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Abstract

The notion of coherent lattices is introduced and established relations
between a coherent lattice and that of a generalized Stone lattice, Boolean
algebra, quasi-complemented lattice, and normal lattice. A set of equivalent
conditions is given for every sublattice of a lattice to become a coherent
lattice. Some equivalent conditions are given for every interval of a lattice
to become a coherent sublattice. Coherent lattices are characterized with
the help of certain properties of filters and dense elements.
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1. Introduction

In 1968, the theory of relative annihilators was introduced in lattices by Mark
Mandelker [11] and he characterized distributive lattices in terms of their rela-
tive annihilators. Later many authors introduced the concept of annihilators in
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the structures of rings as well as lattices and characterized many algebraic struc-
tures in terms of annihilators. Speed [15] and Cornish [4, 6] made an extensive
study of annihilators in distributive lattices. Cornish introduced the notion of
normal lattices [4] and characterized the normal lattices using minimal prime
ideals and congruences. In [4], he introduced the notion of quasi-complemented
lattices and characterized the class of quasi-complemented lattices using the an-
nulets and congruences. In [4], he introduced the notion of generalized Stone
lattices and studied the interconnections among generalized Stone lattices, nor-
mal lattices and quasi-complemented lattices. The theory of pseudo-complements
in lattices, and particularly in distributive lattices was developed by Stone [16],
Frink [8], and George Gratzer [9]. Later many authors like Speed [15], and
Frink [8] etc., extended the study of pseudo-complements to characterize Stone
lattices. In [3], Chajda, Halaš and Kühr extensively studied the structure of
pseudo-complemented semilattices. In [12], the authors investigated extensively
certain properties of D-filters of distributive lattices. In this paper, the authors
given a set of equivalent conditions for a quasi-complemented lattice to become
a Boolean algebra by using the D-filters. In [13], the authors investigated the
properties of prime D-filters and then characterized the minimal prime D-filters
of distributive lattices using certain congruences.

In this note, the concept of coherent lattices is introduced and proved that
every generalized Stone lattice is a coherent lattice. Some equivalent conditions
are given for every coherent lattice to become a generalized Stone lattice. Boolean
algebras are characterized in terms of annulets and principal ideals of distributive
lattices and then a set of equivalent conditions is given for every coherent lattice
to become a Boolean algebra. A sufficient condition is given for every quasi-
complemented lattice to become a coherent lattice. A sufficient condition is given
for every coherent lattice to become a normal lattice. Properties of coherent
lattices are generalized to the case of direct product of coherent lattices.

A set of equivalent conditions is given for every sublattice of a lattice to
become a coherent sublattice. Some equivalent conditions are derived for every
interval of a lattice to become a coherent lattice. Coherent lattices are char-
acterized with the help of the properties of filters and D-filters of distributive
lattices.

2. Preliminaries

The reader is referred to [1, 4, 6, 7, 10, 12, 13, 14] and [15] for the elementary
notions and notations of distributive lattices. Some of the preliminary definitions
and results are presented for the ready reference of the reader.

Definition [1]. An algebra (L,∧,∨) of type (2, 2) is called a distributive lattice
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if for all x, y, z ∈ L, it satisfies the following properties (1), (2), (3) and (4) along
with (5) or (5′)

(1) x ∧ x = x, x ∨ x = x,

(2) x ∧ y = y ∧ x, x ∨ y = y ∨ x,

(3) (x ∧ y) ∧ z = x ∧ (y ∧ z), (x ∨ y) ∨ z = x ∨ (y ∨ z),

(4) (x ∧ y) ∨ x = x, (x ∨ y) ∧ x = x,

(5) x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z),

(5′) x ∨ (y ∧ z) = (x ∨ y) ∧ (x ∨ z).

A non-empty subset A of a lattice L is called an ideal (filter) of L if a ∨ b ∈
A (a ∧ b ∈ A) and a ∧ x ∈ A (a ∨ x ∈ A) whenever a, b ∈ A and x ∈ L. Define
a relation ≤ on a lattice L by x ≤ y if and only if x ∨ y = y or equivalently
x ∧ y = x. Then (L,≤) is a partially ordered set. The set (a] = {x ∈ L | x ≤ a}
(resp. [a) = {x ∈ L | a ≤ x}) is called a principal ideal (resp. principal filter)
generated by a. The set I(L) of all ideals of a distributive lattice L with 0 forms
a complete distributive lattice. The set F(L) of all filters of a distributive lattice
L with 1 forms a complete distributive lattice. A proper ideal (resp. filter) P of
a distributive lattice L is said to be prime if for any x, y ∈ L, x ∧ y ∈ P (resp.
x∨y ∈ P ) implies x ∈ P or y ∈ P . A proper ideal (resp. filter) P of a lattice L is
called maximal if there exists no proper ideal (resp. filter) Q such that P ⊂ Q. A
proper ideal (resp. filter) P of a distributive lattice is minimal [4] if there exists
no prime ideal (resp. filter) Q such that Q ⊂ P .

For any non-empty subset A of a distributive lattice L with 0, the annulet
[6] of a is define as the set (a)∗ = {x ∈ L | x ∧ a = 0}. For any a ∈ L, (a)∗ is an
ideal of the lattice L. An element x ∈ L is called dense if (x)∗ = {0} and the set
of all dense elements of a lattice is denoted by D.

Proposition 1 [15]. Let L be a distributive lattice with 0. For any a, b, c ∈ L,

(1) a ≤ b implies (b)∗ ⊆ (a)∗,

(2) (a ∨ b)∗ = (a)∗ ∩ (b)∗,

(3) (a ∧ b)∗∗ = (a)∗∗ ∩ (b)∗∗,

(4) (a)∗∗∗ = (a)∗,

(5) (a)∗ = L if and only if a = 0.

Theorem 2 [10]. A prime ideal P of a distributive lattice is a minimal prime

ideal if and only if to each x ∈ P there exists y /∈ P such that x ∧ y = 0 (or
equivalently, for any x ∈ L, x /∈ P if and only if (x)∗ ⊆ P ).

A distributive lattice L with 0 is called a normal lattice [4] if every prime
ideal contains a unique minimal prime ideal. A distributive lattice L with 0 is
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called a quasi-complemented lattice [7] if to each x ∈ L, there exists x′ ∈ L such
that x ∧ x′ = 0 and x ∨ x′ is dense. A distributive lattice with 0 and dense
elements is quasi-complemented if and only if to each x ∈ L, there exists x′ ∈ L
such that (x)∗∗ = (x′)∗. A distributive lattice L with 0 is called a generalized

Stone lattice [7] if it satisfies the property: (x)∗ ∨ (x)∗∗ = L for all x ∈ L. The
pseudo-complement b∗ of an element b is the element satisfying

a ∧ b = 0 ⇔ a ∧ b∗ = a ⇔ a ≤ b∗

where ≤ is the induced order of L. Every pseudo-complemented distributive
lattice is a quasi-complemented lattice. In a pseudo-complemented distributive
lattice, we have (x∗] = (x)∗ for any x ∈ L.

Theorem 3 [4]. Following are equivalent in a distributive lattice L with 0:

(1) L is normal;

(2) for any x, y ∈ L, x ∧ y = 0 implies (x)∗ ∨ (y)∗ = L;

(3) for any x, y ∈ L, (x)∗ ∨ (y)∗ = (x ∧ y)∗.

Theorem 4 [4]. A distributive lattice L with 0 is a generalized Stone lattice if

and only if it satisfies the following conditions:

(1) L is quasi-complemented,

(2) L is normal.

A lattice L is called relatively complemented if for any a, b ∈ L, the interval
[a, b] is a complemented lattice. A lattice L is relatively complemented if [0, a] is
complemented for any a ∈ L.

Theorem 5 [14]. A distributive lattice L with 0 is relatively complemented if and

only if every prime ideal of L is a minimal prime ideal.

A filter F of a distributive lattice L is called a D-filter [12] if D ⊆ F . A prime
D-filter of a distributive lattice isminimal if it is the minimal element in the poset
of all prime D-filters. A prime D-filter of a distributive lattice is minimal [13]
if and only if to each x ∈ P , there exists y /∈ P such that x ∨ y ∈ D. For any
non-empty subset A of a lattice, we define A◦ = {x ∈ L | x∨y ∈ D for all y ∈ A}.
Clearly A◦ is a D-filter of L. For A = {a}, we consider {a}◦ by (a)◦.

Proposition 6. [13] Let A,B be two subsets of a distributive lattice L. Then

(1) A ⊆ B implies B◦ ⊆ A◦,

(2) A ⊆ A◦◦,

(3) A◦◦◦ = A◦,

(4) A◦ = L if and only if A ⊆ D.

Throughout this note, all lattices are bounded and distributive unless other-
wise mentioned.
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3. Coherent lattices

In this section, the notion of coherent lattices is introduced. Relations of the
coherent lattices with the classes of generalized Stone lattices, Boolean algebras,
quasi-complemented lattices, normal lattices are investigated. Coherent lattices
are characterized with the help of filters and D-filters.

Definition. A lattice L is called a coherent lattice if, for all x, y ∈ L,

x ∨ y ∈ D implies (x)∗∗ ∨ (y)∗∗ = L.

Since every non-zero element of a chain (totally ordered set) is a dense el-
ement, every chain is a coherent lattice. Obviously, every dense lattice (i.e.,
(x)∗ = {0} for all 0 6= x ∈ L) is coherent. In the following example, we observe a
non-trivial example of a coherent lattice.

Example 7. Consider the following bounded and finite distributive lattice L =
{0, a, b, c, d, 1} whose Hasse diagram is given by:
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��
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c c

c c
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c d

a b

1

Observed that (a)∗ = {0, b}, (b)∗ = {0, a, c}, (c)∗ = {0, b} and (d)∗ = {0}.
Clearly d, 1 are the only dense elements in L. Also (a)∗∗ = {0, a, c}, (b)∗∗ = {0, b},
(c)∗∗ = {0, a, c} and (d)∗∗ = L. It can be routinely verified that L is coherent.

Proposition 8. Every generalized Stone lattice is a coherent lattice.

Proof. Assume that L is a generalized Stone lattice. Let x, y ∈ L be such that
x ∨ y ∈ D. By Theorem 4, L is quasi-complemented and normal. Then there
exist x′, y′ ∈ L such that (x)∗∗ = (x′)∗ and (y)∗∗ = (y′)∗. Hence, we get

(x)∗∗ ∨ (y)∗∗ = (x′)∗ ∨ (y′)∗

= (x′ ∧ y′)∗ since L is normal

= (x′ ∧ y′)∗∗∗ by Proposition 1(4)

= {(x′)∗∗ ∩ (y′)∗∗}∗ by Proposition 1(3)

= {(x)∗ ∩ (y)∗}∗

= {(x ∨ y)∗}∗

= L since x ∨ y ∈ D
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Hence (x)∗∗ ∨ (y)∗∗ = L for all x, y ∈ L with x ∨ y ∈ D. Thus L is coherent.

In the following theorem, a set of equivalent conditions is given for a coherent
lattice to become a generalized Stone lattice.

Theorem 9. Let L be a coherent lattice. Then the following are equivalent:

(1) L is a generalized Stone lattice;

(2) every prime D-filter is a minimal prime D-filter;

(3) every maximal filter is a minimal prime D-filter;

(4) L is quasi-complemented.

Proof. (1)⇒(2): Assume that L is a generalized Stone lattice. Let P be a prime
filter of L. Let d ∈ D and x ∈ P . Since L is a generalized Stone lattice, we
get (x)∗ ∨ (x)∗∗ = L. Hence d ∈ (x)∗ ∨ (x)∗∗. Thus a ∨ b = d ∈ D for some
a ∈ (x)∗ and b ∈ (x)∗∗. Hence a ∧ x = 0 and (x)∗ ⊆ (b)∗. Suppose a ∈ P . Then
0 = a ∧ x ∈ P , which is a contradiction. Thus, we must have a /∈ P . Now,

a ∨ b ∈ D ⇒ (a)∗ ∩ (b)∗ = {0}

⇒ (a)∗ ∩ (x)∗ = {0} since (x)∗ ⊆ (b)∗

⇒ (a ∨ x)∗ = {0}

which means that a ∨ x ∈ D. Therefore P is a minimal prime D-filter of L.

(2)⇒(3): Since every maximal filter is a prime D-filter, it is clear.

(3)⇒(4): Assume condition (3). Let x ∈ L. Suppose 0 /∈ [x) ∨ (x)◦. Then
there exists a maximal filter M such that [x) ∨ (x)◦ ⊆ M . Hence x ∈ M and
(x)◦ ⊆ M . By condition (3), M will be a minimal primeD-filter. Since (x)◦ ⊆ M ,
we get x /∈ M , which is a contradiction. Hence 0 ∈ [x)∨ (x)◦. Thus x∧ a = 0 for
some a ∈ (x)◦. Hence x ∨ a ∈ D. Therefore L is quasi-complemented.

(4)⇒(1): Assume that L is quasi-complemented. Let x ∈ L. Since L is quasi-
complemented, there exists x′ ∈ L such that x∧x′ = 0 and x∨x′ ∈ D. Since L is
coherent, we get (x)∗∗ ∨ (x′)∗∗ = L. Since x∧x′ = 0, we get (x′)∗∗ ⊆ (x)∗. Hence
L = (x)∗∗ ∨ (x′)∗∗ ⊆ (x)∗∗ ∨ (x)∗. Therefore L is a generalized Stone lattice.

Since every pseudo-complemented lattice is quasi-complemented, the follow-
ing corollary is a direct consequence of the above theorem:

Corollary 10. Let L be a pseudo-complemented lattice. Then L is a coherent

lattice if and only if it is a generalized Stone lattice.

Corollary 11. A quasi-complemented and coherent lattice is normal.

Proof. Follows from Theorem 9 and Theorem 4.
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Corollary 12. Any quasi-complemented and normal lattice is coherent.

Proof. Follows from Theorem 9 and Theorem 4.

Theorem 13. A lattice L is Boolean if and only if (x] ∨ (x)∗ = L for all x ∈ L.

Proof. Assume that L is a Boolean algebra. Let x ∈ L. Since L is Boolean,
there exists x′ ∈ L such that x ∧ x′ = 0 and x ∨ x′ = 1. Hence x′ ∈ (x)∗ and
(x] ∨ (x′] = (1] = L. Thus (x′] ⊆ (x)∗. Therefore (x] ∨ (x)∗ = L.

Conversely, assume the condition. Let x ∈ L. Hence (x)∗ ∨ (x] = L. Thus
1 ∈ (x)∗∨(x]. Hence a∨x = 1 for some a ∈ (x)∗. Since a ∈ (x)∗, we get a∧x = 0.
Thus a is the complement of x in L. Therefore L is a Boolean algebra.

Proposition 14. Every Boolean algebra is a generalized Stone lattice.

Proof. Assume that L is a Boolean algebra. Let x ∈ L. Suppose (x)∗∨(x)∗∗ 6= L.
Then there exists prime ideal P such that (x)∗ ∨ (x)∗∗ ⊆ P . Hence (x)∗ ⊆ P
and x ∈ (x)∗∗ ⊆ P . Since L is Boolean, there exists x′ ∈ L such that x ∧ x′ = 0
and x ∨ x′ = 1. Suppose x′ ∈ P . Then 1 = x ∨ x′ ∈ P , which is a contradiction.
Hence x′ /∈ P . Therefore P is minimal. Since (x)∗ ⊆ P , we get x /∈ P which is a
contradiction. Thus (x)∗ ∨ (x)∗∗ = L. Hence L is a generalized Stone lattice.

Corollary 15. Every Boolean algebra is a coherent lattice.

Proof. It follows from Proposition 8 and Proposition 14.

In general, the converse of Proposition 14 is not true. For, consider the
coherent lattice given in Example 7. Observe that L is not a Boolean algebra
because the element a has no complement in L. However, a set of equivalent
conditions is given for a coherent lattice to become a Boolean algebra.

Theorem 16. A coherent lattice L is a Boolean algebra if and only if it satisfies

the following conditions;

(1) L is quasi-complemented;

(2) every principal ideal is an annihilator ideal.

Proof. Given that L is a coherent lattice. Assume that L satisfies conditions (1)
and (2). Since L is quasi-complemented and coherent, by Theorem 9, we get that
L is a generalized Stone lattice. Let x ∈ L. Then (x)∗ ∨ (x)∗∗ = L. By (2), we
get (x] = (x)∗∗. Hence (x] ∨ (x)∗ = L. By Theorem 13, L is a Boolean algebra.

Conversely, assume that L is Boolean. Clearly L is quasi-complemented. Let
x ∈ L. By Proposition 14, L is a generalized Stone lattice. Hence (x)∗∗ ∨ (x)∗ =
L. By Theorem 13, we get (x] ∨ (x)∗ = L. It is clear that (x] ∩ (x)∗ = {0}
and (x)∗∗ ∩ (x)∗ = {0}. Since the lattice I(L) of all ideals of the lattice L
is distributive, by the cancellation property, we get (x] = (x)∗∗. Thus every
principal ideal is an annihilator ideal.
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Corollary 17. A generalized Stone lattice is a Boolean algebra if and only if

every principal ideal of the lattice is an annihilator ideal.

Proof. It follows from Theorem 9 and Theorem 16.

Proposition 18. A lattice in which every maximal ideal is non-dense is a co-

herent lattice.

Proof. Let L be a lattice in which every maximal ideal is non-dense. Let x, y ∈ L
be such that x∨ y ∈ D. Suppose (x)∗∗ ∨ (y)∗∗ 6= L. Then there exists a maximal
ideal M such that (x)∗∗ ∨ (y)∗∗ ⊆ M . Hence (x)∗∗ ⊆ M and (y)∗∗ ⊆ M . Thus
M∗ ⊆ (x)∗ and M∗ ⊆ (y)∗, which gives M∗ ⊆ (x)∗∩(y)∗ = (x∨y)∗ = {0} because
of x∨y ∈ D. Thus M is dense, which is a contradiction. Hence (x)∗∗∨ (y)∗∗ = L.
Therefore L is a coherent lattice.

The converse of Proposition 18 is not true. For, consider the coherent lattice
given in Example 7. Clearly L is possessing two maximal ideals, namely M1 =
{0, a, c} and M2 = {0, a, b, d}. Observe that M∗

2
= {0} but M∗

1
= {0, b} 6= {0}.

The following result about the direct products of coherent lattices is of intrinsic
interest. First we need the following lemma whose proof is routine.

Lemma 19. For any positive integer n, let L1, L2, . . . , Ln be n lattices. For any

a1 ∈ L1, a2 ∈ L2, . . . , an ∈ Ln, the following properties hold:

(1) (a1, a2, . . . , an)
∗ = (a1)

∗ × (a2)
∗ × · · · × (an)

∗,

(2) (a1, a2, . . . , an)
∗ ∨ (b1, b2, . . . , bn)

∗ = (a1 ∨ b1, a2 ∨ b2, . . . , an ∨ bn)
∗,

(3) (a1, a2, . . . , an)
∗∗ = (a1)

∗∗ × (a2)
∗∗ × · · · × (an)

∗∗.

Proof. The proof of (1) and (2) is routine.

(3) Let us denote (x)i = (x1, x2, . . . , xn) where x1 ∈ L1, x2 ∈ L2, . . . , xn ∈ Ln.
For any (a)i ∈ L1 × L2 × · · · × Ln, we have

(x)i ∈ (a)∗∗i ⇔ (a)∗i ⊆ (x)∗i

⇔ (a1)
∗ × (a2)

∗ × · · · × (an)
∗ ⊆ (x1)

∗ × (x2)
∗ × · · · × (xn)

∗

⇔ (ai)
∗ ⊆ (xi)

∗ for i = 1, 2, . . . , n

⇔ (xi)
∗∗ ⊆ (ai)

∗∗ for i = 1, 2, . . . , n

⇔ (x)i ∈ (x)∗∗i ⊆ (a)∗∗i

Therefore (a1, a2, . . . , an)
∗∗ = (a1)

∗∗ × (a2)
∗∗ × · · · × (an)

∗∗.

Theorem 20. Let L1, L2, . . . , Ln (where n is a positive integer) be a finite family

of lattices. Then the product lattice L1×L2×· · ·×Ln (with point-wise operations)
is coherent if and only if L1, L2, . . . , Ln are coherent.
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Proof. Assume that L1×L2×· · · ×Ln is a coherent lattice. Let D1,D2, . . . ,Dn

be the sets containing dense elements of L1, L2, . . . , Ln respectively. Let a, b ∈ L1

be such that a ∨ b ∈ D1. Choose d2 ∈ D2, d3 ∈ D3, . . . , dn ∈ Dn. Then

(a, d2, d3, . . . , dn)∨(b, d2, d3, . . . , dn) = (a∨b, d2, d3, . . . , dn) ∈ D1×D2×· · ·×Dn.

Since L1 × L2 × · · · × Ln is coherent, we get

(a, d2, d3, . . . , dn)
∗∗ ∨ (b, d2, d3, . . . , dn)

∗∗ = L1 × L2 × · · · × Ln.

Let z ∈ L1. Then (z, d2, d3, . . . , dn) ∈ L1 × L2 × · · · × Ln. Hence, there exists
(s1, s2, . . . , sn) ∈ (a, d2, d3, . . . , dn)

∗∗ and (t1, t2, . . . , tn) ∈ (b, d2, d3, . . . , dn)
∗∗ such

that

(z, d2, d3, . . . , dn) = (s1, s2, . . . , sn) ∨ (t1, t2, . . . , tn).

Therefore z = s1 ∨ t1 where s1 ∈ (a)∗∗ and t1 ∈ (b)∗∗. Hence (a)∗∗ ∨ (b)∗∗ =
L1. Therefore L1 is coherent. Similarly, it can be proved that L2, L3, . . . , Ln

are coherent lattices. Converse follows from the fact that (a1, a2, . . . , an)
∗∗ =

(a1)
∗∗ × (a2)

∗∗ × · · · × (an)
∗∗ for any (a1, a2, . . . , an) ∈ L1 × L2 × · · · × Ln.

Lemma 21. If a lattice L is relatively complemented, then every chain has at

most three elements.

Proof. Assume that L is relatively complemented. Suppose there exist three
elements x, y, z ∈ L − {0} such that 0 < x < y < z. Clearly x ∈ [0, x ∨ y].
Since L is relatively complemented, there exists t ∈ L such that x ∧ t = 0 and
x∨ t = x∨ y = y. Since x∧ t = 0, by the assumption, we get y = x∨ t = 1. This
is absurd. Therefore every chain of L has at most three elements.

A sublattice S of a lattice L is called a D-sublattice if 0 ∈ S and S ∩D 6= ∅.
An ideal J of a lattice is called D-ideal if J ∩D 6= ∅. Clearly every D-ideal is a
D-sublattice.

Theorem 22. The following assertions are equivalent in a lattice L:

(1) every D-sublattice is coherent;

(2) for any x, y ∈ L− {0}, x ∧ y = 0 implies x ∨ y = 1;

(3) L is a dense lattice or L is relatively complemented.

Proof. (1)⇒(2): Assume that every D-sublattice of L is coherent. Let x, y ∈
L−{0} be such that x∧y = 0. Suppose that x∨y 6= 1. Choose 1 6= z ∈ L such that
x∨y < z. Now, consider the sublattice L1 = {0, x, y, x∨y, z}. Clearly x∨y ∈ D1

and so L1 is a D-sublattice. Now, (x)∗∗∨ (y)∗∗ = {0, x}∨{0, y} = L1−{z} 6= L1.
Hence L1 is not coherent which contradicts the assumption. Therefore x∨ y = 1.

(2)⇒(3): Assume condition (2). Suppose L is non-dense. Then {0} is not a
prime ideal of L. Let P be a prime ideal of L. Suppose P is not minimal. Then



296 M. Sambasiva Rao and S.V. Siva Rama Raju

there exists minimal prime ideal M such that M ⊂ P . Choose 0 6= x ∈ M . Then
(x)∗ ∩ P = {0}, otherwise y ∈ (x)∗ ∩ P . Then x ∧ y = 0 and y ∈ P . By the
hypothesis, we get x ∨ y = 1. Since x ∈ P , we get 1 = x ∨ y ∈ P which is a
contradiction. Hence (x)∗ ∩ P = {0} ⊆ M . Since M is prime and M ⊂ P , we
must have (x)∗ ⊆ M . This contradicts the fact that M is minimal. Therefore P
is minimal. By Theorem 5, L is relatively complemented.

(3)⇒(1): Assume condition (3). Let L1 be a D-sublattice of L and D1 is the
set of all dense elements of L1. If L is dense, then we are through. Suppose L
is relatively complemented. By Lemma 21, every chain in L has at most three
elements. Let x, y ∈ L1 be such that x∨y ∈ D1. Suppose x ∈ D1 or y ∈ D1. Then
clearly (x)∗∗

L1
∨ (y)∗∗

L1
= L1. Suppose x /∈ D1 and y /∈ D1. Suppose 0 < x ≤ x ∨ y.

If x = x ∨ y, then x ∈ D1 which is a contradiction. Hence 0 < x < x ∨ y. Since
every chain has at most three elements, x ∨ y will be the greatest element of L1.
Hence x ∨ y ∈ (x)∗∗

L1
∨ (y)∗∗

L1
. Therefore (x)∗∗

L1
∨ (y)∗∗

L1
= L1.

Theorem 23. The following assertions are equivalent in a lattice L:

(1) L is coherent;

(2) each proper D-ideal is a coherent sublattice;

(3) for each d ∈ D, [0, d] is a coherent sublattice.

Proof. (1)⇒(2): Assume that L is a coherent lattice. Let J be a D-ideal of L
with J 6= L. Suppose x, y ∈ J be such that x∨ y ∈ DJ ⊆ D. Since L is coherent,
we get (x)∗∗ ∨ (y)∗∗ = L. Write (a)∗∗

J
= J ∩ (a)∗∗ for any a ∈ J . Clearly (a)∗∗

J
is

an ideal in J with (a)∗
J
is an annulet of a in J . Now, we get

J = J ∩ L = J ∩ {(x)∗∗ ∨ (y)∗∗} = {J ∩ (x)∗∗} ∨ {J ∩ (y)∗∗} = (x)∗∗
J

∨ (y)∗∗
J

which yields that J is a coherent sublattice of L.

(2)⇒(3): It is obvious because of [0, d] is a proper D-ideal for any d ∈ D.

(3)⇒(1): By taking d = 1, the proof follows.

Definition. For any non-empty subset A of a lattice L, define

Aτ = {x ∈ L | (a)∗∗ ∨ (x)∗∗ = L for all a ∈ A}

Clearly {0}τ = D and Lτ = D. For any a ∈ L, we denote ({a})τ by (a)τ .
Then it is obvious that (0)τ = D and (1)τ = L.

Proposition 24. For any non-empty subset A of L, Aτ is a D-filter of L.

Proof. Clearly D ⊆ Aτ . Let x, y ∈ Aτ . For any a ∈ A, we get (x∧y)∗∗∨ (a)∗∗ =
{(x)∗∗ ∩ (y)∗∗} ∨ (a)∗∗ = {(x)∗∗ ∨ (a)∗∗} ∩ {(y)∗∗ ∨ (a)∗∗} = L ∩ L = L. Hence
x ∧ y ∈ Aτ . Again, let x ∈ Aτ and x ≤ y. Then (x)∗∗ ∨ (a)∗∗ = L for any a ∈ A
and (x)∗∗ ⊆ (y)∗∗. For any c ∈ A, we get L = (x)∗∗ ∨ (c)∗∗ ⊆ (y)∗∗ ∨ (c)∗∗. Hence
y ∈ Aτ . Therefore Aτ is a D-filter of L.
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The following lemma is a direct consequence of the above definition.

Lemma 25. For any two non-empty subsets A and B of a lattice L, the following
properties hold:

(1) Aτ =
⋂
a∈A

(a)τ ,

(2) A ∩Aτ ⊆ D,

(3) A ⊆ B implies Bτ ⊆ Aτ ,

(4) A ⊆ Aττ ,

(5) Aτττ = Aτ ,

(6) Aτ = L if and only if A ⊆ D.

In case of filters, we have the following result.

Proposition 26. For any two filters F,G of a lattice L, (F ∨G)τ = F τ ∩Gτ .

Proof. Clearly (F ∨G)τ ⊆ F τ ∩Gτ . Conversely, let x ∈ F τ ∩Gτ . Let c ∈ F ∨G
be an arbitrary element. Then c = i ∧ j for some i ∈ F and j ∈ G. Now
(x)∗∗∨ (c)∗∗ = (x)∗∗∨ (i∧ j)∗∗ = (x)∗∗∨{(i)∗∗∩ (j)∗∗} = {(x)∗∗∨ (i)∗∗}∩{(x)∗∗∨
(j)∗∗} = L ∩ L = L. Thus x ∈ (F ∨G)τ and therefore (F ∨G)τ = F τ ∩Gτ .

The following corollary is a direct consequence of the above results.

Corollary 27. Let L be a lattice and a, b ∈ L. Then the following hold:

(1) a ≤ b implies (a)τ ⊆ (b)τ ,

(2) (a ∧ b)τ = (a)τ ∩ (b)τ ,

(3) (a)τ = L if and only if a is dense,

(4) a ∈ (b)τ implies a ∨ b ∈ D,

(5) (a)∗ = (b)∗ implies (a)τ = (b)τ .

For any filter F of a lattice L, it can be easily observed that F τ ⊆ F ◦.
However, we derive a set of equivalent conditions for every filter to satisfy the
reverse inclusion which leads to a characterization of coherent lattices.

Theorem 28. The following assertions are equivalent in a lattice L:

(1) L is a coherent lattice;

(2) for any two filters F,G of L, F ∩G ⊆ D if and only if F ⊆ Gτ ;

(3) for any filter F of L, F τ = F ◦;

(4) for any a ∈ L, (a)τ = (a)◦.
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Proof. (1)⇒(2): Assume that L is coherent. Let F and G be two filters of L.
Suppose F ∩G ⊆ D. Let x ∈ F . For any a ∈ G, we get x∨a ∈ F ∩G ⊆ D. Hence
x ∨ a ∈ D. Since L is coherent, we get (x)∗∗ ∨ (a)∗∗ = L for all a ∈ G. Thus
x ∈ Gτ . Therefore F ⊆ Gτ . Conversely, suppose that F ⊆ Gτ . Let x ∈ F ∩ G.
Then x ∈ F ⊆ Gτ . Hence x ∈ G ∩Gτ ⊆ D. Therefore F ∩G ⊆ D.

(2)⇒(3): Assume condition (2). Let F be a filter of L. Clearly F τ ⊆ F ◦.
Conversely, let x ∈ F ◦. Hence, for any a ∈ F , we have

x ∨ a ∈ D ⇒ [x) ∩ [a) ⊆ D

⇒ [x) ⊆ [a)τ ⊆ (a)τ by (2)

⇒ (x] ⊆
⋂

a∈F

(a)τ = F τ

⇒ x ∈ F τ

which concludes that F ◦ ⊆ F τ . Therefore F ◦ = F τ .

(3)⇒(4): Assume condition (3). Let a ∈ L. Clearly (a)τ ⊆ (a)◦. Conversely,
let x ∈ (a)◦. Since ([a))◦ = (a)◦, by (3), we get x ∈ ([a))◦ = ([a))τ . Since
{a} ⊆ [a), we get x ∈ ([a))τ ⊆ ({a})τ = (a)τ .

(4)⇒(1): Assume condition (4). Let a, b ∈ L and suppose a ∨ b ∈ D. Then
a ∈ (b)◦ = (b)τ . Hence (a)∗∗ ∨ (b)∗∗ = L. Therefore L is a coherent lattice.
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