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1. Introduction23

The classification of groups up to isomorphisms is one of the most classical prob-24

lems in group theory. This problem is frequently reduced to the theory of exten-25

sions of groups and cohomology theory of groups (see [6, 9, 11–15]). This work26

investigate the classification of groups using a well known structure operation,27

namely the knit product. Knit products were introduced by Zappa in [20], and28

have been intensively studied starting with the classical papers by Szép [16–18].29

Other terms referring to Knit products used in the literature are Zappa-Szép30

products, bicrossed products, general products, and factorisable groups, as stated31

in ( [1,3,17,19] and the references therein). One of the most important examples32

of knit product is Hall’s theorem which shows that every finite soluble group is33
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a knit product of a Sylow p-subgroup and a Hall p-subgroup [7]. In order to fix34

our notation, we recall first the construction of knit products.35

Let G1 and G2 be two groups. A group G is called the internal knit product36

of G1 and G2 if G = G1G2 and G1 ∩ G2 = 1, or, equivalently, for each g ∈ G37

there exists a unique g1 ∈ G1 and a unique g2 ∈ G2 such that g = g1g2. The knit38

product is a generalization of the semidirect product of two groups for the case39

when neither factor is required to be normal.40

The factorization problem is one of the most famous open problems of group41

theory which can be divided into two distinct subproblems. The first is to describe42

all groups which arise as knit products of G1 and G2. The second is to classify up43

to isomorphism all the knit products of G1 and G2 (The isomorphism problem).44

This is a problem of classifying whether two knit products are isomorphic. The45

first problem is solved for knit products with cyclic factors. Notably, Rédei has46

determined the structure of the knit product of two cyclic groups which are not47

both finite [10]. Douglas and Huppert have studied the knit products of two48

finite cyclic groups (see [5, 8]). In particular, in [1, Theorem 3.1], it is proved49

that a knit product of two finite cyclic groups, one of them being of prime order,50

is isomorphic to a semidirect product of the same cyclic groups. Apart from51

this, the isomorphism problem is still an open question in general even for knit52

products with cyclic factors. In this paper, we study the isomorphism problem for53

knit products in some cases. More precisely, we deal with isomorphisms of certain54

type, namely leaving one of the two factors or both invariant. In particular, we55

determine how the knit product can be reduced to the semidirect product of56

groups. Some examples of isomorphic knit products of two finite cyclic groups57

are given. Furthermore, we show possibility of various decompositions of a given58

unfaithful knit product.59

Throughout this paper, we denote by Z(G), Bij(G), End(G) and Aut(G),60

respectively, the center, the group of all bijections, the monoid of all endomor-61

phisms, and the automorphism group of G. Let θ ∈ Aut(G), γθ denotes the conju-62

gation by θ in Aut(G). For an endomorphism ρ ofG, we denote the fixed subgroup63

of ρ by FixG(ρ). For any two groups H and K, let Map(H,K), Hom(H,K) and64

AHom(H,K) denote the set of all maps, the set of all homomorphisms and the65

set of all anti-homomorphism from H to K, respectively.66

2. Preliminaries and Properties67

Let G1 and G2 be two groups and G an internal knit product of G1 and G2. For68

each g1 ∈ G1 and g2 ∈ G2, there exist α(g1, g2) ∈ G1 and β(g1, g2) ∈ G2 such69

that g2g1 = α(g1, g2)β(g1, g2). This defines a homomorphism α : G2 → Bij(G1)70

and an anti-homomorphism β : G1 → Bij(G2), where α(g2)(g1) = α(g1, g2) and71
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β(g1)(g2) = β(g1, g2), and satisfying the following conditions:72

α(1)(g1) = g1 and β(1)(g2) = g2,(1)

α(g2)(1) = β(g1)(1) = 1,(2)

α(g2)(g1g
′
1) = α(g2)(g1)α(β(g1)(g2))(g

′
1),(3)

β(g1)(g2g
′
2) = β(α(g′2)(g1))(g2)β(g1)(g

′
2)(4)

for all g1, g
′
1 ∈ G1 and g2, g

′
2 ∈ G2. More concisely, the first condition above

asserts the mapping α is a left action of G2 on G1 and that β is a right action
of G1 on G2. Now, let G1 and G2 be two groups, and let α : G2 → Bij(G1)
be a group homomorphism and β : G1 → Bij(G2) an anti-homomorphism which
satisfy the above conditions. Define the external bicrossed product of G1 and
G2 induced by (α, β) as the group G1 α▷◁β G2 with underlying set G1 ×G2 and
operation given by

(x, y) ·
α,β

(x′, y′) = (xα(y)(x′), β(x′)(y)y′)

for all x, x′ ∈ G1, and y, y′ ∈ G2. The subsets G1 × {1} and {1} × G2 are73

subgroups of G1 α▷◁βG2 isomorphic to G1 and G2, respectively. The internal knit74

product and the external knit product are isomorphic and then we can identify75

them in the sequel (see [2, Proposition 2.4]). If α is the trivial action then β is an76

action by group automorphisms and the knit product G1 α▷◁β G2 is, in fact, the77

right semidirect product G1 ⋊β G2. Similarly, if β is the trivial action then α is78

an action by group automorphisms and the knit product G1α▷◁βG2 is exactly the79

left semidirect product G1 α⋉G2. In particular, we have G1α▷◁βG2 = G1 ×G2 if80

and only if α and β are trivial action. If α and β are both nontrivial actions then81

we say that G1α▷◁βG2 is a proper knit product. Further, it is easy to check that82

the bicrossed product G1α▷◁βG2 is abelian if and only if G1 and G2 are abelian83

and the actions α and β are trivial. So, if G1 and G2 are both abelian, then84

G1α▷◁βG2
∼= G1 ×G2 if and only if α and β are trivial actions. But, in general,85

it is possible for a direct product to be isomorphic to a proper knit product as86

shown in the following example.87

Example 1. Let U3(F3) be the Heisenberg group over the finite field F3. This is88

a finite group of order 27 and a Sylow 3-subgroup of the linear group GL3(F3).89

The group U3(F3) has a fixed-point-free automorphism θ of order 8. Now, let90

G = U3(F3)× U3(F3) and consider the subgroups G1 = {(g, g) | g ∈ U3(F3)} and91

G2 = {(g, θ(g)) | g ∈ U3(F3)}. Clearly, we have G1
∼= G2

∼= U3(F3), G1∩G2 = {1}92

and G = G1G2. Thus, the group G is the proper knit product of G1 and G2.93

Now, in view of the preceding discussion the following problem seems natural.94

Problem 2. (The isomorphism problem) Let G1 and G2 be two groups. Classify95

up to an isomorphism all knit products of G1 and G2.96
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3. Knit product and split extensions97

Recall that a non-abelian group which has no non-trivial abelian direct factor is98

said to be purely non-abelian. In the next result, we give sufficient conditions for99

a proper knit product to be isomorphic to the direct product, for the case when100

one of the factors is a finite purely non-abelian group.101

Proposition 3. Let G1 be a finite purely non-abelian group and G2 a group. Sup-
pose that there exist homomorphisms δ ∈ Hom(G1, G2) and η ∈ Hom(G2, Z(G1))
such that

α(y)(x) = η(y)xη(β(x)(y))−1

and

β(x)(y) = δ(α(y)(x))−1yδ(x),

for all x ∈ G1, and y ∈ G2. Then the knit product G1 α▷◁β G2 is isomorphic to102

the direct product G1 ×G2.103

Proof. Define a map φ between G1 α▷◁β G2 and G1 × G2 given by φ(x, y) =104

(xη(y), δ(x)y), for all x ∈ G1, y ∈ G2. By using the assumption, we check easily105

that φ is a group homomorphism. Now, let φ(x, y) = 1. Then xη(y) = 1 and106

δ(x)y = 1. Thus, we get η(δ(x)) = x. Since θ = η◦δ ∈ Hom(G1, Z(G1)), it follows107

that Im(θ)⊴G1. Therefore, using Fitting’s Lemma and the fact that G1 is purely108

non-abelian, we get x = 1 and then y = 1. Hence, φ is one-to-one. On the other109

hand, take (g1, g2) ∈ G1 × G2 such that φ(x, y) = (g1, g2). Then, xη(y) = g1110

and δ(x)y = g2, which follows that x−1θ(x) = η(g2)g
−1
1 . Since G1 is purely non-111

abelian, it follows that the map fθ : g 7→ g−1θ(g) is an anti-monomorphism and112

therefore, it defines an anti-automorphism of G1. Hence x = f−1
θ (η(g2)g

−1
1 ) and113

y = δ(f−1
θ (g1η(g

−1
2 )))g2. Thus, φ is onto and then it is a group isomorphism. As114

required.115

Remark 4. The previous proposition will not be true if G1 is not purely non-116

abelian. Indeed, assume that G2 is an abelian direct factor of G1. Let φ be the117

map defined in the previous proof such that η(y) = δ(y) = y−1 for all y ∈ G2.118

Thus, we get φ(y, y) = (1, 1) and therefore, φ is not an isomorphism.119

Further, a proper knit product can be also isomorphic to a right or a left120

semidirect product. For example, [1, Theorem 3.1] states that a knit product of121

two cyclic groups G1 and G2, one of which has prime order, is isomorphic to a122

semidirect product of G1 and G2. In general, we have123

Proposition 5. Let G1 and G2 be two groups. Suppose that there exist a homo-124

morphism δ ∈ Hom(G1,Ker(α)) such that β(x)(y) = δ(α(y)(x))−1yδ(x). Then125

the knit product G1 α▷◁βG2 is isomorphic to the left semidirect product G1 α⋉G2.126
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Proof. Indeed, the bijection φ between G1 α▷◁β G2 and G1 α⋉ G2 given by127

φ(x, y) = (x, δ(x)y) is clearly a group isomorphism.128

Similarly, we have129

Proposition 6. Let G1 and G2 be two groups. Suppose that there exist a homo-130

morphism η ∈ Hom(G2,Ker(β)) such that α(y)(x) = η(y)xη(β(x)(y))−1. Then131

the knit product G1α▷◁βG2 is isomorphic to the right semidirect product G1⋊βG2.132

4. Isomorphism problem for knit products133

Let α, α′ ∈ Hom(G2,Bij(G1)) and β, β′ ∈ AHom(G1,Bij(G2)). Let pri : G1α′▷◁β′134

G2 −→ Gi be the ith canonical projection and ti : Gi −→ G1 α▷◁β G2 be the135

ith canonical injection. Let φ be a group homomorphism from G1 α▷◁β G2 to136

G1 α′▷◁β′ G2 and set φij = pri ◦ φ ◦ tj where 1 ≤ i, j ≤ 2. So we can write φ in137

the matrix form: φ =

(
φ11 φ12

φ21 φ22

)
. Notice that tj is a group homomorphism138

but pri is not. Furthermore, we have the following lemmas which we need in the139

sequel.140

Lemma 7. Let φ =

(
φ11 φ12

φ21 φ22

)
be a group homomorphism from G1 α▷◁β G2141

to G1 α′▷◁β′ G2. Then142

(5) φ(x, y) = (φ11(x)α
′(φ21(x))(φ12(y)), β′(φ12(y))(φ21(x))φ22(y))

for all x ∈ G1, and y ∈ G2.143

Proof. Indeed, the required equation follows directly by applying the homo-144

morphism φ to the formula (x, y) = (x, 1) ·
α,β

(1, y) and using the equations145

φ(x, 1) = (φ11(x), φ21(x)) and φ(1, y) = (φ12(y), φ22(y)).146

Let φ =

(
φ11 φ12

φ21 φ22

)
be an isomorphism between G1 α▷◁β G2 and G1 α′▷◁β′147

G2 and let φ−1 =

(
φ′
11 φ′

12

φ′
21 φ′

22

)
be its inverse. The following lemma follows148

directly from the matrix identities φ ◦ φ−1 = φ−1 ◦ φ =

(
IdG1 1
1 IdG2

)
.149

Lemma 8. Keep the preceding notations. We have150

φ11(φ
′
11(x))α

′(φ21(φ
′
11(x)))(φ12(φ

′
21(x))) = x,(6)

φ′
11(φ11(x))α(φ

′
21(φ11(x)))(φ

′
12(φ21(x))) = x,(7)

β′(φ12(φ
′
22(y)))(φ21(φ

′
12(y)))φ22(φ

′
22(y)) = y,(8)

β(φ′
12(φ22(y)))(φ

′
21(φ12(y)))φ

′
22(φ22(y)) = y,(9)
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for all x ∈ G1, and y ∈ G2.151

From now, if φ =

(
φ11 φ12

φ21 φ22

)
is a map from G1 α▷◁β G2 to G1 α′▷◁β′ G2,152

then φ is defined by the formula (5).153

Definition. The groups G1 α▷◁βG2 and G1 α′▷◁β′ G2 are called lower isomorphic,154

if there exists an isomorphism φ : G1α▷◁βG2 −→ G1α′▷◁β′G2 leaving G2 invariant.155

Theorem 9. Let G1 and G2 be two groups. The knit products G1 α▷◁β G2 and156

G1 α′▷◁β′ G2 are lower isomorphic if and only if there exist φ22 ∈ Aut(G2), φ11 ∈157

Bij(G1) and a map φ21 ∈ Map(G1, G2) such that158

(i) φ11(xx
′) = φ11(x)α

′(φ21(x))(φ11(x
′)),159

(ii) φ21(xx
′) = β′(φ11(x

′))(φ21(x))φ21(x
′),160

(iii) φ22(β(x)(y)) = φ21(α(y)(x))
−1β′(φ11(x))(φ22(y))φ21(x),161

(iv) α′(φ22(y)) = φ11 ◦ α(y) ◦ φ−1
11 ,162

for all x, x′ ∈ G1 and y ∈ G2.163

Proof. Let φ =

(
φ11 φ12

φ21 φ22

)
be a group isomorphism between G1 α▷◁β G2 and164

G1 α′▷◁β′ G2 leaving the group G2 invariant. Evaluate the left hand side and right165

hand side of the formula φ(x, 1) ·
α′,β′

φ(x′, 1) = φ(xx′, 1), we get the conditions166

(i) and (ii). Similarly, the formula φ(1, y) ·
α′,β′

φ(1, y′) = φ(1, yy′) implies that167

φ22 ∈ End(G2). Further, the conditions (iii) and (iv) follow from the formula168

φ(1, y) ·
α′,β′

φ(x′, 1) = φ(α(y)(x′), β(x′)(y)). On the other hand, by Lemma 8,169

the equations (6)-(9) implies that φ11 ◦ φ′
11 = φ′

11 ◦ φ11 = IdG1 and φ22 ◦ φ′
22 =170

φ′
22◦φ22 = IdG2 . Therefore, φ11 and φ22 are bijective. Conversely, a computation171

shows that the map φ =

(
φ11 1
φ21 φ22

)
is a group homomorphism. So, it remains172

to prove that φ is bijective. If φ(x, y) = 1, we obtain φ21(x)φ22(y) = 1 and173

φ11(x) = 1. So x = 1 and then φ22(y) = 1 since φ21 is unitary. This implies that174

y = 1 and therefore φ is one-to-one. Now, let (x, y) ∈ G1α′▷◁β′G2, we can quickly175

check that φ(φ−1
11 (x), φ

−1
22 (φ21(φ

−1
11 (x))

−1y)) = (x, y). Therefore φ is onto. Thus,176

the proof is completed177

Let G1 =< x > and G2 =< y > be two cyclic groups of orders p2 and n,178

where p is an odd prime dividing n. Let r and t be two numbers prime to p179

such that (pr + 1)p ≡ 1 mod n. Consider the actions α : G2 → Bij(G1) and180

β : G1 → Bij(G2) defined by α(y)(x) = xt, α(yp)(x) = x, β(x)(y) = ypr+1 and181
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β(x)(yp) = yp(pr+1) such that gcd((t− 1), p2) = p and p(pr + 1)p ≡ p mod n. In182

this case, the corresponding knit product G1 α▷◁β G2 is denoted by G1 t▷◁r G2.183

Note that G1 t▷◁r G2 is the group G defined by Yacoub in [19, Theorem 5].184

Example 10. Keep the above notation. For two different numbers pairs (r, t)185

and (r′, t′), suppose that jt′s ≡ jt mod p2 and s(pr′ + 1)j ≡ s(pr + 1) mod n186

for some numbers s and j such that gcd(j, p2) = 1 and gcd(s, n) = 1. Then, the187

knit products G1 t▷◁r G2 and G1 t′▷◁r′ G2 are lower isomorphic.188

Proof. Indeed, consider the automorphisms φ11 ∈ Aut(G1) and φ22 ∈ Aut(G2)189

defined by φ22(y) = ys and φ11(x) = xj . Define the map φ21 : G1 → G2 by190

φ21(x
k) = yp

∑k−1
v=0(pr+1)jv . Inductively, using (3), we have α′(yp)(xu) = xu and191

then α′(yv)(xu) = xut
′v
for all u and v. So α′(φ21(x))◦φ11 = φ11 and then we get192

the condition (i). Similarly, by using (4), we get β′(xu)(yλp) = yλp(pr
′+1)u for all193

u and λ, and then we obtain (ii). Furthermore, the equation (iv) follows directly194

from the condition jt′s ≡ jt mod p2. Now, the condition p(pr + 1)p ≡ p mod n195

implies that φ21(α(y
v)(xu)) = φ21(x

u) for all u and v. Since (pr + 1)t−1 ≡ 1196

mod n and (pr′+1)t−1 ≡ 1 mod n, it follow from (4) that β(xu)(yv) = yv(pr+1)u
197

and β′(xu)(yv) = yv(pr
′+1)u for all u and v. Hence, the condition s(pr′ + 1)j ≡198

s(pr + 1) mod n gives us φ22(β(x
u)(yv)) = β′(φ11(x

u))(φ22(y
v)) for all u and199

v. Thus, we obtain (iii). Therefore, by the previous theorem, the knit products200

G1 t▷◁r G2 and G1 t′▷◁r′ G2 are lower isomorphic.201

As direct consequences of Theorem 9, we have202

Corollary 11. Let G1 and G2 be two groups. The groups G1 α▷◁β G2 and G1 α′⋉203

G2 are lower isomorphic if and only if there exist ρ ∈ Aut(G2), δ ∈ Hom(G1, G2)204

and a bijective 1-cocycle σ ∈ Z1(G1, G1, α
′ ◦ δ) such that205

ρ(β(x)(y)) = δ(α(y)(x))−1ρ(y)δ(x),

α′(ρ(y)) = σ ◦ α(y) ◦ σ−1,

for all x ∈ G1 and y ∈ G2.206

Corollary 12. Let G1 and G2 be two groups. The groups G1 α▷◁β G2 and G1⋊β′207

G2 are lower isomorphic if and only if the action α is trivial and there exist208

σ ∈ Aut(G1), ρ ∈ Aut(G2) and a 1-cocycle δ ∈ Z1(G1, G2, β
′ ◦ σ) such that209

ρ(β(x)(y)) = δ(x)−1β′(σ(x))(ρ(y))δ(x) for all x ∈ G1 and y ∈ G2.210

Definition. The knit products G1 α▷◁β G2 and G1 α′▷◁β′ G2 are called upper211

isomorphic, if there exists an isomorphism φ : G1 α▷◁β G2 −→ G1 α′▷◁β′ G2212

leaving G1 invariant. If in addition the isomorphism φ leaves G2 invariant, then213

G1 α▷◁β G2 and G1 α′▷◁β′ G2 are said to be diagonally isomorphic.214
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Theorem 13. Let G1 and G2 be two groups. The knit products G1 α▷◁β G2215

and G1 α′▷◁β′ G2 are upper isomorphic if and only if there exist φ11 ∈ Aut(G1),216

φ22 ∈ Bij(G2) and φ12 ∈ Map(G2, G1) such that217

(i) φ22(yy
′) = β′(φ12(y

′))(φ22(y))φ22(y
′),218

(ii) φ12(yy
′) = φ12(y)α

′(φ22(y))(φ12(y
′)),219

(iii) φ11(α(y)(x
′)) = φ12(y)α

′(φ22(y))(φ11(x
′))φ12(β(x

′)(y))−1,220

(iv) β′(φ11(x
′)) = φ22 ◦ β(x′) ◦ φ−1

22 ,221

for all x, x′ ∈ G1 and y, y′ ∈ G2.222

Proof. Let φ be a map between G1 α▷◁β G2 and G1 α′▷◁β′ G2. By apply-223

ing the same arguments as those used in the proof of Theorem 9, we claim224

that the map φ is a group homomorphism leaving the group G1 invariant if225

and only if φ =

(
φ11 φ12

1 φ22

)
such that φ11 ∈ End(G1), φ22 ∈ Map(G2, G2)226

and φ12 ∈ Map(G2, G1) satisfying the conditions (i)-(iv). It remains to prove227

that φ is bijective if and only if φ11 and φ22 are bijective. If φ is bijective,228

by Lemma 8, the maps φ11 and φ22 are clearly bijective. Conversely, sup-229

pose that φ11 and φ22 are bijective and let (x, y) ∈ G1 α′▷◁β′ G2. We see that230

φ(φ−1
11 (xφ12(φ

−1
22 (y))

−1), φ−1
22 (y)) = (x, y) which implies that φ is surjective. The231

injectivity is clear and then φ is bijective. As required.232

Example 14. Let (r, t) and (r′, t′) be the pairs given in Example 10. The knit233

products G1 t▷◁r G2 and G1 t′▷◁r′ G2 are also upper isomorphic. Indeed, consider234

the automorphisms φ11 ∈ Aut(G1) and φ22 ∈ Aut(G2) defined in Example 10 and235

define the map φ12 : G2 → G1 by φ12(y
k) = xkp for all k. Using t ≡ 1 mod p, we236

get (ii). Furthermore, the condition (i) follows by using (pr′ + 1)p ≡ 1 mod n.237

Similarly, the relation jt′s ≡ jt mod p2 gives us the condition (iii). Finally,238

the condition (iv) follows immediately from the relation s(pr′ + 1)j ≡ s(pr + 1)239

mod n. Thus, by the previous result, the knit products G1 t▷◁rG2 and G1 t′▷◁r′G2240

are upper isomorphic.241

Now, as consequences of Theorem 13, we give the following results.242

Corollary 15. Let G1 and G2 be two groups. The groups G1 α▷◁β G2 and G1 α′⋉243

G2 are upper isomorphic if and only if the action β is trivial and there exist244

σ ∈ Aut(G1), ρ ∈ Aut(G2) and a 1-cocycle η ∈ Z1(G2, G1, α
′ ◦ ρ) such that245

σ(α(y)(x)) = η(y)α′(ρ(y))(σ(x))η(y)−1 for all x ∈ G1 and y ∈ G2.246
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Corollary 16. Let G1 and G2 be two groups. The groups G1 α▷◁β G2 and G1⋊β′247

G2 are upper isomorphic if and only if there exist σ ∈ Aut(G1), η ∈ Hom(G2, G1)248

and a bijective 1-cocycle ρ ∈ Z1(G2, G2, β
′ ◦ η) such that249

σ(α(y)(x)) = η(y)σ(x)η(β(x)(y))−1,

β′(σ(x)) = ρ ◦ β(x) ◦ ρ−1,

for all x ∈ G1 and y ∈ G2.250

Corollary 17. Let G1 and G2 be two groups. The knit products G1 α▷◁β G2 and251

G1 α′▷◁β′ G2 are diagonally isomorphic if and only if there exist σ ∈ Aut(G1) and252

ρ ∈ Aut(G2) such that α′ ◦ ρ = γσ ◦ α and β′ ◦ σ = γρ ◦ β.253

Example 18. Let G1 =< x > and G2 =< y > be two cyclic groups of orders
12 and 3, respectively. Consider the actions α, α′ : G2 → Bij(G1) and β : G1 →
Aut(G2) defined by

β(x)(y) = y−1,

α(y)(xk) =

{
xk, k even

xk+4, k odd

and

α′(y)(xk) =

{
xk, k even

xk+8, k odd

Now, consider the automorphisms σ ∈ Aut(G1) and ρ ∈ Aut(G2) defined by254

ρ(y) = y2 and σ(x) = x7. By a simple computation, we get α′ ◦ ρ = γσ ◦ α and255

β ◦ σ = γρ ◦ β. Hence, by the previous corollary, the knit products G1 α▷◁β G2256

and G1 α′▷◁β G2 are diagonally isomorphic.257

Remark 19. Under some conditions, it is possible for two isomorphic knit prod-258

ucts to be upper, lower or diagonally isomorphic. Indeed, suppose that G1 and259

G2 have coprime order. Let φ =

(
φ11 φ12

φ21 φ22

)
be an isomorphism between260

G1 α▷◁β G2 and G1 α′▷◁β′ G2. By evaluating the left hand side and the right hand261

side of the formulas φ(x, 1) ·
α′,β′

φ(x′, 1) = φ(xx′, 1) and φ(1, y) ·
α′,β′

φ(1, y′) =262

φ(1, yy′), we get the condition (ii) of Theorem 9 and the condition (ii) of The-263

orem 13. If Im(φ11) ≤ Ker(β′), then φ21 is group homomorphism and therefore264

it must be trivial. That is G1 α▷◁β G2 and G1 α′▷◁β′ G2 are lower isomorphic.265

Similarly, if Im(φ22) ≤ Ker(α′) then they must be upper isomorphic. Hence, if266

we have the both conditions, the isomorphic knit products are in fact diagonally267

isomorphic.268
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Remark 20. Let G1 and G2 be two groups. Suppose that the knit products269

G1 α▷◁β G2 and G1 α′▷◁β′ G2 are diagonally isomorphic. In view of the preceding270

corollary, one can find automorphisms σ ∈ Aut(G1) and ρ ∈ Aut(G2) so that271

α′(ρ(G2)) = σ◦α(G2)◦σ−1 and β′(σ(G1)) = ρ◦β(G1)◦ρ−1. Since ρ(G2) = G2 and272

σ(G1) = G1, it follows that the images α′(G2) and α(G2) are conjugate subgroups273

of Aut(G1), and β′(G1) and β(G1) are conjugate subgroups of Aut(G2).274

Conversely, the conjugacy of the images of the corresponding actions does
not necessarily give us isomorphic knit products. For example, let G1 = ⟨g⟩ be
the cyclic group of order 7 and G2 = ⟨a, b | a3 = b7 = 1, a−1ba = b2⟩. Let β and β′

be trivial actions and define α such that α(a)(g) = g2 and α(b) = IdG1 . Similarly,
we define α′ such that α′(a)(g) = g4 and α′(b) = IdG1 . We have α′(G2) = α(G2)
and β′(G1) = β(G1) = {IdG2}, but the corresponding knit products

⟨a, b, g | a3 = b7 = g7 = 1, bg = gb, a−1ba = b2, a−1ga = g2⟩

and
⟨a, b, g | a3 = b7 = g7 = 1, bg = gb, a−1ba = b2, a−1ga = g4⟩

are not isomorphic.275

5. Unfaithful knit product decompositions276

Definition. Let G = G1 α▷◁β G2 be a knit product of G1 and G2. We call277

G a faithful knit product if the actions α and β are faithful, that is α is a278

monomorphism and β is an anti-monomorphism.279

Let G1 α▷◁β G2 be an unfaithful knit product. Take H1 = Ker(β) and H2 =280

Ker(α). Let πi be the canonical projection of Gi onto Gi/Hi and let si : Gi/Hi →281

Gi be a group homomorphism such that πi◦si = IdGi/Hi
and Im(si◦πi) ≤ Z(Gi).282

Define the maps fx : G2 → G2 and fy : G1 → G1 by fx(y) = yβ(x)(y)−1 and283

fy(x) = α(y)(x)−1x. The following result shows that the characterization of284

isomorphism classes of the unfaithful knit product G1 α▷◁β G2 is reduced to that285

of the faithful knit product G1/H1 α▷◁β G2/H2 with α ◦ π2(y) ◦ π1 = π1 ◦ α(y)286

and β ◦ π1(x) ◦ π2 = π2 ◦ β(x) for all x ∈ G1 and y ∈ G2.287

Proposition 21. Keep the above notations and assumptions and let G1 be a288

group and G2 an abelian group. Suppose that Im(fx) ≤ FixG2(s2 ◦ π2) and289

Im(fy) ≤ FixG1(s1 ◦ π1) for all x ∈ G1 and y ∈ G2. Then the knit product290

G1/H1 α▷◁β G2/H2 is a direct factor of G.291

Proof. Indeed, it is directly checked that α(π2(y)) ∈ Epi(G1/H1). Now, if
α(π2(y))(π1(x)) = H1 then α(y)(x) ∈ H1. But, it follows from the equation
(4) that β ◦ α(y) = β for all y ∈ G2, so β(x) = IdG2 and then x ∈ H1. Hence
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α(π2(y)) ∈ Aut(G1/H1). Similarly, we get β(π1(x)) ∈ Aut(G2/H2). Further-
more, it is obvious to see that α : G2/H2 → Aut(G1/H1) is a group homomor-
phism and the map β : G1/H1 → Aut(G2/H2) is an anti-homomorphism. Now,
define the bijection φ : G1 α▷◁β G2 −→ H1 × (G1/H1 α▷◁β G2/H2)×H2 by

φ(x, y) = (xs1(π1(x
−1)), (π1(x), π2(y)), ys2(π2(y

−1)))

for all x ∈ G1, y ∈ G2. Let x, x
′ ∈ G1 and y, y′ ∈ G2, we have292

φ((x, y) ·
α,β

(x′, y′)) = φ(xα(y)(x′), β(x′)(y)y′)

= (xα(y)(x′)s1(π1(α(y)(x
′)−1x−1)),

(π1(x)π1(α(y)(x
′)), π2(β(x

′)(y))π2(y
′)),

β(x′)(y)y′s2(π2(y
′−1β(x′)(y)−1)))

using the assumption = (xs1(π1(x
−1))x′s1(π1(x

′−1)),

(π1(x)α(π2(y))(π1(x
′)), β(π1(x

′))(π2(y))π2(y
′)),

ys2(π2(y
−1)y′s2(π2(y

′−1)))

= (xs1(π1(x
−1))x′s1(π1(x

′−1)),

(π1(x), π2(y)) ·
α,β

(π1(x
′), π2(y

′)),

ys2(π2(y
−1)y′s2(π2(y

′−1)))

= φ(x, y)φ(x′, y′).

Thus φ is a group homomorphism and then it is a group isomorphism, as required.293

294

Using a similar computation as in the previous proof, the following proposi-295

tion provides another factorisation of G1 α▷◁β G2.296

Proposition 22. Let G1 and G2 be two groups. Suppose that Im(fx) ≤ FixG2(s2◦
π2) and Im(fy) ≤ FixG1(s1 ◦ π1) for all x ∈ G1 and y ∈ G2. Then

G1 α▷◁β G2
∼= (H2 ×G1/H1) α̃▷◁β̃ (G2/H2 ×H1)

where α̃(π2(y), h1)(h2, π1(x)) = (h2, π1(α(y)(x))) and β̃(h2, π1(x))(π2(y), h1) =297

(π2(β(x)(y)), h1).298
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