¹ Discussiones Mathematicae

² General Algebra and Applications xx (xxxx) 1–11

3

4

5

6

7

8

ON THE VARIETIES \mathcal{V}_n

Joao Brandao and Maria Borralho

Universidade do Algarve, CEOT e-mail: jbrandao@ualg.pt

mfborralho@ualg.pt

Abstract

9 Here we set forth the varieties \mathcal{V}_n and their connection with the varieties 10 \mathcal{E}_n of epigroups. A new congruence, *akin*, which relates similar elements 11 in a semigroup, is introduced and used to reduce epigroups keeping their 12 subgroup structure. We devise a recipe to study the conditions for these 13 processes.

14 **Keywords:** semigroups, epigroups, varieties, congruences.

¹⁵ **2020** Mathematics Subject Classification: 20M07.

16

1. INTRODUCTION

¹⁷ To introduce the varieties \mathcal{V}_n , we recall some standard definitions and notations. ¹⁸ We generally follow Howie [3], although many of the results can be found in other ¹⁹ references.

Let S be a semigroup. Here, and hereafter, unless stated otherwise S should be considered as a semigroup. An element a of S is called regular if there exists x in S such that axa = a. We say that a^{\dagger} is an inverse of a regular element a if $aa^{\dagger}a = a$ and $a^{\dagger}aa^{\dagger} = a^{\dagger}$. Here we used the \dagger symbol instead of the usual \prime in order to avoid conflict with the pseudo-inverse one, see next paragraph. All regular elements have an inverse and all elements with inverse are regular. If all elements of S are regular, then S is called regular.

²⁷ Whenever there is a positive integer n where a^n belongs to a subgroup of ²⁸ S, the element a of S is known as an epigroup element. The smallest n with ²⁹ this property is called the index of a and is represented by ind(a). If ind(a) =³⁰ 1, then a is considered as completely regular, and if all the elements of S are ³¹ completely regular, then the semigroup is said to be completely regular. The ³² Green's equivalence $\mathcal{H} - class H_{a^n}$ is the maximal subgroup of S containing a^n . Let *e* denote the identity element of H_{a^n} , then both ae = ea and a^m , with $m \ge n$, are elements of H_{a^n} [4]. We define *a'* as pseudo-inverse of *a* by $a' = (ae)^{-1}$, where $(ae)^{-1}$ denotes the inverse of *ae* in the group H_{a^n} [4, 7]. If every element of a semigroup is an epigroup element, then the semigroup itself is said to be an epigroup. Every finite semigroup, and in fact every periodic semigroup, is an epigroup.

³⁹ The following identities hold in all epigroups [7]:

40 (1.1)
$$x'xx' = x'$$

41 (1.2)
$$xx' = x'x,$$

42 (1.3)
$$x''' = x'$$

43 (1.4)
$$xx'x = x''$$

44 (1.5)
$$(xy)'x = x(yx)'$$

45 (1.6)
$$(x^p)' = (x')^p.$$

Although usually quoted that p in equation (1.6) should be prime, it can be shown that it can have any natural value. Therefore, if p = a.b (with a and bprimes) we have:

49
$$(x^p)' = (x^{a.b})' = ((x^a)^b)' = ((x^a)')^b = ((x')^a)^b = (x')^{a.b} = (x')^p.$$

From equations (1.2) and (1.4) we can show that xx'' = x''x, as

$$xx'' = xxx'x = xx'xx = x''x,$$

⁵² and, as a consequence of this and of equation (1.3), all the multiple pseudo-⁵³ inverses of the same element commute between each other.

54 From the above identities, other relations in epigroups important for this 55 work can be deduced,

56 (1.7)
$$xe = x'',$$

$$x^m e \in H_{x^n}, \forall m \in \mathbb{N},$$

$$x^m x'' \in H_{x^n}, \forall m \in \mathbb{N},$$

⁵⁹ where, as above, e denotes the identity element of the H_{x^n} subgroup.

We can view an epigroup (S, \cdot) as a unary semigroup $(S, \cdot, ')$ where $x \mapsto x'$ is the map sending each element to its pseudo-inverse [5, 6, 7]. For each $n \in \mathbb{N}$, let \mathcal{E}_n denote the variety (equational class) of all unary semigroups $(S, \cdot, ')$ satisfying equation (1.1), (1.2) and $x^{n+1}x' = x^n$. The following observation will be useful later.

Lemma 1 (See [2], Lemma 1). For each $n \in \mathbb{N}$, the variety \mathcal{E}_n is precisely the variety of unary semigroups satisfying (1.1), (1.2) and $x^{n-1}x'' = x^n$. Each \mathcal{E}_n is a variety of epigroups, and the inclusions $\mathcal{E}_n \subset \mathcal{E}_{n+1}$ hold for all n. Every finite semigroup is contained in some \mathcal{E}_n , and \mathcal{E}_1 is the variety of completely regular semigroups.

2. Starting point

The variety \mathcal{V} appears in [1] as a variety of unary semigroups, which also genrealizes completely regular semigroups, satisfying (1.1), (1.2), x''y = xy and xy'' = xy.

Later Kinyon and Borralho [2] introduced the family of varieties of unary semigroups. For each $n \in \mathbb{N}$, the variety \mathcal{V}_n is defined by (1.1), (1.2),

76 (2.1)
$$xy^{n-1}y'' = xy^n$$
, and

$$x''x^{n-1}y = x^n y.$$

There [2], they state that completely regular semigroups can be defined conceptually (unions of groups) or as unary semigroups satisfying certain identities. The epigroup varieties \mathcal{V}_n only have a definition as unary semigroups. Since they are closed under taking variants [2, Theorem 6], they are clearly interesting varieties interlacing the varieties \mathcal{E}_n [?, See]2.4]borralho2020variants. Thus one might ask the following.

Problem 1 (See [2]). Is there a conceptual characterization of the varieties \mathcal{V}_n , or even just \mathcal{V}_1 , analogous to the characterizations of \mathcal{E}_1 ?

From [2, (2.4)] we have the following chain of varieties

3.

87

88

70

The akin binary relation

 $\mathcal{E}_1 \subset \mathcal{V}_1 \subset \mathcal{E}_2 \subset \mathcal{V}_2 \subset \mathcal{E}_3 \cdots$

To better understand the role of the \mathcal{V}_n varieties, we found convenient to define the binary relation *akin*, \mathcal{A} , in a semigroup S as

91 (3.1)
$$\mathcal{A} = \{(a,b) \in S^2 : xa = xb \land ay = by, \forall x, y \in S\}.$$

The binary relations leftakin (\mathcal{LA}) and rightakin (\mathcal{RA}) can also be defined by using only xa = xb or ay = by in equation (3.1) respectively, but these relations are not important for the purpose of this work. As usual, we will quote $a\mathcal{A}b$ to express that $(a, b) \in \mathcal{A}$.

Although related to the Green's relations \mathcal{L} and \mathcal{R} and \mathcal{H} , these \mathcal{LA} , \mathcal{RA} and \mathcal{A} relations are more restrictive. They force the corresponding elements of each column, or line in the Cayley table to be equal, instead of the sets of these elements including a and b. By other words, we can state that the *akin* relation is concerned with the identity of the elements, xa = xb or ay = by, $\forall x, y \in S$, while the Green's relations are related to the sets $S^1a = S^1b$ or $aS^1 = bS^1$.

Two extreme cases must be referred. The first one, when $a\mathcal{A} b \Rightarrow a = b$, which arises for example in *monoid* epigroups. In this case \mathcal{A} is the *equality* relation of S, 1_S . Another extreme situation occurs in, e.g., *null* semigroups where $a\mathcal{A} b, \forall a, b \in S$, then $\mathcal{A} = S \times S$ is the *universal* relation in S.

Of particular importance is the case when $a\mathcal{A}b$ and $a \neq b$. Then the a and 106 b columns and lines of the Cayley table of the semigroup S are, respectively, 107 identical. The semigroup S does not need to be commutative but $a^2 = ab = ba =$ 108 b^2 and, as a consequence, all the expressions involving only a and b having the 109 same number of terms will give the same result. Also, in this occurrence, a and 110 b cannot belong to the same subgroup of S, which do not have identical lines or 111 columns, neither belong to different subgroups of S as $a^2 = b^2$. In addition, if 112 one of them, e.g., a, belongs to a subgroup of S, then ind(a)=1 and ind(b)=2, as 113 b^2 will belong to the same group of a. Both a and b will be elements of the same 114 K_e unipotency class [7] of S. In an epigroup, if none of them are elements of a 115 subgroup of S, they will have the same index, as $a^n = b^n$. In all cases, if S is 116 an epigroup, they will have the same pseudoinverse as $a.e_q = b.e_q$, being e_q the 117 equipotent element of their unipotency class. 118

As an example, consider the monogenic transformation semigroup $T = \langle \alpha \rangle = \frac{120}{\{\alpha, \alpha^2, \alpha^3, \alpha^4\}}$ with

121
$$\alpha = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 2 & 3 & 4 & 5 & 4 \end{pmatrix}, \quad \alpha^2 = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 3 & 4 & 5 & 4 & 5 \end{pmatrix},$$

122

123
$$\alpha^{3} = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 4 & 5 & 4 & 5 & 4 \end{pmatrix}, \quad \alpha^{4} = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 5 & 4 & 5 & 4 & 5 \end{pmatrix}$$

and the composition operation, \circ . The Cayley table of this semigroup is

Looking at this table we easily realise that $\alpha^2 \mathcal{A} \alpha^4$. One of these elements, α^4 , is regular and belongs to the subgroup $\{\alpha^3, \alpha^4\}$ while, as expected, $\operatorname{ind}(\alpha^2)=2$ as $\alpha^2 \circ \alpha^2 = \alpha^4$. It is interesting to see how two different maps of a set into itself can give *akin* elements on a transformation semigroup. The maps α^2 and α^4 only differ on the image of 1 which is 3 or 5, respectively, while the image of 3 is the same of the image of 5 in all the maps of this semigroup.

It is easy to find that the *akin* binary relation in an equivalence as it is reflexive, aAa, symmetric, $aAb \Rightarrow bAa$, and transitive, $aAb \wedge bAc \Rightarrow aAc$. So, the set S can be divided into equivalence classes defined as

$$A_a = \{b \in S : a\mathcal{A} b\}$$

We can consider two kinds of *akin* equivalence classes. Those with one single element, which is only *akin* to itself, we call *singular akin* classes; and those with more than one element, which are *akin* between themselves, we call *pluri akin* classes.

In addition, the *akin* equivalence preserves the semigroup operation being 140 a compatible equivalence, i.e., $a\mathcal{A}b \Rightarrow ax\mathcal{A}bx \wedge ya\mathcal{A}yb$, since by the definition 141 (3.1) if $a\mathcal{A}b$, then ax = bx and ya = yb and the *akin* relation is reflexive. As 142 a consequence, the *akin* binary relation is a congruence and defines a quotient 143 semigroup of S, S/A. If A is the equality relation of S, i.e., all akin classes are 144 singular, there is no effect, and the semigroup S and S/A are isomorphic, but 145 when there is at least a pair $(a,b) \in \mathcal{A} \land a \neq b$, i.e., at least one *akin* class is 146 *pluri*, we call this process an *akin reduction*, or simply *reduction* if there is no 147 confusion, of S and represent it as $S_r = S/A$. 148

This akin reduction generates a new semigroup, S_r , where each singular classes will be represented by its own element, and each element of a pluri class will be replaced by a new one representing that class. As a consequence, the result of the semigroup operation in S_r will be the same as in S, if it is an element of a singular class, and will be the representative of the class when the result of the operation in S is an element of a pluri class. Accordingly, the Cayley table of the $T_r = T/\mathcal{A}$ of example 3.2 is

where we used the symbol $\alpha^{2,4}$ to represent any element of the A_{α^2} akin class. This process can be repeated if the reduced semigroup has new *pluri akin*

classes. We note, however, that any *akin* class has at most one subgroup element
and, as a consequence, the subgroup structure of the semigroup is conserved in
these *reduction* procedures.

4. The \mathcal{V}_n varieties

¹⁶³ According to the definition of the varities \mathcal{V}_n we can say that

164
$$S \in \mathcal{V}_n \Leftrightarrow x^{n-1} x'' \mathcal{A} x^n, \forall x \in S.$$

Similarly to the "index" of the elements of epigroups [7], we can define an 165 a-index of an element x in an epigroup, S, as n such that $x^{n-1}x''y = x^n y \wedge y$ 166 $y x^{n-1} x'' = y x^n, \forall y \in S$ or, using the *akin* relation, the smallest natural num-167 ber such that $x^{n-1}x''\mathcal{A}x^n$. This a-index will be denoted as a-ind(x). Also, 168 similarly to epigroups, where ind $S = \max\{ind(x), \forall x \in S\}$, if the a-indeces of 169 an epigroup S are bounded, we can define a v-index of this epigroup, as v-ind 170 $S = \max\{a\text{-ind}(x), \forall x \in S\}$. The subscript _m will be used to signal an element x 171 of S with $\operatorname{ind}(x_m) = \operatorname{ind} S$ and $\operatorname{a-ind}(x_m) = \operatorname{v-ind} S$. 172

Although the *akin* relation could be applied to all elements of the epigroup, we are more interested in the *akin* class of x_m^n , which defines the \mathcal{E}_n and \mathcal{V}_n varieties. We note, however, that most of the sentences regarding the x_m can be applied to any other element of the epigroup, taking into account its own index and a-index instead of the epigroup indexes.

Regarding the relation between the \mathcal{E}_n and \mathcal{V}_n varieties of an epigroup, i.e., the v-index and the index of the epigroup, two different cases can occur for an epigroup S:

- In case I, v-ind S = n = ind S, i.e., $x_m^{n-1} x_m'' \mathcal{A} x_m^n$ and $x_m^{n-1} x_m'' = x_m^n$. Both $x_m^{n-1} x_m''$ and x_m^n are the same element of a subgroup of S and the *akin* class of x_m^n is singular.
- In case II, v-ind S = n = ind S 1. Thus, $x_m^{n-1} x_m'' \mathcal{A} x_m^n$, but $x_m^{n-1} x_m'' \neq x_m^n$, being, by 1.9, $x_m^{n-1} x_m''$ an element of a subgroup of S, but not x_m^n . These semigroups can be object of *akin reduction* processes.

As stated above, all monoid epigroups will be in case I, while the *null* epigroups will be case II.

In addition to these general remarks, it is important to study the conditions
for the relation between the v-index of an epigroup and its index.

Here and henceforth, except otherwise stated, we consider S an epigroup with 191 index $n \ge 2$, ind $S \ge 2$. Note that if ind S = 1, then all the elements of S are 192 regular and the v-index should also be one. Following Lemma 1, in S there will 193 be, at least, one element $h = x_m^{n-1} x_m'' = x_m^n$. Also, in *S*, there are two different elements $f = x_m^{n-2} x_m''$ and $g = x_m^{n-1}$, which when operated with x_m will give 194 195 $x_m f = f x_m = x_m g = g x_m = h$. f and g must be different, otherwise by 1 ind S 196 should be n-1. In order to assess if S is a Case I or a Case II epigroup, we need 197 to consider the conditions that must be fulfilled for these two elements to be *akin* 198 to each other, $(f \mathcal{A} g)$ and a-ind $(x_m) = ind(x_m) - 1$, i.e., v-ind S = ind S - 1. For 199

162

this purpose, we are going to focus our attention on the right and left products 200 of x_m by S, $x_m S$ and $S x_m$. 201

Theorem 4.1 (Necessary condition). For v-ind S = ind S - 1, it is necessary 202 that $x_m \notin x_m S \wedge x_m \notin S x_m$. 203

Proof. Supposing that there exists an element $u \in S$ such that $x_m u = x_m$, then 204

205
$$fu = x_m^{n-2} \underbrace{x_m''}_{m} u = x_m^{n-2} \underbrace{x_m x_m' x_m}_{m} u = x_m^{n-2} x_m x_m' \underbrace{(x_m u)}_{m} = x_m^{n-2} \underbrace{x_m x_m' x_m}_{m} \underbrace{x_m x_m' x_m}_{m} u = x_m^{n-2} x_m x_m' \underbrace{(x_m u)}_{m} = x_m^{n-2} \underbrace{x_m x_m' x_m}_{m} \underbrace{x_m x_m' x_m}_{m} u = x_m^{n-2} \underbrace{x_m x_m' x_m}_{m} \underbrace{x_m x_m' x_m}_{m} u = x_m^{n-2} \underbrace{x_m x_m' x_m}_{m} \underbrace{x_m x_m}_{m} \underbrace{x_m x_m}_{m}$$

206

$$gu = \underbrace{x_m^{n-1}}_{m} u = x_m^{n-2} x_m u = x_m^{n-2} \underbrace{(x_m u)}_{m} = \underbrace{x_m^{n-2} x_m}_{m} = x_m^{n-1} = g.$$

As a consequence, the right multiplications of these two elements by u should 208 give different results and they wouldn't be *akin* to each other. We should attain 209 the same conclusion with the left multiplication of x_m . 210

We can express this necessary condition as 211

212 (4.1)
$$\operatorname{a-ind}(x_m) = \operatorname{ind}(x_m) - 1 \Rightarrow x_m S \subseteq S \setminus \{x_m\} \land S x_m \subseteq S \setminus \{x_m\}.$$

Also by using these products, we can find a sufficient condition for $f \mathcal{A} q$. 213

Theorem 4.2 (Sufficient condition). For an epigroup $S \in \mathcal{E}_n$, the condition 214 $x_m S = S x_m = S \setminus \{x_m\}$ is a sufficient condition for $S \in \mathcal{V}_{n-1}$. 215

Proof. As $x_m S = S x_m = S \setminus \{x_m\}$, all the products $x_m u, u \in S$ (and those 216 of $ux_m, u \in S$) will be different except for $u \in \{f, g\}$. We can say it because 217 $\#(Sx_m) = \#(S \setminus \{x_m\}) = \#S - 1$. Then only two elements of Sx_m can be equal 218 and these are $fx_m = gx_m = h$. This result can be expressed by 219

$$x_m u = x_m v \Rightarrow u = v \lor \{u, v\} = \{f, g\}, \forall u, v \in S.$$

As a consequence, we can also say that 221

(4.3)
$$\forall y \in S \setminus \{x_m, h\} \exists ! u \in S : y = x_m u,$$

and conclude that when the two elements, f and g, are right (or left) multiplied 223 by any other element of S, say y, the result will be the same. This can be seen 224 as: 225

• If $y = x_m$ then $fx_m = gx_m = h$. 226

• if
$$y = f$$
 then $ff = x_m^{n-2} x_m'' x_m^{n-2} x_m''$. Considering that $x_m'' = x_m e_g$, where e_g
is the idempotent of the group of $x_m^n = h$, then

229
$$x_m^{n-2}x_m''x_m^{n-2}x_m'' = x_m^{2n-2}e_g^2 = x_m^{2n-2}$$

and, by the same rationality, $gf = x_m^{n-1} x_m^{n-2} x_m'' = x_m^{2n-2}$. So ff = gf. 230

• Similarly, if y = g then gf = gg.

• Otherwise, using $y = x_m u$,

$$fy = x_m^{n-2} x_m'' y = x_m^{n-2} x_m'' x_m u = x_m^{n-2} x_m x_m'' u = x_m^{n-1} x_m'' u = hu$$

234

233

$$gy = x_m^{n-1}y = x_m^{n-1}x_m u = x_m^n u = hu,$$

and fy = gy.

A similar result should be obtained by left multiplication. Then

$$Sx_m = x_m S = S \setminus \{x_m\} \Rightarrow x_m^{n-2} x_m'' \mathcal{A} x_m^{n-1},$$

and a-ind $(x_m) = n - 1$, i.e., $S \in \mathcal{V}_{n-1}$.

As a consequence, when an epigroup S satisfies the condition $Sx_m = x_m S = S \setminus \{x_m\}$, we can apply the *reduction* process to define a new epigroup $S_r = S/\mathcal{A}$. As described above, in this process the two distinct f and g elements of S, $f = x_m^{n-2}x_m''\mathcal{A}g = x_m^{n-1}$, will be replaced by a representative of their *akin* class, $w = x_m^{n-2}x_m'' = x_m^{n-1}$, which, by 1.9, is an subgroup element of S_r . Thus, in the S_r epigroup ind $(x_m) = n - 1$.

If the index of S is greater or equal to 3, then ind $S_r \ge 2$ and we can focus our attention on this S_r epigroup, again.

Taking into account that $x_m S = S x_m = S \setminus \{x_m\}$ and that $S_r = S \setminus A_f \cup \{w\}$ we can conclude that $x_m S_r = S_r x_m = S_r \setminus \{x_m\}$.

As stated above when proving Theorem 4.2, all the products $x_m u, u \in S$ are 249 different except for $u \in \{f, g\}$, which when operated with x_m give h and none 250 produces x_m . So, there are two different elements in S, $u = x_m^{n-3} x_m''$ and $v = x_m^{n-2}$, 251 which when operated with x_m give f and g. In S_r , the elements f and g have been 252 replaced by w. As a consequence, in this epigroup S_r , u, and v when operated 253 with x_m give the same result, w, and all the others will give different results but 254 none produce x_m . We conclude that $\#(S_r x_m) = \#(S_r \setminus \{x_m\}) = \#S_r - 1$, and 255 $S_r x_m = S_r \setminus \{x_m\}.$ 256

Then, by Theorem 4.2 $u = x_m^{n-3} x_m'' \mathcal{A} v = x_m^{n-2}$ and a-ind $(x_m) = n - 2$.

The new epigroup S_r can be an object of another *reduction* process and so on. In general, we can say that, when an epigroup S, with $ind(x_m) \ge 2$, satisfies the condition $Sx_m = x_m S = S \setminus \{x_m\}$, we can apply the *akin reduction* process successively until $ind(x_m) = 1$.

The above referred monogenic transformation semigroup (T, \circ) , with $T = 263 \langle \alpha \rangle = \{\alpha, \alpha^2, \alpha^3, \alpha^4\}$ and \circ defined by the Cayley table 3.2, can be seen as an example of the application of Theorems 4.1 and 4.2.

This semigroup T is an epigroup with a subgroup $G = \{\alpha^3, \alpha^4\}$. As $\alpha \circ \alpha \circ \alpha = \alpha^3$, we conclude that $\operatorname{ind} T = \operatorname{ind}(\alpha) = 3$ with $x_m = \alpha$, $x''_m = \alpha'' = \alpha^3$. $T \in \mathcal{E}_3$

and verifies the condition $\alpha \circ \alpha \circ \alpha^3 = \alpha \circ \alpha \circ \alpha$. From the Cayley table 3.2, we conclude that $\alpha \circ T = T \circ \alpha = \{\alpha^2, \alpha^3, \alpha^4\} = T \setminus \{\alpha\}$, which satisfies both the necessary and sufficient conditions for v-ind T = ind T - 1.

The two above referred *akin* elements α^2 and α^4 are respectively $\alpha \circ \alpha^3$ and $\alpha \circ \alpha$. So v-ind T = a-ind $(\alpha) = 2$ and $T \in \mathcal{V}_2$, being v-ind T = ind T - 1, as expected from Theorem 4.2.

This result supports that the semigroup T can be reduced until $ind(\alpha) = 1$. A further reduction of T_r , see example 3.4, will give the semigroup T_{rr} ,

$$\begin{array}{c} \circ & \alpha^{1,3} & \alpha^{2,4} \\ \hline \alpha^{1,3} & \alpha^{2,4} & \alpha^{1,3} \\ \alpha^{2,4} & \alpha^{1,3} & \alpha^{2,4}, \end{array}$$

where we used the symbols $\alpha^{1,3}$ and $\alpha^{2,4}$ to represent any element of the A_{α} and A_{α^2} akin classes respectively. T_{rr} is now a completely regular semigroup and, as a consequence, $T_{rr} \in \mathcal{E}_1$ and $T_{rr} \in \mathcal{V}_1$. We can see that the group structure of the semigroup T has been conserved in T_{rr} , as stated before. The information of this *reduction* process can be complemented by the computation of $T^3 = \{\alpha^3, \alpha^4\}$. We can see that in these reduction processes the group elements are conserved. If we add the identity element α^0 ,

283
$$\alpha^0 = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 1 & 2 & 3 & 4 & 5 \end{pmatrix},$$

to T, we obtain the monoid semigroup T^1 whose Cayley table is

This T^1 semigroup does not satisfy the necessary condition 4.1 as $\alpha \circ T^1 = T^1 \circ \alpha = \{\alpha, \alpha^2, \alpha^3, \alpha^4\} \not\subseteq T^1 \setminus \{\alpha\}$, i.e., $\alpha \in \alpha \circ T^1$. Now, α^2 is not *akin* to α^4 , the *akin* classes of all elements of T^1 are *singular* and v-ind $T = \operatorname{ind} T$.

5. Generalising

289

In this work we started studying the varieties \mathcal{E}_n and \mathcal{V}_n . As a result, we took particular attention on x_m , which determines the varieties of the epigroup. Despite that, most of the above considerations can be applied to any element of the epigroup, *a*, considering its own index and a-index, independently of the index and v-index of the epigroup, *S*.

Adapting the above statements about x_m we can say.

Proposition 5.1. The expressions, a-ind(a) = n = ind(a) - 1 and $a^{n-1}a'' \mathcal{A} a^n$, but $a^{n-1}a'' \neq a^n$, are equivalent.

In this case, the epigroup S can be object of an *akin reduction* process.

And the necessary and sufficient conditions will be:

Proposition 5.2 (necessary). It is necessary that $a \notin aS \land a \notin Sa$ to a-ind(a) = a = ind(a) - 1.

Proposition 5.3 (sufficient). It is sufficient that $Sa = aS = S \setminus \{a\}$ for the expression $a^{n-1}a'' \mathcal{A} a^n \wedge a^{n-1}a'' \neq a^n$ to be accomplished.

We can add that, when an epigroup S, with $ind(a) \ge 2$, satisfies this sufficient condition, we can apply the *akin reduction* process successively until ind(a) = 1. The semigroup (U, \circ) , where $U = \{1, 2, 3, 4, 5, 6, 7, 8\}$ and \circ is defined by the Cayley table

	0	1	2	3	4	5	6	7	8
308 (5.1)	1	3	2	4	2	2	2	2	2
	2	2	2	2	2	2	2	2	2
	3	4	2	2	2	2	2	2	2
	4	2	2	2	2	2	2	2	2
	5	2	2	2	2	6	7	8	$\overline{7}$
	6	2	2	2	2	7	8	7	8
	7	2	2	2	2	8	7	8	$\overline{7}$
	8	2	2	2	2	7	8	7	8,

309 illustrates this generalization.

This semigroup has two subgroups, namely, $\{2\}$ and $\{7,8\}$. As ind(1) = 4and a-ind(1) = 3, we conclude that $x_m = 1$, v-ind U = ind U - 1, and $2\mathcal{A}4$ (as $1^2 1'' = 2$ and $1^3 = 4$). In addition to this x_m other element of U satisfy similar relations, ind(5) = 3 and a-ind(5) = 2 = ind(5) - 1 and $6\mathcal{A}8$ (as 55'' = 8 and $5^2 = 6$). Both 1 and 5 satisfy the Proposition 5.1 $a^{n-1}a''\mathcal{A}a^n$, but $a^{n-1}a'' \neq a^n$, and the Proposition 5.2, $a \notin aU \land a \notin Ua$. As a consequence, both can be used for *akin reduction* processes

After some *akin reduction* processes, we obtain the semigroup (U^{red}, \circ) whose Cayley table is

			2		
319	(5.2)	$ar{2} \ ar{7} \ ar{8}$	$\overline{2}$	$\overline{2}$	$\overline{2}$
		$\overline{7}$	$\overline{2}$	$\overline{8}$	$\overline{7}$
		$\overline{8}$	$\bar{2}$	$\overline{7}$	$\overline{8}$,

where $\overline{2}$ stands for an element of $\{1, 2, 3, 4\}$, $\overline{7}$ for an element of $\{5, 7\}$, and $\overline{8}$ for an element of $\{6, 8\}$.

6. Conclusion

We have shown that the *akin* congruence relation can be used to define the varieties \mathcal{V}_n and study their connection with the varieties \mathcal{E}_n of epigroups. This new congruence, *akin*, which relates similar elements in a semigroup, can be used to reduce the epigroups keeping their subgroup structure. We have demonstrated that the products aS and Sa can be used to define a necessary and a sufficient condition for these processes.

329

322

References

- [1] J. Araújo, M. Kinyon, J. Konieczny and A. Malheiro, *Four notions of conjugacy for abstract semigroups*, in: Proceedings of the Royal Society of Edinburgh Section A:
 Mathematics 147(6) (2017) 1169–1214.
- 333 https://doi.org/10.1017/S0308210517000099
- [2] M. Borralho and M. Kinyon, Variants of epigroups and primary conjugacy, Com mun. Algebra 48(12) (2020) 5465-5473.
- 336 https://doi.org/10.1080/00927872.2020.1791145
- J.M. Howie, Fundamentals of Semigroup Theory, London Mathematical Society
 Monographs New Series 12 (Oxford University Press, 1995).
- [4] W.D. Munn, *Pseudo-inverses in semigroups*, in: Mathematical Proceedings of the
 Cambridge Philosophical Society 57(2) (1961) 247-250.
 https://doi.org/10.1017/S0305004100035143
- [5] M. Petrich and N.R. Reilly, Completely Regular Semigroups 27 (John Wiley & Sons, 1999).
- [6] L.N. Shevrin, On the theory of epigroups, I, Mat. Sbornik 185(8) (1994) 129–160.
 https://doi.org/10.1070/SM1995v082n02ABEH003577
- [7] L.N. Shevrin, Epigroups, in: Structural theory of automata, semigroups, and universal algebra (Springer, 2005) 331–380.
- 348 https://doi.org/10.1007/1-4020-3817-8_12

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License https://creativecommons.org/licenses/by/4.0/