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Abstract

The rings considered in this article are commutative with identity which
admit at least one nonzero annihilating ideal. Let R be a ring. Let A(R)
denote the set of all annihilating ideals of R and let us denote A(R)\{(0)}
by A(R)∗. Recall that the annihilating-ideal graph of R, denoted by AG(R)
is an undirected graph whose vertex set is A(R)∗ and distinct vertices I and
J are adjacent if and only if IJ = (0). The aim of this article is to generalize
some of the known results on the domination number of AG(R). We also
determine the domination number of two spanning supergraphs of AG(R)
in the case of a reduced ring R.
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1. Introduction

The rings considered in this article are commutative with identity which are not
integral domains. Let R be a ring. An ideal I of R is said to be an annihilating
ideal of R if Ir = (0) for some r ∈ R\{0}. We denote the set of all annihilating
ideals of R by A(R) and A(R)\{(0)} by A(R)∗. The graphs considered in this
article are undirected and simple. For a graph G, we denote the vertex set of G
by V (G) and the edge set of G by E(G). Recall that the annihilating-ideal graph
of R denoted by AG(R) is an undirected graph with V (AG(R)) = A(R)∗ and
distinct vertices I and J are adjacent if and only if IJ = (0) [5]. Several graph
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parameters of AG(R) have been determined in [5, 6]. In the literature, the graph
AG(R) has been studied by several researchers.

Let G = (V,E) be a graph. A set S ⊆ V is called a dominating set of G
if each u ∈ V \S has at least one v ∈ S such that u and v are adjacent in G
[3, Definition 10.2.1]. A γ-set of G is a minimum dominating set of G, that is,
a dominating set of G whose cardinality is minimum [3, Definition 10.2.2]. The
domination number of G is the cardinality of a minimum dominating set of G;
it is denoted by γ(G) [3, Definition 10.2.3]. A total dominating set of G is a set
S ⊆ V such that each u ∈ V is adjacent to at least one vertex v in S. The
total dominating set S of G is called a minimum total dominating set of G if its
cardinality is minimum. The total domination number of G is the cardinaity of
a minimum total dominating set of G; it is denoted by γt(G) [14]. It is clear
that γ(G) ≤ γt(G). As the graphs G considered here are simple, it follows that
γt(G)) ≥ 2.

Unless otherwise specified, the rings considered in this article are not integral
domains. Let R be a ring. Several interesting results have been proved on the
dominating sets and the domination number (respectively, the total domination
number) of AG(R) by Nikandish et al. in [14, 15]. The aim of this article is
to generalize some of the results that are proved in [14] and to determine the
domination number of two spanning supergraphs of AG(R).

Let R be a ring. We denote the set of all prime ideals, the set of all maximal
ideals, and the set of all minimal prime ideals of R by Spec(R),Max(R), and
Min(R), respectively. We denote the set of all zero divisors of R by Z(R) and
Z(R)\{0} by Z(R)∗. We denote the group of units of R by U(R) and the set of
all non-units of R by NU(R). We denote the nilradical of R by nil(R). Recall
that R is said to be reduced if nil(R) = (0). If R is reduced, then since each
prime ideal of R contains at least one member from Min(R) by [12, Theorem
10], it follows from [2, Proposition 1.8] that

⋂

p∈Min(R) p = (0). Let I be a
proper ideal of R. Recall that p ∈ Spec(R) is said to be a maximal N-prime of
I if p is maximal with respect to the property of being contained in ZR(

R
I
) =

{r ∈ R | rx ∈ I for some x ∈ R\I}[11]. Hence, p ∈ Spec(R) is a maximal N-
prime of (0) if p is maximal with respect to the property of being contained in
Z(R). For convenience, we denote the set of all maximal N-primes of (0) in R
by MNP (R). Note that S = R\Z(R) is a multiplicatively closed subset (m.c.
subset) of R. If I is an ideal of R with I ∩ S = ∅, then it follows from Zorn’s
lemma and [12, Theorem 1] that there exists p ∈ MNP (R) such that I ⊆ p.
For any x ∈ Z(R), as Rx ∩ S = ∅, there exists p ∈ MNP (R) such that x ∈ p.
Therefore, if MNP (R) = {pα}α∈Λ, then it follows that Z(R) =

⋃

α∈Λ pα. We
denote the cardinalty of a set A by |A|. Note that |MNP (R)| = 1 if and only
if Z(R) is an ideal of R. The ring R is said to be quasi-local if |Max(R)| = 1.
A Noetherian quasi-local ring is referred to as a local ring. Let I be an ideal
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of R. Recall that the annihilator of I, denoted by AnnR(I) or by Ann(I) is
defined by AnnR(I) = {r ∈ R | Ir = (0)}. Recall that I is said to be essential
if I ∩ J 6= (0) for each nonzero ideal J of R. We denote by R[X] (respectively,
R[[X]]), the polynomial (respectively, power series) ring in one variable X over
R. The Krull dimension of R is simply referred to as the dimension of R and is
denoted by dimR. We denote the set R\{0} by R∗. Let Z(R)∗ 6= ∅. We denote
the zero-divisor graph of R by Γ(R). For any n ∈ N with n ≥ 2, we denote the
ring of integers modulo n by Zn.

Let us now describe briefly the results that are proved in this article. Let
R be a reduced ring with |Min(R)| < ∞. If γ(AG(R)) > 1, then it is known
that γ(AG(R)) = γt(AG(R)) = |Min(R)| [14, Theorem 2.4]. If γ(Γ(R)) > 1,
then it is known that γ(Γ(R)) = |Min(R)| [14, Theorem 2.5]. In Theorem 2.15
(respectively, Theorem 2.17) we generalize [14, Theorem 2.4] (respectively, [14,
Theorem 2.5]) to a larger class of reduced rings. Towards that goal, in Section
2, we first introduce the concept of reduced rings satisfying (∗) (respectively,
(∗∗)). We denote Min(R) ∩ A(R) by A(R). We say that R satisfies (∗) if
A(R) 6= ∅ and

⋂

p∈A(R) p = (0). We say that R satisfies (∗∗) if R satisfies (∗)
and p 6⊆ ⋃

q∈A(R)\{p} q for each p ∈ A(R). We first provide some examples of
reduced rings satisfying (∗) (respectively (∗∗)) (see Examples 2.1, 2.2, 2.9, and
2.10). In Example 2.11, a reduced ring R is provided such that p /∈ A(R) for each
p ∈ Min(R). If R satisfies (∗) and if γ(AG(R)) ≥ 2, then it is proved in Theorem
2.15 that γ(AG(R)) = |A(R)| = γt(AG(R)). It is noted in Remark 2.16 that
Theorem 2.15 generalizes [14, Theorem 2.4]. If R satisfies (∗∗) and if γ(Γ(R)) ≥ 2,
then it is shown in Theorem 2.17 that γ(Γ(R)) = |A(R)| = γt(Γ(R)). If R
satisfies (∗∗) and if γ(AG(R)) ≥ 2, then it is proved in Corollary 2.19 that
γ(AG(R)) = γt(AG(R)) = |A(R)| = γ(Γ(R)) = γt(Γ(R)) and is noted in Remark
2.20 that Corollary 2.19 generalizes [14, Corollary 2.6].

If R is an Artinian ring such that R 6∼= F1 × F2, where F1 and F2 are fields,
then it is known that γ(AG(R)) = γt(AG(R)) = |Min(R)| [14, Theorem 2.8].
Our next focus in Section 2 is to obtain a generalization of this result to any
zero-dimensional ring. Towards that goal, it is first proved in Theorem 2.24
that for a ring R with p ∈ A(R) for each p ∈ MNP (R) and γ(AG(R)) > 1,
γ(AG(R)) = γt(AG(R)) = |MNP (R)|. Let R be a ring such that dimR = 0.
It is clear that Spec(R) = Max(R) = Min(R). As any minimal prime ideal of
a ring is contained in its set of zero divisors (see [12, Theorem 84]), it follows
that Spec(R) = Min(R) = MNP (R). If γ(AG(R)) < ∞, then it is shown
in Proposition 2.29 that |MNP (R)| < ∞. It is proved in Proposition 2.30(1)
that γ(AG(R)) = 1 if and only if either (R,m) is quasi-local with m ∈ A(R) or
R ∼= F1 × F2 as rings, where Fi is a field for each i ∈ {1, 2}. If |MNP (R)| < ∞,
p ∈ A(R) for each p ∈ MNP (R) and R 6∼= F1 ×F2 as rings, where Fi is a field for
each i ∈ {1, 2}, then it is shown in Proposition 2.31(1) that γ(AG(R)) = |Min(R)|
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and if |Min(R)| ≥ 2, then γ(AG(R)) = |Min(R)| = γt(AG(R)). It is noted that
Proposition 2.31(1) generalizes [14, Theorem 2.8]. Let n ∈ N be such that n ≥ 3.
In Proposition 2.32, von Neumann regular rings R are characterized such that
γ(AG(R)) = n. Some examples are given which illustrate the results that are
proved in this section (see Examples 2.25 and 2.28).

Let R be a ring such that A(R)∗ 6= ∅. In Section 3 of this article, we discuss
some results on the domination number of two spanning supergraphs of AG(R).
Recall that the strongly annihilating-ideal graph of R, denoted by SAG(R) is an
undirected graph with V (SAG(R)) = A(R)∗ and distinct vertices I and J are
adjacent if and only if I ∩AnnR(J) 6= (0) and J ∩AnnR(I) 6= (0)[16]. If distinct
I, J ∈ A(R)∗ are adjacent in AG(R), then it is known that I and J are adjacent
in SAG(R) [16, Lemma 2.1(2)]. As V (AG(R)) = V (SAG(R)) = A(R)∗, it follows
that SAG(R) is a spanning supergraph of AG(R).

Several connections between the graph-theoretic properties of SAG(R) and
the algebraic properties of R have been studied and also the conditions under
which SAG(R) is identical to AG(R) have been investigated in [16]. In Section 3,
we first discuss some results on the domination number of SAG(R), where R is
a reduced ring such that SAG(R) 6= AG(R). For such a ring R, it is known that
|Min(R)| ≥ 3 by (1) ⇒ (2) of [16, Theorem 4.1] and it is proved in Proposition
3.3 that γ(SAG(R)) > 1 and in Theorem 3.4, it is shown that γ(SAG(R)) =
γt(SAG(R)) = 2. If the ring R (reduced or not) admits a non-trivial idempotent
element, then it is proved in Proposition 3.6 that γ(SAG(R)) ≤ 2. If R is not
reduced and admits an ideal I such that AnnR(I) = I, then it is shown in Lemma
3.7 that {I} is a dominating set of SAG(R). Some examples are given to illustrate
the results proved in this section (see Examples 3.5, 3.8, and 3.9).

Let R be a ring such that A(R)∗ 6= ∅. In Section 3, we also discuss some
results on the domination number of another spanning supergraph of AG(R).
Recall that the sum-annihilating essential ideal graph of R, denoted by AER is
an undirected graph with V (AER) = A(R)∗ and distinct vertices I and J are
adjacent if and only if AnnR(I) + AnnR(J) is an essential ideal of R [1]. The
article [1] contains many interesting results on AER. It is noted in [1, Observation
4(2)] that AG(R) is a spanning subgraph of AER. Among other results, the
authors of [1] have established sharp bounds on the domination number of AER

in [1, Section 4]. If R is a non-reduced ring, then γ(AER) = 1 [1, Corollary
8]. If R is a Noetherian reduced ring, then γ(AER) = |Min(R)| [1, Proposition
2]. For any reduced ring R, we verify in Proposition 3.11 that AG(R) = AER (a
fact which is not noted in [1]) and results on γ(AG(R)) are already contained in
Section 2 of this article.



Dominating sets of the annihilating-ideal graph 387

2. Some results on the domination number of AG(R)

Unless otherwise specified, the rings considered in this article are not integral
domains. Let R be a reduced ring with |Min(R)| < ∞. If γ(AG(R)) > 1,
then it is known that γ(AG(R)) = γt(AG(R)) = |Min(R)| [14, Theorem 2.4].
Firstly, the aim of this section is to generalize this result. Indeed, we prove this
result for reduced rings R satisfying the property (∗) (which we define now) and
deduce [14, Theorem 2.4]. For any reduced ring R, we denote Min(R)∩A(R) =
{p ∈ Min(R) | p ∈ A(R)} by A(R). We say that R satisfies (∗) if the following
conditions are satisfied: (1) A(R) 6= ∅ and (2)

⋂

p∈A(R) p = (0). If a reduced
ring R satisfies (∗) and γ(AG(R)) ≥ 2, then it is proved in Theorem 2.15 that
γ(AG(R)) = γt(AG(R)) = |A(R)|.

Let R be a reduced ring such that |Min(R)| < ∞. If γ(Γ(R)) > 1, then it
is known that γ(Γ(R)) = γt(Γ(R)) = |Min(R)| [14, Theorem 2.5]. Secondly, our
aim is to generalize this result. We prove this result for reduced rings R satisfying
the property (∗∗) (which we introduce now) and deduce [14, Theorem 2.5]. We
say that a reduced ring R satisfies (∗∗) if the following conditions hold: (1) R
satisfies (∗) and (2) For each p ∈ A(R), p 6⊆ ⋃

q∈A(R)\{p} q. Let R be a reduced
ring such that R satisfies (∗∗). If γ(Γ(R)) > 1, then it is shown in Theorem 2.17
that γ(Γ(R)) = γt(Γ(R)) = |A(R)|.

First, we provide some examples to illustrate the properties (∗) and (∗∗).
Example 2.1. Let R be a reduced ring such that Min(R) is finite. Then A(R) =
Min(R) and R satisfies (∗∗).
Proof. This is well-known. For the sake of completeness, we provide an argu-
ment. Let |Min(R)| = n. Since

⋂

p∈Min(R) p = (0) and R is not an integral
domain, it follows that n ≥ 2. Let Min(R) = {pi | i ∈ {1, 2, . . . , n}}. Let
i ∈ {1, 2, . . . , n}. As distinct minimal prime ideals of a ring are not comparable
under inclusion, it follows from [2, Proposition 1.11(ii)] that pi 6⊇

⋂

j∈Ai
pj , where

Ai = {1, 2, . . . , n}\{i}. Let xi ∈ (
⋂

j∈Ai
pj)\pi. Then it is clear that xi 6= 0

and pixi = (0). Hence, pi ∈ A(R) for each i ∈ {1, 2, . . . , n}. This shows that
A(R) = Min(R) and R satisfies (∗). For each i ∈ {1, 2, . . . , n}, it follows from
[2, Proposition 1.11(i)] that pi 6⊆

⋃

j∈Ai
pj . This shows that R satisfies (∗∗).

In Example 2.2, we provide a reduced ring R such that Min(R) is infinite
and R satisfies (∗) but R does not satisfy (∗∗). The reduced ring R given in
Example 2.2 is due to Gilmer and Heinzer [9, Example, page 16].

Example 2.2. Let {Xi}∞i=1 be a set of indeterminates. Let K[[X1, . . . ,Xn]] be
the power series ring in X1, . . . ,Xn over a field K and let D =

⋃∞
n=1 K[[X1, . . . ,

Xn]]. Let I be the ideal of D generated by {XiXj | i, j ∈ N, i 6= j}. Let R = D
I
.

Then R is a quasi-local reduced ring, A(R) = Min(R), Min(R) is infinite, and
R satisfies (∗) but it does not satisfy (∗∗).
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Proof. For each i ∈ N, it is convenient to denote Xi + I by xi. Note that R is
a quasi-local reduced ring with m =

∑∞
n=1Rxn as its unique maximal ideal and

Min(R) = {pi | i ∈ N}, where for each i ∈ N, pi is the ideal of R generated
by {xj | j ∈ N\{i}} (see [9, Example, page 16]). Thus Min(R) is infinite and
indeed, |Min(R)| = |N|. Let i ∈ N, Note that xi 6= 0 + I and pixi = (0 + I).
Therefore, pi ∈ A(R). This shows that Min(R) is infinite and p ∈ A(R) for
each p ∈ Min(R). Hence, A(R) = Min(R). Since for any reduced ring T ,
⋂

p∈Min(T ) p = (0), it follows that R satisfies (∗). Let i ∈ N. Let r ∈ pi. Since
pi is the ideal of R generated by {xj | j ∈ N\{i}}, it follows that there exist
j1, . . . , jn ∈ N\{i} with j1 < · · · < jn and rj1 , . . . , rjn ∈ R (where we can assume
jn > i) such that r =

∑n
k=1 rjkxjk . It is clear that r ∈ pj for any j ∈ N with

j > jn. This shows that pi ⊆
⋃

j∈N\{i} pj . Hence, R does not satisfy (∗∗).

Let R be the reduced ring mentioned in Example 2.2. We verify in Example
2.9 that R[X] (respectively, R[[X]]) satisfies (∗), R[X] does not satisfy (∗∗) but
R[[X]] satisfies (∗∗). First, we state and prove some lemmas which are useful in
the verification of Example 2.9.

Lemma 2.3. Let R be a reduced ring. Let p ∈ Spec(R). If p ∈ A(R), then
p ∈ Min(R).

Proof. By hypothesis, R is a reduced ring. Let p ∈ Spec(R). Assume that p ∈
A(R). Then there exists r ∈ R\{0} such that pr = (0). Since

⋂

q∈Min(R) q = (0),
it follows that r /∈ q for some q ∈ Min(R). From pr = (0), we get that p ⊆ q and
so, p = q ∈ Min(R).

If A is a subring of a ring B, then we assume that A contains the iden-
tity element of B. Let A be a subring of a ring B. We denote the collection
{C |C is a subring of B with A ⊆ C} by [A,B].

Lemma 2.4. Let R be a reduced ring. Let T ∈ [R,R[X]]. Then A(T ) = {p[X]∩
T | p ∈ A(R)}.

Proof. By hypothesis, R is a reduced ring. Let T ∈ [R,R[X]]. Since R[X]
is a reduced ring, we get that T is reduced. Note that T is not an integral
domain. Let p ∈ A(R). Then pr = (0) for some r ∈ R\{0}. This implies that
(p[X] ∩ T )r = (0). Since p[X] ∈ Spec(R[X]), it follows that p[X] ∩ T ∈ Spec(T ).
Therefore, p[X] ∩ T ∈ A(T ) ∩ Spec(T ). Hence, p[X] ∩ T ∈ Min(T ) by Lemma
2.3. Thus p[X] ∩ T ∈ Min(T ) ∩ A(T ) = A(T ). This shows that {p[X] ∩ T |
p ∈ A(R)} ⊆ A(T ). Let P ∈ A(T ) = Min(T ) ∩ A(T ). As any element of T
belongs to R[X], it follows that Pf(X) = (0) for some f(X) ∈ R[X]\{0}. Let
i ≥ 0 be least with the property that the coefficient of Xi in f(X), say ri 6= 0.
Let us denote P ∩ R by p. Then p ∈ Spec(R) and (p[X] ∩ T )ri = (0). It is
clear that ri /∈ p and so, ri /∈ P. Therefore, from (p[X] ∩ T )ri = (0), it follows
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that p[X] ∩ T ⊆ P. Since A(T ) ⊆ Min(T ), it follows that P ∈ Min(T ) and so,
P = p[X] ∩ T . As p ∈ Spec(R) ∩ A(R), we get that p ∈ Min(R) by Lemma 2.3
and hence, p ∈ A(R). Thus P = p[X] ∩ T for some p ∈ A(R). This proves that
A(T ) ⊆ {p[X] ∩ T | p ∈ A(R)} and so, A(T ) = {p[X] ∩ T | p ∈ A(R)}.

Lemma 2.5. Let R be a reduced ring. Let T ∈ [R,R[X]]. Then R satisfies (∗)
if and only if T satisfies (∗).
Proof. Let T ∈ [R,R[X]]. We know from Lemma 2.4 that A(T ) = {p[X] ∩ T |
p ∈ A(R)}. Hence, A(R) 6= ∅ if and only if A(T ) 6= ∅. For any given non-empty
family F = {pα | α ∈ Λ} ⊆ Spec(R), it is clear that

⋂

α∈Λ pα = (0) if and only if
⋂

α∈Λ(pα[X] ∩ T ) = (0). From these arguments, it follows that R satisfies (∗) if
and only if T satisfies (∗).

If p ∈ Spec(R) for a ring R, then it is known that p[[X]] ∈ Spec(R[[X]]).

Lemma 2.6. Let R be a reduced ring. Then for any T ∈ [R,R[[X]]], A(T ) =
{p[[X]] ∩ T | p ∈ A(R)}.
Proof. By hypothesis, R is a reduced ring. Hence, R[[X]] is a reduced ring. Let
T ∈ [R,R[[X]]]. So, T is a reduced ring and it is clear that T is not an integral
domain. This lemma can be proved using arguments similar to those that are
used in the proof of Lemma 2.4. Hence, we omit its proof.

Lemma 2.7. Let R be a reduced ring. Let T ∈ [R,R[[X]]]. Then R satisfies (∗)
if and only if T satisfies (∗).
Proof. Let T ∈ [R,R[[X]]]. For any non-empty family F = {pα | α ∈ Λ} ⊆
Spec(R), it is clear that

⋂

α∈Λ pα = (0) if and only if
⋂

α∈Λ(pα[[X]] ∩ T ) = (0).
With the help of Lemma 2.6, this lemma can be proved using arguments similar
to those that are used in the proof of Lemma 2.5.

Lemma 2.8. Let R be a reduced ring. Let T ∈ [R,R[X]] (respectively, T ∈
[R,R[[X]]]). If R satisfies (∗∗), then so does T .

Proof. By hypothesis, R is a reduced ring. Assume that R satisfies (∗∗). Let T ∈
[R,R[X]] (respectively, T ∈ [R,R[[X]]]). We know from Lemma 2.5 (respectively,
Lemma 2.7) that T satisfies (∗). We know from Lemma 2.4 (respectively, Lemma
2.6) that A(T ) = {p[X] ∩ T | p ∈ A(R)} in the case T ∈ [R,R[X]] (respectively,
A(T ) = {p[[X]] ∩ T | p ∈ A(R)} in the case T ∈ [R,R[[X]]]). Let P ∈ A(T ).
Then P = p[X]∩T in the case T ∈ [R,R[X]] (respectively, P = p[[X]]∩T in the
case T ∈ [R,R[[X]]]) for some p ∈ A(R). Since R satisfies (∗∗), there exists p ∈ p

such that p /∈ ⋃

q∈A(R)\{p} q. It is clear that p ∈ P. Let P′ ∈ A(T ) with P′ 6= P.

Then P′ = p′[X] ∩ T in the case T ∈ [R,R[X]] (respectively, P′ = p′[[X]] ∩ T in
the case T ∈ [R,R[[X]]]) for some p′ ∈ A(R)\{p}. By the choice of p, it is clear
that p /∈ p′ and so, p /∈ P′. This proves that T satisfies (∗∗).
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Example 2.9. Let R be the reduced ring which is considered in Example 2.2.
Then the following statements hold:

(1) T satisfies (∗) but T does not satisfy (∗∗) for each T ∈ [R,R[X]].

(2) R[[X]] satisfies (∗∗).

Proof. In the notation of the proof of Example 2.2, R is a quasi-local reduced
ring with m =

∑∞
n=1Rxn as its unique maximal ideal and Min(R) = {pi | i ∈ N},

where for each i ∈ N, pi is the ideal of R generated by {xj | j ∈ N\{i}}. It is
noted in the proof of Example 2.2 that xi 6= 0 + I and pixi = (0 + I) for each
i ∈ N. Hence, A(R) = Min(R) and it is verified in the proof of Example 2.2 that
R satisfies (∗) but R does not satisfy (∗∗).

(1) Note that A(T ) = {pi[X] ∩ T | i ∈ N} by Lemma 2.4. We know from
Lemma 2.5 that T satisfies (∗). Let i ∈ N and let f(X) ∈ pi[X] ∩ T . Then
f(X) =

∑k
t=0 rtX

t with rt ∈ pi for each t ∈ {0, . . . , k}. We know from the proof
of Example 2.2 that for each t ∈ {0, . . . , k}, there exists jt ∈ N with jt > i such
that rt ∈ pj for all j > jt. It is now clear that f(X) ∈ pj [X]∩T for all j ∈ N with
j > max(j0, . . . , jk). This shows that pi[X]∩T ⊆ ⋃

j∈N\{i}(pj [X]∩T ). Therefore,
T does not satisfy (∗∗).

(2) Observe that A(R[[X]]) = {pi[[X]] | i ∈ N} by Lemma 2.6. We know
from Lemma 2.7 that R[[X]] satisfies (∗). Let i ∈ N. Note that xi /∈ pi but
xj ∈ pi for all j ∈ N\{i}. Let fi(X) = (

∑∞
j=1 xjX

j)−xiX
i. Then it is clear that

fi(X) ∈ pi[[X]]\(⋃j∈N\{i} pj [[X]]). This proves that R[[X]] satisfies (∗∗).

In Example 2.10, we mention a reduced ring R such that A(R) is not finite,
R satisfies (∗∗), and B(R) 6= ∅, where we denote Min(R)\A(R) by B(R).

Let R be a ring. An element e of R is said to be idempotent if e = e2. An
idempotent element e of R is said to be non-trivial if e /∈ {0, 1}. For idempotent
elements e, f of R, it is not hard to verify that Re = Rf if and only if e = f .

Example 2.10. Let Λ be a set such that |Λ| ≥ 2. For each α ∈ Λ, let Rα be
an integral domain. Let R =

∏

α∈Λ Rα. Then R is a reduced ring such that
|A(R)| = |Λ|, R satisfies (∗∗), and if Λ is not finite, then A(R) is not finite, and
B(R) 6= ∅, where B(R) = Min(R)\A(R). Moreover, T satisfies (∗∗) for each
T ∈ [R,R[X]] (respectively, T ∈ [R,R[[X]]]).

Proof. Since Rα is an integral domain for each α ∈ Λ by assumption, it follows
that R =

∏

α∈Λ Rα is a reduced ring. Let α ∈ Λ. Let us denote by eα, the
element of R whose α-th coordinate equals 1 and β-th coordinate equals 0 for all
β ∈ Λ\{α} and let us denote by fα, the element of R whose α-th coordinate equals
0 and β-th coordinate equals 1 for all β ∈ Λ\{α}. It is clear that Reα, Rfα ∈
A(R)∗ and ReαRfα equals the zero ideal of R. Since Rα is an integral domain
and R

Rfα
∼= Rα as rings, it follows that Rfα ∈ Spec(R). Let us denote Rfα by pα.
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Since pα ∈ Spec(R) ∩ A(R), we obtain from Lemma 2.3 that pα ∈ Min(R). If α
and β are distinct, then fα and fβ are distinct idempotent elements of R and so,
pα 6= pβ. Observe that {pα | α ∈ Λ} ⊆ A(R). It is clear that

⋂

α∈Λ pα is the zero
ideal of R.

We next verify that if p ∈ Spec(R)∩A(R), then p = pα for some α ∈ Λ. Since
p ∈ A(R), there exists a nonzero element r ∈ R such that pr is the zero ideal of
R. Since

⋂

α∈Λ pα is the zero ideal of R, it follows that r /∈ pα for some α ∈ Λ.
As pr is the zero ideal of R, we get that p ⊆ pα. Since pα ∈ Min(R), it follows
that p = pα. This shows that A(R) = Min(R)∩A(R) ⊆ Spec(R)∩A(R) ⊆ {pα |
α ∈ Λ} ⊆ A(R) and so, A(R) = Spec(R) ∩ A(R) = {pα | α ∈ Λ}. Therefore,
|A(R)| = |Λ|. It is already noted in the previous paragraph that

⋂

α∈Λ pα is the
zero ideal of R. Thus R satisfies (∗). Since pα ∈ Min(R) is principal for each
α ∈ Λ, it follows that pα 6⊆ ⋃

β∈Λ\{α} pβ. This proves that R satisfies (∗∗).
We next verify that if Λ is not finite, then A(R) is not finite and B(R) =

Min(R)\A(R) 6= ∅. As |A(R)| = |Λ|, it follows that A(R) is not finite. It is clear
that I =

∑

α∈Λ Reα is a proper ideal of R. Hence, there exists m ∈ Max(R) such
that I ⊆ m by [2, Corollary 1.4]. It follows from [12, Theorem 10] that there exists
q ∈ Min(R) such that q ⊆ m. Since eα ∈ m and pα + Reα = R for each α ∈ Λ,
it follows that q /∈ {pα | α ∈ Λ} = A(R). Therefore, q ∈ Min(R)\A(R) = B(R)
and so, B(R) 6= ∅. Let α ∈ Λ. As fα /∈ q, it follows that eα ∈ q and so,
q ⊇ ∑

α∈Λ Reα = I.

Let T ∈ [R,R[X]] (respectively, T ∈ [R,R[[X]]]). As R satisfies (∗∗), it
follows from Lemma 2.8 that T satisfies (∗∗).

In Example 2.11, we provide a reduced ring R such that A(R) = ∅.
Recall that a ring R is von Neumann regular if given a ∈ R, there exists b ∈ R

such that a = a2b [8, Exercise 16, page 111]. Note that a ring R is von Neumann
regular if and only if dimR = 0 and R is reduced by (a) ⇔ (d) of [8, Exercise
16, page 111]. Thus if R is von Neumann regular, then Spec(R) = Max(R) =
Min(R).

Let R be a von Neumann regular ring. If a ∈ (R\{0})∩NU(R), then a = ue
for some u ∈ U(R) and e is a non-trivial idempotent element of R by (i)⇒(iii)
of [8, Exercise 29, page 113]. Let m ∈ Max(R). If m ∈ A(R), then me = (0) for
some non-trivial idempotent element e of R and so, m ⊆ R(1 − e). Therefore,
m = R(1− e). Thus if each maximal ideal of R belongs to A(R), then each prime
ideal of R is principal and hence, every ideal of R is principal by [12, Exercise 10,
page 8]. Thus if R is not Noetherian, then R admits at least one m ∈ Max(R)
such that m /∈ A(R).

In Example 2.11, we mention a von Neumann regular R such that m /∈ A(R)
for each m ∈ Max(R). Thus the reduced ring R is such that A(R) = ∅. For an
ideal I of a ring T , we denote {p ∈ Spec(T ) | p ⊇ I} by V (I).
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Example 2.11. Let L be the field of algebraic numbers (that is, L is the algebraic
closure of Q) and let A be the ring of all algebraic integers. Let R = A√

2A
. Then

R is a von Neumann regular ring, Max(R) is uncountable, and p /∈ A(R) for each
p ∈ Max(R).

Proof. Note that dimA = 1 by [8, Proposition 42.8(i)] and so, dimR = 0. Since√
2A is a radical ideal of A, it follows that R = A√

2A
is reduced. Therefore, R

is von Neumann regular. Note that Max(R) = { m√
2A

| m ∈ Max(A) ∩ V (2A)}.
Since 2 /∈ U(A) and any non-unit of A belongs to uncountably many maximal
ideals of A by [8, Proposition 42.8(i)], it follows that Max(R) is uncountable.
Let p ∈ Max(R). Then p = m√

2A
for some m ∈ Max(A) with m ∈ V (2A). If

p ∈ A(R), then p = R(a +
√
2A) for some a ∈ m, since R is von Neumann

regular. This implies that m =
√
2A+ aA. Note that A is a Bezout domain

[13, see page 86]. Hence, 2A + aA = cA for some c ∈ 2A + aA and therefore,
m =

√
cA. This is impossible, since any non-unit of A belongs to uncountably

many maximal ideals of A by [8, Proposition 42.8(i)]. Therefore, p /∈ A(R) for
each p ∈ Max(R) = Min(R). Therefore, A(R) = ∅.

The proof of Theorems 2.15 (respectively 2.17) needs the following prelimi-
naries. Let R be a reduced ring such that R satisfies (∗). Then ⋂

p∈A(R) p = (0).
It is not hard to verify that Z(R) =

⋃

p∈A(R) p. Let p ∈ A(R). Then pr = (0) for

some r ∈ R\{0}. Hence, p ⊆ ((0) :R r). Since r2 6= 0, it follows that r /∈ p. From
r((0) :R r) = (0) ⊂ p, we get that ((0) :R r) ⊆ p and so, p = ((0) :R r). The proof
of Proposition 2.12 (respectively, 2.13) needs the above two facts.

Proposition 2.12. Let R be a reduced ring. If R satisfies (∗), then the following
statements hold:

(1) γt(AG(R)) ≤ |A(R)|.
(2) γt(Γ(R)) ≤ |A(R)|.

Proof. By hypothesis, R is a reduced ring. Assume that R satisfies (∗).
(1) Let A(R) = {pα | α ∈ Λ}. Since

⋂

α∈Λ pα = (0) and R is not an integral
domain, it follows that |Λ| ≥ 2. Let α ∈ Λ. Note that there exists rα ∈ R\{0}
such that pα = ((0) :R rα). It is clear that Rrα ∈ A(R)∗. Let β ∈ Λ be such
that β 6= α. Observe that Rrα 6= Rrβ, since ((0) :R rα) = pα 6= pβ = ((0) :R rβ).
Let D = {Rrα | α ∈ Λ}. Observe that |D| = |Λ|. We claim that D is a total
dominating set of AG(R). Let I ∈ A(R)∗\D. Note that there exists r ∈ R\{0}
such that Ir = (0). Observe that r /∈ pα for some α ∈ Λ. Hence, I ⊆ pα and
so, IRrα = (0). Thus for any I ∈ A(R)∗\D, I and Rrα are adjacent in AG(R)
for some α ∈ Λ. This proves that D is a dominating set of AG(R). For any
distinct α, β ∈ Λ, rαrβ = 0 by [4, Lemma 3.6] and so, Rrα and Rrβ are adjacent
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in AG(R). This shows that D is a total dominating set of AG(R). Therefore,
γt(AG(R)) ≤ |D| = |Λ| = |A(R)|.

(2) Let Λ, A(R), and rα (α ∈ Λ) be as in the proof of (1). Note that
rα ∈ Z(R)∗ for each α ∈ Λ and rα 6= rβ for all distinct α, β ∈ Λ. Let D1 = {rα |
α ∈ Λ}. Let r ∈ Z(R)∗\D1. Note that r ∈ pα for some α ∈ Λ. Hence, rrα = 0.
This shows that D1 is a dominating set of Γ(R). Since rαrβ = 0 for all distinct
α, β ∈ Λ by [4, Lemma 3.6], it follows that D1 is a total dominating set of Γ(R).
Hence, γt(Γ(R)) ≤ |D1| = |A(R)|.

Proposition 2.13. Let R be a reduced ring such that |A(R)| ≥ 3. Then the
following statements hold:

(1) If R satisfies (∗), then |D| ≥ |A(R)| for any dominating set D of AG(R).

(2) If R satisfies (∗∗), then |D| ≥ |A(R)| for any dominating set D of Γ(R).

Proof. By hypothesis, R is a reduced ring such that |A(R)| ≥ 3.
(1) Assume that R satisfies (∗). Let A(R) = {pα | α ∈ Λ}. Note that |Λ| ≥ 3

by hypothesis. Let α ∈ Λ. Observe that there exists rα ∈ R\{0} such that
pα = ((0) :R rα), rα /∈ pα, and Rrα ∈ A(R)∗.

Let D be any dominating set of AG(R). Let α ∈ Λ. Let Aα = {pα} and let
Bα = {I ∈ A(R)∗ | Ipα = (0)}. It is clear that Aα 6= ∅ and from Rrα ∈ Bα, it
follows that Bα 6= ∅. We claim that D∩ (Aα∪Bα) 6= ∅. If pα ∈ D, then it is clear
that pα ∈ D∩Aα ⊆ D∩(Aα∪Bα). Suppose that pα /∈ D. SinceD is a dominating
set of AG(R), there exists I ∈ D such that pα and I are adjacent in AG(R).
Hence, pαI = (0). It is clear that I ∈ Bα. Hence, D∩(Aα∪Bα) 6= ∅. Let α, β ∈ Λ
be distinct. We claim that (Aα∪Bα)∩(Aβ∪Bβ) = ∅. It is clear that Aα∩Aβ = ∅.
As |Λ| ≥ 3 and distinct minimal prime ideals of a ring are not comparable under
inclusion, it follows that pαpβ 6= (0) and so, Aα ∩Bβ = Aβ ∩Bα = ∅. Let I ∈ Bα

and J ∈ Bβ. Note that I ⊂ pβ . As J2 6= (0), it follows that J 6⊆ pβ . Hence,
Bα ∩Bβ = ∅. It is now clear that (Aα ∪Bα)∩ (Aβ ∪Bβ) = ∅. Therefore, for any
distinct α, β ∈ Λ, (D ∩ (Aα ∪ Bα)) ∩ (D ∩ (Aβ ∪ Bβ)) = ∅. It is already verified
that D ∩ (Aα ∪ Bα) 6= ∅ for each α ∈ Λ. Hence, it is possible to find a subset
D1 of D such that D1 contains exactly one element, say Iα ∈ Aα ∪ Bα for each
α ∈ Λ. Now, D1 = {Iα | α ∈ Λ}. Note that |Λ| = |D1| ≤ |D|. As |Λ| = |A(R)|,
we obtain that |D| ≥ |A(R)|.

(2) Assume that R satisfies (∗∗). Then R satisfies (∗) and for each α ∈ Λ,
pα 6⊆ ⋃

β∈Λ\{α} pβ. Let α ∈ Λ. Let xα ∈ pα\(
⋃

β∈Λ\{α} pβ). Let D be any
dominating set of Γ(R). Let Aα = {xα} and let Bα = {y ∈ Z(R)∗ | xαy = 0}.
It is clear that rα ∈ Bα and so, Bα 6= ∅. Since |Λ| ≥ 3, it follows from the
choice of xα that |V (Ry) ∩ A(R)| ≥ 2 for each y ∈ Bα. Also, it is clear that
|V (Rxα) ∩ A(R)| = 1. We claim that |D ∩ (Aα ∪ Bα)| ≥ 1. This is clear if
xα ∈ D. If xα /∈ D, then there exists yα ∈ D such that xα and yα are adjacent in
Γ(R). Hence, xαyα = 0 and so, yα ∈ Bα. This shows that |D ∩ (Aα ∪ Bα)| ≥ 1.



394 S. Visweswaran

Let α, β ∈ Λ be distinct. We assert that (Aα ∪ Bα) ∩ (Aβ ∪ Bβ) = ∅. By the
choice of xα, xβ it is clear that xα /∈ pβ and xβ ∈ pβ and so, xα 6= xβ . Hence,
Aα∩Aβ = ∅. Since |V (Rxα)∩A(R)| = 1 = |V (Rxβ)∩A(R)|, |V (Ry)∩A(R)| ≥ 2
(respectively, |V (Rz) ∩ A(R)| ≥ 2) for each y ∈ Bα (respectively, z ∈ Bβ), it
follows that Aα ∩ Bβ = Aβ ∩ Bα = ∅. Let y ∈ Bα. Since

⋂

p∈A(R) p = (0) by
assumption, it follows from the choice of xα that y ∈ ⋂

p∈A(R)\{pα} p. Hence,
y ∈ pβ\pα. Similarly, it follows that z ∈ pα\pβ for any z ∈ Bβ. Therefore,
Bα∩Bβ = ∅. This shows that (Aα∪Bα)∩ (Aβ ∪Bβ) = ∅ for all distinct α, β ∈ Λ.
Let D1 be the subset of D obtained by choosing exactly one element, say zα from
Aα ∪Bα for each α ∈ Λ. Then |D| ≥ |D1| = |Λ| = |A(R)|.

Let R be a reduced ring such that R satisfies (∗). If γ(AG(R)) ≥ 2, then
we prove in Theorem 2.15 that γ(AG(R)) = |A(R)| = γt(AG(R)). Moreover, we
prove in Theorem 2.15 that for any T ∈ [R,R[X]] (respectively, T ∈ [R,R[[X]]]),
γ(AG(T )) = |A(T )| = |A(R)| = γt(AG(T )). We use Lemma 2.14 in the proof of
Theorem 2.15.

Lemma 2.14. Let R be a ring (R can possibly be non-reduced) such that R admits
I, J ∈ A(R)∗ with I + J /∈ A(R). If γ(AG(R)) ≥ 2, then for any T ∈ [R,R[X]]
(respectively, T ∈ [R,R[[X]]]), γ(AG(T )) ≥ 2.

Proof. By hypothesis, the ring R is such that R admits I, J ∈ A(R)∗ with
I + J /∈ A(R). Assume that γ(AG(R)) ≥ 2. Let T ∈ [R,R[X]]. We claim that
γ(AG(T )) ≥ 2. Suppose that γ(AG(T )) = 1. Let C ∈ A(T )∗ be such that {C} is
a dominating set of AG(T ). As (I[X]∩T )∩R = I 6= J = (J [X]∩T )∩R, it follows
that I[X]∩T 6= J [X]∩T . Since (0) 6= AnnR(I) ⊆ AnnT (I[X]∩T ), it follows that
I[X]∩T ∈ A(T )∗. Similarly, we get that J [X]∩T ∈ A(T )∗. Let f(X) ∈ T\{0} be
such that (I[X]∩T + J [X]∩ T )f(X) = (0). Let i ≥ 0 be least with the property
that the coefficient ofXi in f(X), say ri 6= 0. Note that I+J ⊆ I[X]∩T+J [X]∩T
and so, (I + J)f(X) = (0). This implies that (I + J)ri = (0). This is impossible,
since I + J /∈ A(R) by hypothesis. Therefore, I[X] ∩ T + J [X] ∩ T /∈ A(T ).
Hence, C ∈ {I[X]∩T, J [X]∩T}. Without loss of generality, we can assume that
C = I[X] ∩ T . Let W ∈ A(R)∗ be such that W 6= I. Then W [X] ∩ T ∈ A(T )∗,
W [X]∩T 6= I[X]∩T . Therefore, (W [X]∩T )(I[X]∩T ) = (0). This implies that
WI = (0) and so, {I} is a dominating set of AG(R). This is impossible, since
γ(AG(R)) ≥ 2 by assumption. Therefore, γ(AG(T )) ≥ 2.

Let T ∈ [R,R[[X]]]. By considering I[[X]] ∩ T, J [[X]] ∩ T and using similar
arguments, it can be shown that γ(AG(T )) ≥ 2.

Theorem 2.15. Let R be a reduced ring such that R satisfies (∗). If γ(AG(R)) ≥
2, then γ(AG(R)) = |A(R)| = γt(AG(R)).

Moreover, for any T ∈ [R,R[X]] (respectively, T ∈ [R,R[[X]]]), γ(AG(T )) =
|A(T )| = |A(R)| = γt(AG(T )).
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Proof. By hypothesis, R is a reduced ring such that R satisfies (∗). Assume
that γ(AG(R)) ≥ 2. As any total dominating set of a graph G is a dominating
set of G, it follows that γ(G) ≤ γt(G). Therefore, γ(AG(R)) ≤ γt(AG(R)). Let
A(R) = {pα | α ∈ Λ}. If |A(R)| = 2, then it follows from Proposition 2.12(1)
that γt(AG(R)) ≤ 2 and so, 2 = γ(AG(R)) = |A(R)| = γt(AG(R)). Suppose
that |A(R)| ≥ 3. Then it follows from Propositions 2.12(1) and 2.13(1) that
γ(AG(R)) = |A(R)| = γt(AG(R)).

Let T ∈ [R,R[X]]. We know from Lemma 2.5 that T satisfies (∗). Let
A(R) = {pα | α ∈ Λ}. Then A(T ) = {pα[X] ∩ T | α ∈ Λ} by Lemma 2.4. Let
α, β ∈ Λ be distinct. Then pα 6= pβ . As (pα[X]∩T )∩R = pα and (pβ [X]∩T )∩R =
pβ , we get that pα[X]∩ T 6= pβ[X]∩ T . Therefore, |A(R)| = |A(T )|. For distinct
α, β ∈ Λ, note that pα + pβ /∈ A(R). Hence, we obtain from Lemma 2.14 that
γ(AG(T )) ≥ 2. It now follows using arguments similar to those that are used in
the previous paragraph that γ(AG(T )) = |A(T )| = |A(R)| = γt(AG(T )).

Let T ∈ [R,R[[X]]]. With the help of Lemmas 2.6, 2.7, and 2.14 and using
arguments similar to those that are used in the previous paragraph, it can be
shown that |A(R)| = |A(T )|, γ(AG(T )) ≥ 2, and γ(AG(T )) = |A(T )| = |A(R)| =
γt(AG(T )).

Remark 2.16. Let R be a reduced ring such that |Min(R)| < ∞. Then
Min(R) = A(R) and R satisfies (∗) by Example 2.1. Hence, if γ(AG(R)) ≥ 2,
then γ(AG(R)) = γt(AG(R)) = |A(R)| = |Min(R)| by Theorem 2.15. More-
over, for any T ∈ [R,R[X]] (respectively, T ∈ [R,R[[X]]]), γ(AG(T )) ≥ 2 and
γ(AG(T )) = |A(T )| = |A(R)| = |Min(R)| = |Min(T )| = γt(AG(T )). Hence,
Theorem 2.15 generalizes [14, Theorem 2.4]. Let R be the reduced ring mentioned
in Example 2.2. It is noted in the proof of Example 2.2 that A(R) = Min(R),
|Min(R)| = |N|, and R satisfies (∗). Hence, by Proposition 2.13(1) and The-
orem 2.15, we get that γ(AG(R)) = γt(AG(R)) = |Min(R)|. Let R be the
reduced ring mentioned in Example 2.10. In the notation of the proof of Exam-
ple 2.10, A(R) = {pα | α ∈ Λ} and it is verified there that R satisfies (∗) and
A(R) ⊂ Min(R) if Λ is not finite. If |Λ| ≥ 3, then γ(AG(R)) = |Λ| = γt(AG(R))
by Proposition 2.13(1) and Theorem 2.15.

Let R be a reduced ring such that R satisfies (∗∗). If γ(Γ(R)) > 1, then we
prove in Theorem 2.17 that γt(Γ(R)) = γ(Γ(R)) = |A(R)|.

Theorem 2.17. Let R be a reduced ring such that R satisfies (∗∗). If γ(Γ(R)) ≥
2, then γ(Γ(R)) = γt(Γ(R)) = |A(R)|.

Moreover, for any T ∈ [R,R[X]] (respectively, T ∈ [R,R[[X]]]), γ(Γ(T )) =
|A(T )| = |A(R)| = γt(Γ(T )).

Proof. By hypothesis, R is a reduced ring such that R satisfies (∗∗). Assume
that γ(Γ(R)) ≥ 2. Then γt(Γ(R)) ≥ 2. If |A(R)| = 2, then γt(Γ(R)) ≤ 2 by
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Proposition 2.12(2) and so, γ(Γ(R)) = 2 = γt(Γ(R)) = |A(R)|. If |A(R)| ≥ 3,
then we obtain from Propositions 2.12(2) and 2.13(2) that γ(Γ(R)) = |A(R)| =
γt(Γ(R)).

Let T ∈ [R,R[X]] (respectively, T ∈ [R,R[[X]]]). We know from Lemma 2.8
that T satisfies (∗∗). It follows as in the proof of the moreover part of Theorem
2.15 that |A(R)| = |A(T )|. Suppose that γ(Γ(T )) = 1. Let f(X) ∈ Z(T )∗

be such that {f(X)} is a dominating set of Γ(T ). Let i ≥ 0 be least with the
property that the coefficient of Xi in f(X), say ri 6= 0. Then ri ∈ Z(R)∗. Since
γ(Γ(R)) ≥ 2 by assumption, there exists r ∈ Z(R)∗\{ri} such that rri 6= 0.
It is clear that r ∈ Z(T )∗\{f(X)}. From rri 6= 0, it follows that rf(X) 6= 0.
This contradicts the assumption {f(X)} is a dominating set of Γ(T ). Therefore,
γ(Γ(T )) ≥ 2. It now follows using arguments similar to those that are used in
the previous paragraph that γ(Γ(T )) = |A(T )| = |A(R)| = γt(Γ(T )).

Remark 2.18. Let R be a reduced ring such that |Min(R)| < ∞. Then
A(R) = Min(R) and R satisfies (∗∗) by Example 2.1. Thus if γ(Γ(R)) > 1,
then γ(Γ(R)) = |A(R)| = |Min(R)| = γt(Γ(R)) by Theorem 2.17. More-
over, for any T ∈ [R,R[X]] (respectively, T ∈ [R,R[[X]]]), γ(Γ(T )) > 1 and
γ(Γ(T )) = |A(T )| = |A(R)| = γt(Γ(T )) = |Min(R)| = |Min(T )|. Hence, Theo-
rem 2.17 generalizes [14, Theorem 2.5]. Let R be the reduced ring mentioned in
Example 2.10. In the notation of the proof of Example 2.10, A(R) = {pα | α ∈ Λ}.
We know from the proof of Example 2.10 that R satisfies (∗∗). If |Λ| ≥ 3, then
it follows from Proposition 2.13(2) and Theorem 2.17 that γ(Γ(R)) = |Λ| =
|A(R)| = γt(Γ(R)).

Let R be a ring which is not necessarily reduced such that γ(AG(R)) ≥ 2.
Then γ(Γ(R)) 6= 1. For if γ(Γ(R)) = 1, then there exists r ∈ Z(R)∗ such that
rx = 0 for all x ∈ Z(R)∗\{r}. Let I = Rr. Then it is clear that I ∈ A(R)∗. Let
J ∈ A(R)∗ be such that J 6= I. It is clear that any element of J belongs to Z(R).
Let x ∈ J . Then either x ∈ I or xr = 0. Therefore, J ⊆ I ∪ ((0) :R r). This
implies that either J ⊆ ((0) :R r) or J ⊆ I. If J ⊆ ((0) :R r), then Jr = JI = (0).
If J ⊆ I, then J ⊂ I. Let x ∈ J\{0}. Then as I = Rr, it follows that x 6= r
and so, xr = 0. Therefore, Jr = JI = (0). This shows that J and I are adjacent
in AG(R). This implies that γ(AG(R)) = 1 and this contradicts the assumption
γ(AG(R)) ≥ 2. We use this fact in the proof of Corollary 2.19 and in the proof
of Proposition 2.27.

Corollary 2.19. Let R be a reduced ring such that R satisfies (∗∗). If γ(AG(R)) ≥
2, then γ(AG(R)) = γt(AG(R)) = γ(Γ(R)) = γt(Γ(R)) = |A(R)|.

Moreover, for any T ∈ [R,R[X]] (respectively, T ∈ [R,R[[X]]]), γ(AG(T )) =
|A(T )| = |A(R)| = γt(AG(T )) = γ(Γ(T )) = γt(Γ(T )).
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Proof. By hypothesis, R is a reduced ring such that R satisfies (∗∗). Assume
that γ(AG(R)) ≥ 2. Then γ(Γ(R)) ≥ 2. It follows from Theorems 2.15 and 2.17
that γ(AG(R)) = γt(AG(R)) = |A(R)| = γ(Γ(R)) = γt(Γ(R)).

Let T ∈ [R,R[X]] (respectively, T ∈ [R,R[[X]]]). From the moreover part
of Theorems 2.15 and 2.17, we obtain that γ(AG(T )) = |A(T )| = |A(R)| =
γt(AG(T )) = γ(Γ(T )) = γt(Γ(T )).

Remark 2.20. Let R be a reduced ring such that |Min(R)| < ∞. Then R
satisfies (∗∗) and A(R) = Min(R) by Example 2.1. Thus if γ(AG(R)) ≥ 2, then
γ(AG(R)) = γt(AG(R)) = γ(Γ(R)) = γt(Γ(R)) = |Min(R)| by Corollary 2.19.
For any T ∈ [R,R[X]] (respectively, T ∈ [R,R[[X]]]), we obtain from the more-
over part of Corollary 2.19 that γ(AG(T )) = |A(T )| = |A(R)| = γt(AG(T )) =
γ(Γ(T )) = γt(Γ(T )) = |Min(R)| = |Min(T )|. Hence, Corollary 2.19 generalizes
[14, Corollary 2.6].

Let R be a ring such that dimR = 0. Then Spec(R) = Max(R) = Min(R).
It is known that any minimal prime ideal of a ring is contained in its set of
zero-divisors [12, Theorem 84]. Therefore, Spec(R) = MNP (R). Let R be an
Artinian ring. If R is not isomorphic to direct product of two fields, then it is
known that γ(AG(R)) = |Min(R)| [14, Theorem 2.8]. It is known that a ring
R is Artinian if and only if R is Noetherian and dimR = 0 [2, Theorem 8.5].
Thus if R is Artinian which is not isomorphic to direct product of two fields,
then [14, Theorem 2.8] can be stated as γ(AG(R)) = |MNP (R)|. Our aim is to
generalize this result to any ring R such that the zero ideal of R admits a strong
primary decomposition. First, we prove some lemmas which are needed to prove
a generalization of [14, Theorem 2.8].

For idempotent elements e, f of a ring R, it is not hard to verify that Re ∩
Rf = Ref . Thus if ef = 0, then Re ∩ Rf = (0). This fact will be used in the
proof of Lemma 2.21.

Lemma 2.21. Let Λ be a set such that |Λ| ≥ 3. Let Rα be a ring for each α ∈ Λ
and let R =

∏

α∈ΛRα. Then the following statements hold:

(1) If D is any dominating set of AG(R), then |D| ≥ |Λ|.
(2) If D is any dominating set of Γ(R), then |D| ≥ |Λ|.

Proof. For each α ∈ Λ, let eα denote the element of R whose α-th coordinate
equals 1 and β-th coordinate equals 0 for all β ∈ Λ\{α}. Let fα denote the
element of R whose α-th coordinate equals 0 and β-th coordinate equals 1 for all
β ∈ Λ\{α}. It is clear that eαfα equals the zero element of R and so, Reα, Rfα ∈
A(R)∗ (respectively, fα, eα ∈ Z(R)∗).

(1) Let D be any dominating set of AG(R). Let α ∈ Λ. Let Aα = {Rfα}
and let Bα = {I ∈ A(R)∗ | I ⊆ Reα}. It is clear that Reα ∈ Bα and so, Bα 6= ∅.
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We claim that D ∩ (Aα ∪ Bα) 6= ∅. This is clear if Rfα ∈ D. If Rfα /∈ D,
then there exists I ∈ D such that I and Rfα are adjacent in AG(R). It is then
clear that I ⊆ Reα and so, I ∈ Bα. This shows that D ∩ (Aα ∪ Bα) 6= ∅. Let
α, β ∈ Λ be distinct. We claim that (Aα ∪Bα) ∩ (Aβ ∪Bβ) = ∅. As Rfα 6= Rfβ,
it follows that Aα ∩ Aβ = ∅. Since |Λ| ≥ 3 by hypothesis, it follows that fα has
at least two nonzero coordinates. Hence, Aα ∩Bβ = ∅. Similarly, it follows that
Aβ∩Bα = ∅. From Reα∩Reβ equals the zero ideal of R, we get that Bα∩Bβ = ∅.
This shows that for any distinct α, β ∈ Λ, (Aα ∪ Bα) ∩ (Aβ ∪ Bβ) = ∅ and so,
(D ∩ (Aα ∪ Bα)) ∩ (D ∩ (Aβ ∪ Bβ)) = ∅. It is possible to form a subset D1 of
D consisting of exactly one element, say Iα from Aα ∪Bα for each α ∈ Λ. Note
that D1 = {Iα | α ∈ Λ}. Hence, |D| ≥ |D1| = |Λ|.

(2) Let D be any dominating set of Γ(R). Let α ∈ Λ. Let Aα = {fα} and
let Bα = {y ∈ Z(R)∗ | Ry ⊆ Reα}. It can be shown as in the proof of (1) that
|D ∩ (Aα ∪Bα)| ≥ 1 for each α ∈ Λ and (D ∩ (Aα ∪Bα)) ∩ (D ∩ (Aβ ∪Bβ)) = ∅
for all distinct α, β ∈ Λ. Let D1 be a subset of D which contains exactly one
element, say zα ∈ D ∩ (Aα ∪Bα) for each α ∈ Λ. Then |D| ≥ |D1| = |Λ|.

Let I be an ideal of a ring R such that I ⊆ Z(R). Let S = R\Z(R). Then
S is a multiplicatively closed subset (m.c. subset) of R and I ∩ S = ∅. Hence, it
follows from Zorn’s lemma and [12, Theorem 1] that there exists p ∈ MNP (R)
such that I ⊆ p.

Let p ∈ MNP (R). If p ∈ A(R), then there exists r ∈ R\{0} such that
pr = (0). Hence, p ⊆ ((0) :R r). As ((0) :R r) ⊆ Z(R) and p ∈ MNP (R),
it follows that p = ((0) :R r). We use this fact and the fact mentioned in the
previous paragraph whenever we need in our discussion.

Lemma 2.22. Let R be a ring such that p ∈ A(R) for each p ∈ MNP (R). Then
the following statements hold:

(1) γ(AG(R)) = 1 if |MNP (R)| = 1 and γt(AG(R)) ≤ |MNP (R)| if |MNP (R)|
≥ 2.

(2) γ(Γ(R)) = 1 if |MNP (R)| = 1 and γt(Γ(R)) ≤ |MNP (R)| if |MNP (R)|
≥ 2.

Proof. Let MNP (R) = {pα | α ∈ Λ}. Observe that |MNP (R)| = |Λ|. Let
α ∈ Λ. As pα ∈ A(R) by hypothesis, there exists rα ∈ R\{0} such that pα =
((0) :R rα). It is clear that Rrα ∈ A(R)∗ (respectively, rα ∈ Z(R)∗) and for all
distinct α, β ∈ Λ, Rrα 6= Rrβ (respectively, rα 6= rβ).

(1) Let D = {Rrα | α ∈ Λ}. Note that |D| = |Λ|. Since given any I ∈ A(R)∗

is contained in pα for some α ∈ Λ and rαrβ = 0 for all distinct α, β ∈ Λ by [4,
Lemma 3.6], it can be shown as in the proof of Proposition 2.12(1) that D is a
dominating set of AG(R) if |Λ| = 1 and D is a total dominating set of AG(R) if
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|Λ| ≥ 2. Therefore, γ(AG(R)) = 1 if |MNP (R)| = 1 and γt(AG(R)) ≤ |D| = |Λ|
if |MNP (R)| ≥ 2.

(2) Let D1 = {rα | α ∈ Λ}. Note that Z(R) =
⋃

α∈Λ pα and |D1| = |Λ|.
Let r ∈ Z(R)∗. Then r ∈ pα for some α ∈ Λ. Note that rαrβ = 0 for all
distinct α, β ∈ Λ by [4, Lemma 3.6]. Hence, it can be shown as in the proof of
Proposition 2.12(2) that D1 is a dominating set of Γ(R) if |Λ| = 1 and D1 is a
total dominating set of Γ(R) if |Λ| ≥ 2. Therefore, γ(Γ(R)) = 1 if |MNP (R)| = 1
and γt(Γ(R)) ≤ |MNP (R)| if |MNP (R)| ≥ 2.

Lemma 2.23. Let R be a ring such that |MNP (R)| ≥ 3. If p ∈ A(R) for each
p ∈ MNP (R), then |D| ≥ |MNP (R)| for each dominating set D of AG(R).

Proof. Let MNP (R) = {pα | α ∈ Λ}. Observe that |MNP (R)| = |Λ|. By
hypothesis, |Λ| ≥ 3. Assume that pα ∈ A(R) for each α ∈ Λ. Since distinct
members ofMNP (R) are not comparable under inclusion, it follows that p2α 6= (0)
for each α ∈ Λ. From |MNP (R)| ≥ 3, it follows that pαpβ 6= (0) for any distinct
α, β ∈ Λ. As any annihilating ideal of a ring is contained in its set of zero-divisors,
it follows that pα + pβ /∈ A(R) for any distinct α, β ∈ Λ. Let α ∈ Λ. Let D be
any dominating set of AG(R). Let Aα = {pα} and let Bα = {I ∈ A(R)∗ | Ipα =
(0)}. Proceeding as in the proof of Proposition 2.13(1), it can be shown that
|D ∩ (Aα ∪Bα)| ≥ 1 for each α ∈ Λ and (D ∩ (Aα ∪Bα)) ∩ (D ∩ (Aβ ∪Bβ)) = ∅
for any distinct α, β ∈ Λ. Hence, it can be shown as in the proof of Proposition
2.13(1) that |D| ≥ |Λ| = |MNP (R)|.

Let R be a ring such that p ∈ A(R) for each p ∈ MNP (R). If γ(AG(R)) ≥ 2,
then we prove in Theorem 2.24 that γ(AG(R)) = |MNP (R)| = γt(AG(R)|.

Theorem 2.24. Let R be a ring such that γ(AG(R)) > 1. If p ∈ A(R) for each
p ∈ MNP (R), then γ(AG(R)) = |MNP (R)| = γt(AG(R)).

Proof. With the help of Lemmas 2.22(1) and 2.23, this theorem can be proved
using arguments similar to those that are used in the proof of Theorem 2.15.
Hence, we omit the proof of this theorem.

We provide Example 2.25 to illustrate Theorems 2.24.

Example 2.25. Let R = Z(+)Q
Z
be the ring obtained by using Nagata’s principle

of idealization. Let us denote the set of all positive prime numbers by P. Then
Min(R) = {(0)(+)Q

Z
}, Max(R) = {pZ(+)Q

Z
| p ∈ P} = MNP (R), pZ(+)Q

Z
∈

A(R) for each p ∈ P, and γ(AG(R)) = |MNP (R)| = γt(AG(R)).

Proof. Let us denote (0)(+)Q
Z
by p. It is clear that p is an ideal of R and since

R
p

∼= Z as rings and Z being an integral domain, it follows that p ∈ Spec(R).

Note that p2 = (0)(+)(0 + Z) and so, any prime ideal of R will contain p. This
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shows that Min(R) = {p}. Let p ∈ P. It is clear that mp = pZ(+)Q
Z
is an ideal

of R. Since Z
pZ

is a field and R
mp

∼= Z
pZ

as rings, we get that mp ∈ Max(R). If

p′ ∈ Spec(R) is such that p′ ⊃ p, then p′ = pZ(+)Q
Z

for some p ∈ P. Therefore,
Max(R) = {mp | p ∈ P}. Let p ∈ P. Let r ∈ mp. Then r = (pn, α+ Z) for some
n ∈ Z and α ∈ Q. Since 1

p
+Z is a nonzero element of Q

Z
and (pn, α+Z)(0, 1

p
+Z)

equals the zero element of R, it follows that r = (pn, α+Z) ∈ Z(R). This proves
that mp is a subset of Z(R) and so, mp ∈ MNP (R). Thus Max(R) ⊆ MNP (R)
and since Spec(R) = {p,mp | p ∈ P}, it follows that MNP (R) = Max(R). Let
p ∈ P. As mp(0,

1
p
+ Z) equals the zero ideal of R, we obtain that mp ∈ A(R).

This proves that MNP (R) is infinite and each member of MNP (R) belongs to
A(R). It follows from Lemma 2.23 that γ(AG(R)) > n for each n ∈ N and we
obtain from Theorem 2.24 that γ(AG(R)) = |MNP (R)| = γt(AG(R)).

Let R be a ring. Let I be a proper ideal of R. A primary decomposition of
I in R is an expression of I as a finite intersection of primary ideals of R, say
I =

⋂n
i=1 qi, where qi is a primary ideal of R for each i ∈ {1, . . . , n} [2, see page

51]. If q is a primary ideal of R, then it is known that
√
q is a prime ideal of R

[2, Proposition 4.1]. Let
√
q = p. In such a case, q is said to be p-primary [2,

page 51]. A p-primary ideal q is said to be strongly primary if there exists n ∈ N

such that pn ⊆ q. A strong primary decomposition of I in R is an expression of
I as a finite intersection of strongly primary ideals of R.

A primary decomposition I =
⋂n

i=1 qi is said to be minimal if (i)
√
qi are all

distinct and (ii) for each i ∈ {1, . . . , n}, qi 6⊇
⋂

j∈Ai
qj , where Ai = {1, . . . , n}\{i}

[2, page 52].
Let (0) =

⋂n
i=1 qi be a minimal primary decomposition of the zero ideal in R

with
√
qi = pi for each i ∈ {1, . . . , n}. Then Z(R) =

⋃n
i=1 pi by [2, Proposition

4.7]. Thus if the zero ideal of R admits a primary decomposition, then it follows
from [2, Proposition 1.10(i)] that MNP (R) is finite and MNP (R) equals the set
of maximal members of {pi | i ∈ {1, . . . , n}}.

Let (0) =
⋂n

i=1 qi be a minimal strong primary decomposition of (0) in R
with

√
qi = pi for each i ∈ {1, . . . , n}. Then proceeding as in the proof of

[2, Proposition 7.17], it can be shown that there exists xi ∈ R\{0} such that
pi = ((0) :R xi) for each i ∈ {1, . . . , n}. Hence, MNP (R) is finite and p ∈ A(R)
for each p ∈ MNP (R).

Recall that R is said to be Laskerian (respectively, strongly Laskerian) if each
proper ideal of R admits a primary (respectively, a strong primary) decomposition
[10]. It follows from [2, Theorem 7.13 and Proposition 7.14] that any Noetherian
ring is strongly Laskerian. For a detailed account of Laskerian rings, the reader
is referred to [10].

Proposition 2.26. Let R be a ring such that the zero ideal of R admits a strong
primary decomposition. If γ(AG(R)) > 1, then γ(AG(R)) = |MNP (R)| =



Dominating sets of the annihilating-ideal graph 401

γt(AG(R)).
Moreover, for any T ∈ [R,R[X]] (respectively, T ∈ [R,R[[X]]]), γ(AG(T )) =

|MNP (T )| = |MNP (R)| = γt(AG(T )).

Proof. By hypothesis, R is a ring such that the zero ideal of R admits a strong
primary decomposition and γ(AG(R)) > 1. Let (0) =

⋂n
i=1 qi be a minimal strong

primary decomposition of (0) in R with
√
qi = pi for each i ∈ {1, . . . , n}. Let

ri ∈ R\{0} be such that pi = ((0) :R ri) for each i ∈ {1, . . . , n}. After a suitable
renaming of the pi, i ∈ {1, . . . , n}, we can assume without loss of generality that
MNP (R) = {pi | i ∈ {1, . . . , k}}. Now, it follows from Theorem 2.24 that
γ(AG(R)) = |MNP (R)| = k = γt(AG(R)). Let i ∈ {1, . . . , n}. Note that
qi[X] is a pi[X]-primary ideal in R[X] by [2, Exercise 7(iii), page 55]. It follows
from [2, Exercise 7(iv), page 55] that (0) =

⋂n
i=1 qi[X] is a minimal primary

decomposition of the zero ideal in R[X]. For each i ∈ {1, . . . , n}, there exists
ti ∈ N such that p

ti
i ⊆ qi and so, (pi[X])ti ⊆ qi[X]. Hence, (0) =

⋂n
i=1 qi[X] is

a minimal strong primary decomposition of the zero ideal in R[X]. It is clear
that pi[X] = ((0) :R[X] ri) for each i ∈ {1, . . . , n} and MNP (R[X]) = {pi[X] |
i ∈ {1, . . . , k}}. Let T ∈ [R,R[X]]. Then it is not hard to verify that for each
i ∈ {1, . . . , n}, qi[X]∩T is a pi[X]∩T -primary ideal of T and is a strongly primary
ideal of T , (0) =

⋂n
i=1(qi[X] ∩ T ) is a minimal strong primary decomposition

of the zero ideal in T , pi[X] ∩ T = ((0) :T ri) for each i ∈ {1, . . . , n}, and
MNP (T ) = {pi[X] ∩ T | i ∈ {1, . . . , k}}. Hence, |MNP (T )| = |MNP (R)| = k.

Let i ∈ {1, . . . , n}. Note that qi[[X]] is a pi[[X]]-primary ideal of R[[X]] by [7,
Corollary 4] and it is clear that (pi[[X]])ti ⊆ qi[[X]]. Therefore, (0) =

⋂n
i=1 qi[[X]]

is a minimal strong primary decomposition of (0) in R[[X]]. Let T ∈ [R,R[[X]]].
Observe that (0) =

⋂n
i=1(qi[[X]]∩T ) is a minimal strong primary decomposition

of (0) in T . Observe that pi[[X]] ∩ T = ((0) :T ri) for each i ∈ {1, . . . , n}
and MNP (T ) = {pi[[X]] ∩ T | i ∈ {1, . . . , k}}. Therefore, |MNP (T )| = k =
|MNP (R)|.

By assumption, γ(AG(R))>1. It follows from Lemma 2.22(1) that |MNP (R)|
≥ 2. Thus k ≥ 2. Note that p1, p2 ∈ A(R)∗ are such that p1 + p2 /∈ A(R). Let
T ∈ [R,R[X]] (respectively, T ∈ [R,R[[X]]]). It now follows from Lemma 2.14
that γ(AG(T )) > 1. Hence, it follows from Theorem 2.24 that γ(AG(T )) =
|MNP (T )| = |MNP (R)| = k = γt(AG(T )).

Corollary 2.27. Let R be an Artinian ring. If γ(AG(R)) > 1, then for any T ∈
[R,R[X]] (respectively, T ∈ [R,R[[X]]]), γ(AG(T )) = |MNP (T )| = |Min(R)| =
γt(AG(T )) = |Min(T )|.
Proof. As R is an Artinian ring by hypothesis, R is Noetherian and dimR = 0.
Therefore, the zero ideal of R admits a strong primary decomposition in R and
Spec(R) = Max(R) = Min(R) = MNP (R). Assume that γ(AG(R)) > 1.
From Proposition 2.26, it follows that γ(AG(R)) = |MNP (R)| = |Min(R)| =
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γt(AG(R)). Let MNP (R) = Min(R) = {pi | i ∈ {1, 2, . . . , k}}. Let T ∈
[R,R[X]] (respectively, T ∈ [R,R[[X]]]). We know from the proof of Proposition
2.26 that MNP (T ) = {pi[X] ∩ T | i ∈ {1, 2, . . . , k}} (respectively, MNP (T ) =
{pi[[X]] ∩ T | i ∈ {1, 2, . . . , k}}). Observe that

√

(0) in T equals
⋂k

i=1(pi[X]∩ T )

(respectively,
⋂k

i=1(pi[[X]] ∩ T )). It follows that Min(T ) = {pi[X] ∩ T | i ∈
{1, 2, . . . , k}}(respectively, Min(T ) = {pi[[X]] ∩ T | i ∈ {1, 2, . . . , k}}).

Let T ∈ [R,R[X]] (respectively, T ∈ [R,R[[X]]]). Now, we obtain from the
moreover part of Proposition 2.26 that γ(AG(T )) = |MNP (T )| = |MNP (R)| =
|Min(R)| = γt(AG(T )) = |Min(T )|.

In Example 2.28, we provide a ring R to illustrate that the conclusion of
Proposition 2.26 can fail to hold if the hypothesis, the zero ideal of R admits a
strong primary decomposition is omitted.

Example 2.28. Let (V,m) be a rank one valuation domain which is not discrete.
Let m ∈ m,m 6= 0. Let R = V

V m
. Then |MNP (R)| = 1 but AG(R) (respectively,

Γ(R)) does not admit any finite dominating set.

Proof. Note that R is quasi-local with m
V m

as its unique maximal ideal. For
convenience, let us denote m

V m
by p. Since dimV = 1, it follows that dimR = 0.

Therefore, Spec(R) = Max(R) = Min(R) = {p}. It is clear that Z(R) ⊆
p. As nil(R) = p by [2, Proposition 1.8], it follows that p ⊆ Z(R) and so,
Z(R) = p. Hence, MNP (R) = {p}. This shows that |MNP (R)| = 1. Note
that

√

(0 + V m) = p ∈ Max(R) and hence, (0 + V m) is a p-primary ideal of
R by [2, Proposition 4.2]. Since R is not an integral domain, it follows that
A(R)∗ 6= ∅. Note that R is not Noetherian, since V is not Noetherian. Hence,
R admits a strictly increasing sequence of finitely generated ideals of R. Since
the set of ideals of V is linearly ordered by inclusion, the set of ideals of R is
linearly ordered by inclusion and so, any finitely generated proper ideal of R is
principal generated by a zero-divisor. Hence, any finitely generated proper ideal
of R belongs to A(R). Therefore, A(R)∗ is infinite.

First, we verify that p /∈ A(R). Let w ∈ V \V m. Then m = wy for some
y ∈ m. Since V is a rank one non-discrete valuation domain, m is not principal and
so, m 6⊆ V y and so, mw 6⊆ V m. Since p = m

Vm
, we get that p(w+V m) 6= (0+V m)

for any w ∈ V such that w + V m 6= 0 + V m. This shows that p /∈ A(R).

Let D be any finite subset of A(R)∗ with |D| ≥ 2. Let D = {Ii | i ∈
{1, 2, . . . , n}}. We can find k, t ∈ {1, 2, . . . , n} such that Ik ⊂ Ij for all j ∈
{1, 2, . . . , n}\{k} and It ⊃ Ij for all j ∈ {1, 2, . . . , n}\{t}. Since p /∈ A(R), it
follows that p 6⊆ It ∪ ((0 + V m) :R Ik). Hence, there exists r ∈ p such that r /∈ It
and rIk 6= (0+V m). Let J = Rr. Then it is clear that J ∈ A(R)∗. By the choice
of k and t, it follows that J /∈ D and JIi 6= (0 + V m) for any i ∈ {1, 2, . . . , n}.
This shows that AG(R) does not admit any finite dominating set.
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Let D be any finite subset of Z(R)∗ with |D| ≥ 2. Let D = {ri | i ∈
{1, 2, . . . , n}}. It is possible to find k, t ∈ {1, 2, . . . , n} such that Rrk ⊆ Rrj for
all j ∈ {1, 2, . . . , n} and Rrt ⊇ Rrj for all j ∈ {1, 2, . . . , n}. Since p /∈ A(R), it
follows that p 6⊆ Rrt ∪ ((0 + V m) :R Rrk). Hence, there exists r ∈ p such that
r /∈ Rrt and rrk 6= 0+Vm. It is clear that r ∈ Z(R)∗, r /∈ D and rri 6= 0+V m for
any i ∈ {1, 2, . . . , n}. This shows that Γ(R) does not admit any finite dominating
set.

Let R be a ring such that dimR = 0. Then Spec(R) = Max(R) = Min(R).
It is known that any minimal prime ideal of a ring is contained in its set of zero-
divisors [12, Theorem 84]. Therefore, Spec(R) = MNP (R). In Proposition 2.29,
we provide a necessary condition in order that γ(AG(R)) (respectively, γ(Γ(R)))
to be finite.

Proposition 2.29. Let R be a zero-dimensional ring. If γ(AG(R)) < ∞ (re-
spectively, γ(Γ(R)) < ∞), then |MNP (R)| < ∞.

Proof. Note that Spec(R) = Max(R) = Min(R) = MNP (R), since dimR = 0
by hypothesis. Assume that γ(AG(R)) < ∞. Let n ∈ N be such that γ(AG(R)) =
n. We claim that |Max(R)| ≤ n+1. If |Max(R)| ≥ n+2, then there exist zero-
dimensional rings R1, R2, R3, . . . , Rn+2 such that R ∼= R1×R2×R3 × · · · ×Rn+2

as rings by [17, Lemma 2.2]. Hence, by Lemma 2.21(1), we get that γ(AG(R)) ≥
n+ 2. This is a contradiction and so, |MNP (R)| = |Max(R)| ≤ n+ 1.

Assume that γ(Γ(R)) < ∞. Let t ∈ N be such that γ(Γ(R)) = t. Then
with the help of [17, Lemma 2.2] and Lemma 2.21(2), it can be shown as in the
previous paragraph that |MNP (R)| = |Max(R)| ≤ t+ 1.

The zero-dimensional R provided in Example 2.28 illustrates that the con-
verse of Proposition 2.29 can fail to hold.

Let R be a ring such that dimR = 0. In Proposition 2.30, we provide a
necessary and sufficient condition in order that γ(AG(R)) (respectively, γ(Γ(R)))
to be equal to 1.

Proposition 2.30. Let R be a ring such that dimR = 0. Then the following
statements hold:

(1) γ(AG(R)) = 1 if and only if either (R,m) is quasi-local with m ∈ A(R)∗ or
|Max(R)| = 2 and in such a case, R ∼= F1 × F2 as rings, where Fi is a field
for each i ∈ {1, 2}.

(2) γ(Γ(R)) = 1 if and only if either (R,m) is quasi-local with m ∈ A(R)∗ or
|Max(R)| = 2 and in such a case, R ∼= Z2 × F as rings, where F is a field.

Proof. (1) Assume that γ(AG(R)) = 1. Let I ∈ A(R)∗ be such that {I} is a
dominating set of AG(R). Note that |Max(R)| ≤ 2 by the proof of Proposition
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2.29. Suppose that |Max(R)| = 1. Let m be the unique maximal ideal of R.
Note that Z(R) = m. If I = m, then it is clear that m ∈ A(R)∗. Suppose that
I 6= m. Then for any x ∈ m\I, Rx ∈ A(R)∗ and IRx = (0). This shows that
m ⊆ I ∪ ((0) :R I) and so, m ⊆ ((0) :R I) ⊆ m. Thus m = ((0) :R I) ∈ A(R)∗.
Suppose that |Max(R)| = 2. Note that R has at least one non-trivial idempotent
element (see the proof of [17, Lemma 2.2]). Let e be an idempotent element
of R with e /∈ {0, 1}. Then 1 − e is also an idempotent element of R with
1 − e /∈ {0, 1}. It is clear that Re,R(1 − e) ∈ A(R)∗ and Re+ R(1 − e) = R. If
I /∈ {Re,R(1− e)}, then from Ie = I(1− e) = (0), we get that I = (0). This is a
contradiction. Therefore, I ∈ {Re,R(1 − e)}. Without loss of generality, we can
assume that I = Re. Let Max(R) = {mi | i ∈ {1, 2}}. Without loss of generality,
we can assume that e ∈ m1. Then 1 − e ∈ m2. If y ∈ m1\Re, then ye = 0 and
so, y ∈ R(1 − e) ⊆ m2. This proves that m1 ⊆ Re ∪ m2. Hence, m1 ⊆ Re and
so, m1 = Re. If x ∈ m2\Re, then xe = 0 and so, x ∈ R(1 − e). This implies
that m2 ⊆ m1 ∪ R(1 − e). Hence, m2 ⊆ R(1 − e) and so, m2 = R(1 − e). Now,
m1 + m2 = R and m1 ∩ m2 = (0). Hence, it follows from [2, Proposition 1.10(ii)
and (iii)] that R ∼= R

m1
× R

m2
as rings. Let i ∈ {1, 2}. Let Fi =

R
mi
. Then Fi is a

field and R ∼= F1 × F2 as rings.

If (R,m) is quasi-local with m ∈ A(R)∗, then MNP (R) = {m}. Hence,
γ(AG(R)) = 1 by Lemma 2.22(1). If R ∼= F1 × F2 as rings, where Fi is a field
for each i ∈ {1, 2}, then AG(R) is a complete graph with two vertices and so,
γ(AG(R)) = 1.

(2) Assume that γ(Γ(R)) = 1. Then γ(AG(R)) = 1 (for a proof, see the
paragraph which follows immediately after Remark 2.18). Therefore, we obtain
from (1) that either (R,m) is quasi-local with m ∈ A(R)∗ or R ∼= F1×F2 as rings,
where Fi is a field for each i ∈ {1, 2}. Let T = F1 × F2. Note that Γ(T ) is a
complete bipartite graph with vertex partition Z(T )∗ = (F ∗

1 × (0)) ∪ ((0) × F ∗
2 ).

From γ(Γ(T )) = 1, it follows that |F ∗
i | = 1 for at least one i ∈ {1, 2}. Without

loss of generality, we can assume that |F ∗
1 | = 1. Therefore, R ∼= Z2 × F as rings

with F = F2 is a field.

If (R,m) is quasi-local with m ∈ A(R)∗, then MNP (R) = {m}. Hence,
γ(Γ(R)) = 1 by Lemma 2.22(2). If R ∼= Z2 × F as rings, where F is a field, then
Γ(R) is a star graph and so, γ(Γ(R)) = 1.

Let R be a zero-dimensional ring such that |MNP (R)| < ∞. Then it is
not hard to verify that (0) admits a primary decomposition. Assume that p ∈
A(R) for each p ∈ MNP (R). We do not know whether in such a ring R, (0)
admits a strong primary decomposition. However, we are able to determine
γ(AG(R))(respectively, γ(Γ(R))) in Proposition 2.31.

Proposition 2.31. Let R be a ring such that dimR = 0, |MNP (R)| < ∞ and
p ∈ A(R) for each p ∈ MNP (R). Then the following statements hold:
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(1) If R 6∼= F1 × F2 as rings, where F1 and F2 are fields, then γ(AG(R)) =
|MNP (R)| = |Min(R)| and if |MNP (R)| ≥ 2, then γ(AG(R)) = |Min(R)|
= γt(AG(R)).

(2) If R 6∼= Z2 × F as rings, where F is a field, then γ(Γ(R)) = |MNP (R)| =
|Min(R)| and if |MNP (R)| ≥ 2, then γ(Γ(R)) = |Min(R)| = γt(Γ(R)).

Proof. Assume that dimR = 0, |MNP (R)| < ∞, and p ∈ A(R) for each p ∈
MNP (R).

(1) Assume that R 6∼= F1×F2 as rings, where Fi is a field for each i ∈ {1, 2}. If
|MNP (R)| = 1, then it follows from Lemma 2.22(1) that γ(AG(R)) = 1. Assume
that |MNP (R)| ≥ 2. Then γ(AG(R)) > 1 by Proposition 2.30(1). It then follows
from Theorem 2.24 that γ(AG(R)) = |MNP (R)| = |Min(R)| = γt(AG(R)).

(2) Assume that R 6∼= Z2 × F as rings, where F is a field. We consider the
following cases:

Case (i). |MNP (R)| = 1. Then we obtain from Lemma 2.22(2) that
γ(Γ(R)) = 1. Hence, γ(Γ(R)) = 1 = |MNP (R)| = |Min(R)|.

Case (ii). |MNP (R)| ≥ 2. Since R 6∼= Z2 × F as rings, where F is a field, it
follows from Proposition 2.30(2) that γ(Γ(R)) ≥ 2. We know from Lemma 2.22(2)
that γt(Γ(R)) ≤ |MNP (R)|. If |MNP (R)| = 2, then it is clear that γ(Γ(R)) =
2 = γt(Γ(R)) = |MNP (R)| = |Min(R)|. Suppose that |MNP (R)| ≥ 3. Let
|MNP (R)| = n. Then there exist zero-dimensional rings R1, R2, R3, . . . , Rn such
that R ∼= R1 × R2 × R3 × · · · × Rn as rings by [17, Lemma 2.2]. It now follows
from Lemmas 2.21(2) and 2.22(2) that n ≤ γ(Γ(R)) ≤ γt(Γ(R)) ≤ n. Therefore,
γ(Γ(R)) = n = |MNP (R)| = |Min(R)| = γt(Γ(R)).

It is known that a ring R is Artinian if and only if R is Noetherian and
dimR = 0 [2, Theorem 8.5]. Let R be an Artinian ring. Then Spec(R) =
Max(R) = Min(R) = MNP (R) and |MNP (R)| < ∞. It is not hard to verify
that each proper ideal of R is an annihilating ideal of R. Hence, if R is an
Artinian ring with R 6∼= F1 × F2 as rings, where Fi is a field for each i ∈ {1, 2},
then we obtain from Proposition 2.31(1) that γ(AG(R)) = |Min(R)|. Thus
Proposition 2.31(1) generalizes [14, Theorem 2.8]. Moreover, if |Min(R)| ≥ 2,
then γt(AG(R)) = |Min(R)|. If R 6∼= Z2 ×F as rings, where F is a field, then we
obtain from Proposition 2.31(2) that γ(Γ(R)) = |Min(R)| and if |Min(R)| ≥ 2,
then γt(Γ(R)) = |Min(R)|.

We provide an example to illustrate Proposition 2.31. Let K be a field and
let V be an infinite dimensional vector space over K. Let R = K(+)V be the
ring obtained by using Nagata’s principle of idealization. Then dim R = 0 and R
is quasi-local with m = (0)(+)V as its unique maximal ideal and m2 is the zero
ideal of R. Thus MNP (R) = {m} and m ∈ A(R). Since dimKV is infinite by
assumption, it follows that R is not Noetherian. Let n ≥ 1 and let T = R1 ×
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· · · × Rn with Ri = R for each i ∈ {1, . . . , n}. Then dimT = 0, |MNP (T )| = n,
T is not reduced and each proper ideal of T is an annihilating ideal of T . Note
that T is not Noetherian. And γ(AG(T )) = γ(Γ(T )) = |MNP (T )| if n = 1 and
γ(AG(T )) = γt(AG(T )) = |MNP (T )| = γ(Γ(T )) = γt(Γ(T )) if n ≥ 2.

Let R be a von Neumann regular ring which is not a field. Note that R is
reduced and dimR = 0. Assume that γ(AG(R)) < ∞ (respectively, γ(Γ(R)) <
∞). Then |MNP (R)| < ∞ by Proposition 2.29. Let Max(R) = MNP (R) =
{mi | i ∈ {1, 2, . . . , n}}. Since mi +mj = R for all distinct i, j ∈ {1, 2, . . . , n} and
⋂n

i=1 mi = (0), it follows that R ∼= R
m1

× R
m2

× · · · × R
mn

as rings by [2, Proposition

1.10(ii) and (iii)]. Let i ∈ {1, 2, . . . , n} and let Fi =
R
mi
. Then Fi is a field and

R ∼= F1 × F2 × · · · × Fn as rings. Note that if n = 2, then γ(AG(R)) = 1 and if
n ≥ 3, then γ(AG(R)) = γt(AG(R)) = n. There is no von Neumann regular ring
R with γ(AG(R)) = 2.

Let n = 2. If |Fi| = 2 for at least one i ∈ {1, 2}, then γ(Γ(R)) = 1. If
|Fi| > 1 for each i ∈ {1, 2}, then γ(Γ(R)) = 2 = γt(Γ(R)). If n ≥ 3, then
γ(Γ(R)) = γt(Γ(R)) = n.

For the sake of convenient reference, the above derived facts are included in
the form of the following proposition.

Proposition 2.32. Let R be a von Neumann regular ring which is not a field.
Then the following statements hold:

(1) Let n ∈ N be such that γ(AG(R)) = n. Then n ≥ 3 and R ∼= F1 × F2 × F3 ×
· · · × Fn as rings, where Fi is a field for each i ∈ {1, 2, 3, . . . , n} and in such
a case, γt(AG(R)) = n.

(2) Let n ∈ N be such that γ(Γ(R)) = n. If n = 1, then R ∼= Z2 × F as rings,
where F is a field. If n = 2, then R ∼= F1 × F2 as rings, where Fi is a field
with |Fi| > 2 for each i ∈ {1, 2}. In such a case, γt(Γ(R)) = 2. If n ≥ 3,
then R ∼= F1 × F2 × F3 × · · · × Fn as rings, where Fi is a field for each
i ∈ {1, 2, 3, . . . , n} and in such a case, γ(Γ(R)) = γt(Γ(R)) = n.

3. Some results on two supergraphs of AG(R)

Let R be a ring such that A(R)∗ 6= ∅. The aim of this section is to discuss
some results on the domination number of two spanning supergraphs of AG(R).
First, we discuss some results on the domination number of SAG(R), the strongly
annihilating-ideal graph of R. It is already noted in Section 1 that SAG(R) is a
spanning supergraph of AG(R). As several results on the domination number of
AG(R) (where R is a reduced ring) are already discussed in Section 2, we focus on
determining the domination number of SAG(R), where R is a reduced ring such
that SAG(R) 6= AG(R). For such a ring R, it is known that |Min(R)| ≥ 3 by
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(1) ⇒ (2) of [16, Theorem 4.1] and we prove in Proposition 3.3 that γ(SAG(R)) >
1 and in Theorem 3.4, we prove that γ(SAG(R)) = γt(SAG(R)) = 2. We use
Lemmas 3.1 and 3.2 in the proof of Proposition 3.3.

Lemma 3.1. Let R be a reduced ring. If I, J ∈ A(R)∗ are such that I ⊂ J , then
I and J are not adjacent in SAG(R).

Proof. Assume that I, J ∈ A(R)∗ with I ⊂ J . Note that if AB = (0) for some
ideals A,B of R, then for any x ∈ A ∩ B, x2 ∈ AB = (0) and so, x = 0,
since R is reduced. Hence, A ∩ B = (0). As IAnnR(I) = (0), it follows that
I ∩ AnnR(I) = (0). Observe that I ∩ AnnR(J) ⊆ I ∩ AnnR(I) = (0). Hence,
I ∩AnnR(J) = (0) and so, I and J are not adjacent in SAG(R).

Lemma 3.2. Let R be a reduced ring. Then for any I ∈ A(R)∗, I +AnnR(I) /∈
A(R).

Proof. Let r ∈ R be such that (I + AnnR(I))r = (0). Then Ir = AnnR(I)r =
(0). Hence, r ∈ AnnR(I) and so, r2 = 0. This implies that r = 0, since R is
reduced. Therefore, I +AnnR(I) /∈ A(R).

Proposition 3.3. Let R be a reduced ring with |Min(R)| ≥ 3. Then γ(SAG(R))
> 1.

Proof. By hypothesis, R is a reduced ring with |Min(R)| ≥ 3. Let I ∈ A(R)∗.
It is convenient to denote AnnR(I) by J . It is clear that J ∈ A(R)∗. We
claim that there exists A ∈ A(R)∗\{I} such that A and I are not adjacent in
SAG(R). Since

⋂

p∈Min(R) p = (0), there exists a member of Min(R), say p1
such that I 6⊆ p1. From IJ = (0), it follows that J ⊆ p1. Similarly, there
exists a member of Min(R), say p2 such that J 6⊆ p2. Hence, I ⊆ p2. It is
clear that p1 6= p2. Since |Min(R)| ≥ 3, there exists a member of Min(R), say
p3 such that p3 /∈ {pi | i ∈ {1, 2}}. Since distinct minimal prime ideals of a
ring are not comparable under inclusion, it follows that p3 6⊆ ⋃2

i=1 pi and so,
p3 6⊆ I ∪ J . Let r ∈ p3 be such that r /∈ I ∪ J . Hence, r /∈ I and Ir 6= (0). Since
Z(R) =

⋃

p∈Min(R) p, it follows that p3 ⊂ Z(R). Therefore, r ∈ Z(R) and so,
there exists s ∈ R\{0} such that rs = 0. As I + J /∈ A(R) by Lemma 3.2, either
Is 6= (0) or Js 6= (0). Suppose that Is 6= (0). Then Is ∈ A(R)∗. As rs = 0,
whereas Ir 6= (0), we get that Is ⊂ I. It then follows from Lemma 3.1 that Is
and I are not adjacent in SAG(R). If Is = (0), then Js 6= (0). In such a case,
(I+Rr)Js = (0). Hence, I+Rr ∈ A(R)∗. Since r /∈ I, it follows that I ⊂ I+Rr
and hence, I +Rr and I are not adjacent in SAG(R).

Thus given I ∈ A(R)∗, there exists A ∈ A(R)∗\{I} such that A and I are
not adjacent in SAG(R). Therefore, γ(SAG(R)) > 1.

Theorem 3.4. Let R be a reduced ring such that |Min(R)| ≥ 3. Then γ(SAG(R)) =
γt(SAG(R)) = 2.
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Proof. Assume that R is a reduced ring with |Min(R)| ≥ 3. It follows from
Proposition 3.3 that γ(SAG(R)) ≥ 2. Let I ∈ A(R)∗. It is clear that AnnR(I) ∈
A(R)∗ and I 6= AnnR(I). We claim that D = {I,AnnR(I)} is a dominating
set of SAG(R). Let A ∈ A(R)∗\D. Suppose that A and I are not adjacent
in SAG(R). Then either I ∩ AnnR(A) = (0) or A ∩ AnnR(I) = (0). Suppose
that I ∩ AnnR(A) = (0). As both I + AnnR(I) and A + AnnR(A) do not
belong to A(R) by Lemma 3.2, it follows that AnnR(I) ∩ AnnR(A) 6= (0) and
I ∩A 6= (0). As I ⊆ AnnR(AnnR(I)), we obtain that A∩AnnR(AnnR(I)) 6= (0).
Thus A ∩AnnR(AnnR(I)) 6= (0) and AnnR(I) ∩ AnnR(A) 6= (0). Hence, A and
AnnR(I) are adjacent in SAG(R). If A∩AnnR(I) = (0), then A and AnnR(I) are
adjacent in AG(R) and so, they are adjacent in SAG(R). This proves that D =
{I,AnnR(I)} is a dominating set of SAG(R). As I and AnnR(I) are adjacent in
AG(R), it follows that I and AnnR(I) are adjacent in SAG(R). Therefore, D is
a total dominating set of SAG(R). This proves that γ(SAG(R)) = γt(SAG(R))
= 2.

Let R be the reduced ring given in Example 2.2. In the notation of the
proof of Example 2.2, Min(R) = {pi | i ∈ N}. It follows from Theorem 3.4 that
γ(SAG(R)) = γt(SAG(R)) = 2. It is already verified in Section 2 of this article
that γ(AG(R)) = |Min(R)| = γt(AG(R)).

For any von Neumann regular ring R with |Min(R)| ≥ 3, we obtain from
Theorem 3.4 that γ(SAG(R)) = γt(SAG(R)) = 2. Some results on the domina-
tion number of AG(R) are already discussed in Section 2 of this article.

Let R be a non-reduced ring such that |MNP (R)| = 1. Let MNP (R) = {p}.
If p ∈ A(R), then γ(AG(R)) = 1 by Lemma 2.22(1). Since AG(R) is a spanning
subgraph of SAG(R), we get that γ(SAG(R)) = 1.

In Example 3.5, we provide a non-reduced ring R such that |MNP (R)| = 1,
MNP (R) ∩ A(R) = ∅, and γ(SAG(R)) = 1.

Recall that a nonzero ideal I of a ring T is said to be an essential ideal of T
if I ∩ J 6= (0) for each nonzero ideal J of T [1]. For convenience, we denote the
set of all essential ideals of T by E(T ).

Example 3.5. Let R be the ring considered in Example 2.28. Then R is a
non-reduced ring, |MNP (R)| = 1, MNP (R) ∩ A(R) = ∅, and γ(SAG(R)) = 1.

Proof. In the notation of Example 2.28, R = V
V m

, where (V,m) is a rank one non-
discrete valuation domain and m ∈ m\{0}. It is noted in the proof of Example
2.28 that dimR = 0, Spec(R) = Max(R) = MNP (R) = {p}, where p = m

V m
.

It is observed in the proof of Example 2.28 that p = nil(R). Hence, R is not
reduced. It is verified in the proof of Example 2.28 that p /∈ A(R). Therefore,
MNP (R)∩A(R) = ∅. Since the set of ideals of V is linearly ordered by inclusion,
it follows that the set of ideals of R is linearly ordered by inclusion. Hence, each
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nonzero ideal of R is an essential ideal of R. So, for any distinct I, J ∈ A(R)∗,
I ∩ AnnR(J) 6= (0 + V m) and J ∩ AnnR(I) 6= (0 + V m). Hence, I and J
are adjacent in SAG(R). This shows that SAG(R) is complete. Therefore,
γ(SAG(R)) = 1. It is verified in the proof of Example 2.28 that AG(R) does not
admit any finite dominating set.

Let R be a ring such that R admits at least one non-trivial idempotent. We
prove in Proposition 3.6 that γ(SAG(R)) ≤ 2.

Proposition 3.6. Let R be a ring and let e be an idempotent element of R such
that e /∈ {0, 1}. Then γ(SAG(R)) ≤ 2.

Proof. By hypothesis, e is an idempotent element of R such that e /∈ {0, 1}.
Note that Re,R(1 − e) ∈ A(R)∗ with Re 6= R(1 − e). Let D = {Re,R(1 − e)}.
We claim that D is a dominating set of SAG(R). Let I ∈ A(R)∗\D. There exists
r ∈ R\{0} such that Ir = (0). From r = re+r(1−e), it follows that either re 6= 0
or r(1 − e) 6= 0. Without loss of generality, we can assume that re 6= 0. Then
0 6= re ∈ AnnR(I)∩Re. If I(1− e) 6= (0), then I(1− e) ⊆ I ∩AnnR(Re) and so,
I ∩AnnR(Re) 6= (0). Hence, I and Re are adjacent in SAG(R). If I(1−e) = (0),
then I and R(1−e) are adjacent in AG(R) and so, they are adjacent in SAG(R).
This proves that D is a dominating set of SAG(R) and so, γ(SAG(R)) ≤ 2.

We provide in Example 3.8, a non-reduced ring R such that R has no non-
trivial idempotent element but γ(SAG(R)) = 1. We use Lemma 3.7 in the proof
of Example 3.8.

Lemma 3.7. Let R be a non-reduced ring. Suppose that R admits a nonzero
nilpotent ideal I with AnnR(I) = I. Then {I} is dominating set of SAG(R).

Proof. By hypothesis, I is a nonzero nilpotent ideal of R such that AnnR(I) = I.
Let D = {I}. As AnnR(I) = I, it follows from [16, Lemma 2.2] that I ∈
E(R). Let J ∈ A(R)∗ be such that J 6= I. As AnnR(J) 6= (0), it follows that
I ∩AnnR(J) 6= (0) and J ∩AnnR(I) = J ∩ I 6= (0). Hence, J and I are adjacent
in SAG(R). This proves that {I} is a dominating set of SAG(R).

Example 3.8. Let R = Z(+)Q
Z
be the ring obtained by using Nagata’s principle

of idealization. Then R is not a reduced ring, R has no non-trivial idempotent
element, and γ(SAG(R)) = 1.

Proof. The ring R = Z(+)Q
Z

is already considered in Example 2.25. Let p =

(0)(+)Q
Z
. Note that p2 = (0)(+)(0+Z) and so, R is not reduced. Let e = (n, α+Z)

(n ∈ Z, α ∈ Q) be an idempotent element ofR. Then n2 = n, and 2nα+Z = α+Z.
Therefore, n ∈ {0, 1}. If n = 0, then α + Z = 0 + Z and so, e = (0, 0 + Z). If
n = 1, then α+ Z = 0 + Z. Therefore, e = (1, 0 + Z). This shows that R has no
non-trivial idempotent element.
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It is clear that p ⊆ AnnR(p). Let r = (n, α+Z) (n ∈ Z, α ∈ Q) be such that
r ∈ AnnR(p). Let P denote the set of all positive prime numbers. Then for any
p ∈ P, (n, α+Z)(0, 1

p
+Z) = (0, 0+Z). This implies that n(1

p
+Z) = 0+Z and so,

n ∈ pZ. Thus n ∈ ⋂

p∈P pZ = (0). Therefore, r ∈ p. This proves that AnnR(p) ⊆
p and so, AnnR(p) = p. It now follows from Lemma 3.7 that {p} is a dominating
set of SAG(R). Therefore, γ(SAG(R)) = 1. It is verified in the proof of Example
2.25 that MNP (R) = {pZ(+)Q

Z
| p ∈ P} and γ(AG(R)) = |MNP (R)|.

In Example 3.9, we provide non-reduced rings R, T such that γ(SAG(R)) = 1
and γ(SAG(T )) = 2 to illustrate Proposition 3.6.

Example 3.9. (1) Let R = Z4×Z4. ThenR is not reduced, R admits non-trivial
idempotent elements, and γ(SAG(R)) = 1.

(2) Let T = Z4 × K, where K is a field. Then T is not reduced, T admits
non-trivial idempotent elements, and γ(SAG(T )) = 2.

Proof. (1) Since Z4 is not reduced, it follows that R = Z4 × Z4 is not reduced.
Note that (1, 0) and (0, 1) are non-trivial idempotent elements of R. Let D =
{2Z4 × 2Z4}. We claim that D is a dominating set of SAG(R). As (2Z4)

2 = (0)
and AnnZ4

(2Z4) = 2Z4, it follows that AnnR(2Z4 × 2Z4) = 2Z4 × 2Z4 . It
now follows from Lemma 3.7 that D is a dominating set of SAG(R). Therefore,
γ(SAG(R)) = 1.

(2) Since Z4 is not reduced, it follows that T = Z4 × K is not reduced.
Note that (1, 0) and (0, 1) are non-trivial idempotent elements of T . Hence,
γ(SAG(T )) ≤ 2 by Proposition 3.6. Observe that A(T )∗ = {v1 = (0) ×K, v2 =
2Z4 × K, v3 = 2Z4 × (0), v4 = Z4 × (0)}. As v1v3 = v1v4 = v2v3 = (0) × (0), it
follows that v1 is adjacent to both v3 and v4 in AG(T ) and so, in SAG(T ). The
vertices v2 and v3 are adjacent in AG(T ) and so, in SAG(T ). Now, AnnT (v2) =
2Z4 × (0). Hence, v1 ∩AnnT (v2) = (0) × (0) and so, v1 and v2 are not adjacent
in SAG(T ). Note that AnnT (v2) ∩ v4 6= (0) × (0) and as AnnT (v4) = (0) ×K,
v2 ∩ AnnT (v4) 6= (0) × (0). Therefore, v2 and v4 are adjacent in SAG(T ). As
v3 ∩ AnnT (v4) = (0) × (0), we get that v3 and v4 are not adjacent in SAG(T ).
Therefore, SAG(T ) is a cycle of length 4 given by v1 − v3 − v2 − v4 − v1. (This
fact has been noted in the proof of (2) ⇒ (3) of [16, Theorem 2.2].) Hence,
γ(SAG(T )) ≥ 2 and so, γ(SAG(T )) = 2.

Let R be a ring such that A(R)∗ 6= ∅. Next, we discuss some results on the
domination number of AER, the sum-annihilating essential ideal graph of R. It
is already noted in Section 1 that AER is a spanning supergraph of AG(R). If R
is a non-reduced ring, then γ(AER) = 1 [1, Corollary 8]. For any reduced ring R,
we verify in Proposition 3.11 that AG(R) = AER. This fact has not been noted
in [1]. We use Lemma 3.10 in the proof of Proposition 3.11.
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Lemma 3.10. Let R be a reduced ring and let I be a nonzero ideal of R. Then
I ∈ E(R) if and only if I /∈ A(R).

Proof. Assume that I ∈ E(R). Let r ∈ R\{0}. Then I ∩ Rr 6= (0). If x = sr
(s ∈ R) is a nonzero element of I ∩ Rr, then sr2 ∈ Ir and since R is reduced,
sr2 6= 0. Thus Ir 6= (0) for any nonzero r ∈ R. Therefore, I /∈ A(R).

Conversely, assume that I /∈ A(R). Let J be a nonzero ideal of R. Then
IJ 6= (0) and so, I ∩ J 6= (0). Hence, I ∈ E(R). (This part of the proof is true
for any non-reduced ring also.)

Proposition 3.11. Let R be a reduced ring. Then AG(R) = AER.

Proof. For any ring R (reduced or not), it is known that AG(R) is a spanning
subgraph of AER. Assume that R is reduced. Let I, J ∈ A(R)∗ be such that
I and J are adjacent in AER. Therefore, AnnR(I) + AnnR(J) ∈ E(R). Hence,
AnnR(I)+AnnR(J) /∈ A(R) by Lemma 3.10. As (AnnR(I)+AnnR(J))IJ = (0),
it follows that IJ = (0). Hence, I and J are adjacent in AG(R). This shows that
AER is a spanning subgraph of AG(R) and so, AG(R) = AER.
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