 3, 4}, 7̄ for an element of {5, 7}, and 8̄ for320

an element of {6, 8}.321

6. Conclusion322

We have shown that the akin congruence relation can be used to define the323

varieties Vn and study their connection with the varieties En of epigroups. This324

new congruence, akin, which relates similar elements in a semigroup, can be used325

to reduce the epigroups keeping their subgroup structure. We have demonstrated326

that the products aS and Sa can be used to define a necessary and a sufficient327

condition for these processes.328
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