
Discussiones Mathematicae1

General Algebra and Applications xx (xxxx) 1–252

3

ON A CLASS OF SEMI–NORMAL MONOIDAL FUNCTORS4

Khalid Draoui15

Mathematical Sciences and Applications Laboratory6

Department of Mathematics, Faculty of Sciences Dhar Al Mahraz, P. O. Box 1796,7

University Sidi Mohamed Ben Abdellah Fez, Morocco8

ORCID: 0000-0001-9879-40969

e-mail: khalid.draoui@usmba.ac.ma10

Hanan Choulli11

Mathematical Sciences and Applications Laboratory12

Department of Mathematics, Faculty of Sciences Dhar Al Mahraz, P. O. Box 1796,13

University Sidi Mohamed Ben Abdellah Fez, Morocco14

ORCID: 0000-0002-7260-882X15

e-mail: hanan.choulli@usmba.ac.ma16

and17

Hakima Mouanis18

Mathematical Sciences and Applications Laboratory19

Department of Mathematics, Faculty of Sciences Dhar Al Mahraz, P. O. Box 1796,20

University Sidi Mohamed Ben Abdellah Fez, Morocco21

ORCID: 0000-0002-9654-813922

e-mail: hakima.mouanis@usmba.ac.ma23

Abstract24

In this paper, we introduce and study an intermediate class, termed25

semi-normal monoidal functors, between the classes of monoidal and normal26

monoidal functors. We show that any left, or right, rigid braided category27

admits a contravariant semi-normal (co)monoidal endofunctor. Several ex-28

amples are presented, showing the non triviality of this class. Moreover, it29

is shown that semi-normal monoidal functors from a monoidal category to30

a braided monoidal category, form a braided monoidal category.31

Keywords: Monoidal category, braiding, normal monoidal functor, natural32

transformation..33

2020 Mathematics Subject Classification: Primary 18E05; Secondary34

18A25, 18A05..35

1Corresponding author



2 K. Draoui, H. Choulli and H. Mouanis

1. Introduction36

Monoidal categories play important roles not only in mathematics, where they37

serve as structures for grouping various classes of mathematical objects like,38

among others, groups, linear representations and linear differential matrix equa-39

tions. They also bear importance in theoretical and mathematical physics, par-40

ticularly within the context of quantum information theory and topological field41

theory [10, 11].42

Given two monoidal categories, a functor F : C −→ D can be either a43

monoidal or a comonoidal functor. The composite of functors of one of these44

two types is again a functor of the same type. This implies that a covariant45

monoidal (resp., comonoidal) functor, sends a monoid (resp., comonoid) into a46

monoid (resp., comonoid). A monoidal functor is a triplet (F ;φ0;φ2), where47

F : C −→ D is a functor, φ2 : F (U) ⊗′ F (V ) → F (U ⊗ V ) and φ0 : I ′ → F (I)48

are two maps satisfying the associativity, left and right unitality constraints [11,49

page 15], for all objects U and V of C. (F ;φ0;φ2) is called strong when φ0 and50

φ2 are isomorphisms [8, 9, 11], and it is called normal when only φ0 is required51

to be an isomorphism.52

In a strict rigid monoidal category C, the square of the duality functor is not53

generally isomorphic to the identity functor, this is referred to as non involutivity.54

If it is involutive, we then have that any object is canonically isomorphic to its55

bidual (reflexivity), in particular, this will imply that the unit object I of C is56

isomorphic to its dual: I∗ ≃ I ⊗ I∗ ≃ (I∗ ⊗ I)∗ ≃ I∗∗ ≃ I. This situation is57

guaranteed if for example C was a ribbon Ab−category [2]. As a result, and58

using the fact that the ground ring kC , which is the endomorphism ring EndC(I)59

of C, is commutative, the duality maps dI and bI are inverse isomorphisms of60

each other. In general, the duality structures (I∗; dI ; bI) on I provide a semi61

invertibilty dI ◦ bI = idI . An additional structure of a braiding on C seems62

to equip C with a contravariant monoidal endofunctor, which is not generally63

normal.64

In this paper, we slightly weaken normality of F and study the restricted re-65

sulting class of semi-normal functors, namely (co)monoidal functors (F ;φ0;φ2),66

such that φ0 is only semi invertible, i.e., there exists a map φ−
0 in D, such that67

φ−
0 ◦ φ0 = id. Such a functor sends a monoid (M,m, η) with an additional sim-68

ilar structure, i.e., the existence of a map η− such that, η− ◦ η = id, which we69

call augmented, to a monoid with the same additional structure. This holds70

dually for comonoids, where we shall call this time a coaugmented comonoid.71

Consequently, monoidal and comonoidal semi-normal functors correspond to aug-72

mented monoids and coaugmented comonoids respectively. We show in a main73

example that any monoidal Ab−category [10] admits a contravariant semi-normal74

monoidal functor to the category of modules over its commutative ground ring.75



On a class of semi–normal monoidal functors 3

Moreover, we show that any left, or right, rigid braided (monoidal) category, ad-76

mits a contravariant semi-normal monoidal and comonoidal endofunctor, which77

is not necessarily normal, unless the category is for example ribbon [2, 10]. We78

also provide illustrating examples of monoidal categories admitting semi-normal79

(co)monoidal functors towards other ones. By means of these examples, the in-80

troduced class is shown to be distinguished from those of normal and strong81

monoidal functors.82

Semi-normal monoidal functors between monoidal categories C and D are83

shown to constitute a braided category whenever D is braided, which admits84

itself, under some assumption, a semi-normal monoidal functor to some functors85

category, Section 4.86

2. Preliminaries87

In this section, we briefly recall the necessary basic notions from the theory of88

monoidal categories. For more details, we refer to [4, 9, 10, 11].89

A monoidal category is a quintuplet C = (C;⊗; I;α; l; r) consisting of a90

category C, an object I of C (called the unit object), a bifunctor (called tensor91

product) ⊗ : C × C −→ C and natural isomorphisms α : A ⊗ (B ⊗ C) −→92

(A⊗B)⊗C (called associativity constraint), l : I⊗A −→ A (called left unitality93

constraint) and r : A ⊗ I −→ A (called right unitality constraint) such that the94

pentagon and triangle axioms hold. The class of objects of C will be denoted by95

Ob(C). C is said to be strict provided that α, l and r are identities.96

From now on, all the considered categories are assumed to be strict, according97

to a result of Mac-Lane [9] claiming that every monoidal category is equivalent98

to a strict one.99

Recall from [10] that a category C is called an Ab−category (also called a100

pre-additive or a pre-abelian category) if the hom-set HomC(U, V ) is an additive101

abelian group, for any objects U and V of C, and the composition and tensor102

product are bilinear.103

Let now C be a monoidal Ab-category. The hom-set HomC(I, I) is denoted104

by kC and referred to as the ground ring of C. (kC ,+, ◦) is a commutative ring105

and the composition coincides with the tensor product in it. Moreover, for all106

U, V ∈ Ob(C), the hom-set HomC(U, V ) becomes a left kC−module, and the107

composition is kC−bilinear [10, Chapter II, 1.1, page 72], hence C is a kC−linear108

category [11, Chapter 4, 4.1.1].109

Amonoid in a monoidal category C is an objectM equipped with a morphism110

m : M ⊗M −→ M (called multiplication) and a morphism η : I −→ M (called111

unit) satisfying associativity and unitality axioms [9, page 70]. A morphism112

(M,m, η) −→ (M ′,m′, η′) is just a morphism M −→ M ′ which commutes with113
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m, m′, and η, η′. Dually is defined a comonoid (N,∆, ε) and a morphism of114

comonoids (by reversing the arrows), where morphisms are called now respectively115

comultiplication and counit. A bimonoid (B,m, η,∆, ε) is an object B, such116

that (B,m, η) is a monoid, (B,∆, ε) is a comonoid, and m, η are morphisms of117

comonoids (equivalently, ∆, ε are morphisms of monoids) [1, Proposition 1.11].118

A monoidal functor F : (C;⊗; I) −→ (D;⊗′; I ′) between monoidal categories119

is a triplet (F ;φ0;φ2), where φ2 : F (U)⊗′F (V ) → F (U⊗V ), and φ0 : I
′ → F (I)120

are morphisms in D, satisfying the following associativity, left and right unitality121

constraints respectively, for any objects U and V of C [11, 1.4.1, page 15]:122

F (U)⊗′ F (V )⊗′ F (W )
1⊗φ2 //

φ2⊗1

��

F (U)⊗′ F (V ⊗W )

φ2

��
F (U ⊗ V )⊗′ F (W )

φ2 // F (U ⊗ V ⊗W )
123

I ′ ⊗′ F (U)
1 //

φ0⊗1

��

F (U)

F (I)⊗′ F (U)

φ2

88
;; F (U)⊗′ I ′

1 //

1⊗φ0

��

F (U)

F (U)⊗′ F (I)

φ2

88
124

125

for all objects U , V and W of C.126

F is called normal if φ0 is an isomorphism and strong if both φ0 and φ2127

are isomorphisms. Dually, one can define a comonoidal functor by reversing the128

arrows in the above diagrams.129

A braiding c [7] for a monoidal category C is a natural isomorphism, consist-
ing of a family of isomorphisms

cU ;V : U ⊗ V −→ V ⊗ U

in C, for any objects U and V of C, such that130

cU ;V⊗W = (idV ⊗ cU ;W )(cU ;V ⊗ idW ) (1)

131

cU⊗V ;W = (cU ;W ⊗ idV )(idU ⊗ cV ;W ) (2)

for any third object W of C.132

Naturality of c means that for any morphisms f : V → V ′ and g : U → U ′ in133

C, we have134

cV ′;U ′ (f ⊗ g) = (g ⊗ f) cV ;U . (3)

Any braiding c satisfies the following identity called the Yang-Baxter equation:135

(cV ;W⊗idU )(idV⊗cU ;W )(cU ;V⊗idW ) = (idW⊗cU ;V )(cU ;W⊗idV )(idU⊗cV ;W ) (4)
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for any objects U , V and W of C.136

A braiding c is called a symmetry if c−1
V ;U = cU ;V , for any U, V ∈ Ob(C).137

A symmetric monoidal category is a monoidal category equipped with a sym-138

metry.139

An object V of a monoidal category (C;⊗; I) admits a left dual if there
exists an object V ∗ of C and morphisms bV : I −→ V ⊗ V ∗ (coevaluation) and
dV : V ∗ ⊗ V −→ I (evaluation) in C such that

(idV ⊗ dV )(bV ⊗ idV ) = idV ; ; (dV ⊗ idV ∗)(idV ∗ ⊗ bV ) = idV ∗ .

Right duality is defined dually and we say that V admits a dual if it admits a140

left and a right dual.141

A monoidal category (C;⊗; I) is said to be rigid (resp., left, right rigid) if142

every object of C admits a dual (resp., left, right dual) [5, 6].143

For any morphism f : U → V between left dualizable objects of C, one
defines its dual morphism f∗ : V ∗ → U∗ by

f∗ = (dV ⊗ idU∗)(idV ∗ ⊗ f ⊗ idU∗)(idV ∗ ⊗ bU ).

The morphism λU ;V : V ∗ ⊗ U∗ −→ (U ⊗ V )∗ defined by144

λU ;V = (dV ⊗ id(U⊗V )∗)(idV ∗ ⊗ dU ⊗ idV⊗(U⊗V )∗)(idV ∗⊗U∗ ⊗ bU⊗V ) (5)

is an isomorphism for any two objects U and V of C, see [8, page 344] for more145

details. For any objects U , V and W of C, the isomorphism λU ;V satisfies the146

following identity147

λU ;V⊗W (λV ;W ⊗ idU∗) = λU⊗V ;W (idW ∗ ⊗ λU ;V ). (6)

Indeed, we have148

λ(λ⊗ 1) = (d⊗ 1)(1⊗ d⊗ 1⊗ 1)(1⊗ 1⊗ 1⊗ d⊗ 1)(1⊗ 1⊗ b⊗ 1⊗ 1)

(1⊗ 1⊗ d⊗ 1⊗ 1)(1⊗ 1⊗ 1⊗ b)

= (d⊗ 1)(1⊗ d⊗ 1⊗ 1)(1⊗ 1⊗ d⊗ 1⊗ 1)(1⊗ 1⊗ 1⊗ b)

= (d⊗ 1)(1⊗ d⊗ 1⊗ 1)(1⊗ 1⊗ d⊗ 1⊗ 1⊗ 1)(1⊗ 1⊗ 1⊗ b).

On the other hand, we have149

λ(1⊗ λ) = (d⊗ 1)(1⊗ d⊗ 1⊗ 1)(1⊗ 1⊗ d⊗ 1⊗ 1⊗ 1)

(1⊗ 1⊗ 1⊗ 1⊗ d⊗ 1⊗ 1)(1⊗ 1⊗ 1⊗ b⊗ 1⊗ 1⊗ 1)(1⊗ 1⊗ 1⊗ b)

= (d⊗ 1)(1⊗ d⊗ 1⊗ 1)(1⊗ 1⊗ d⊗ 1⊗ 1⊗ 1)(1⊗ 1⊗ 1⊗ b).
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Throughout the sequel, by C we mean a strict monoidal category (C;⊗; I)150

with unit object I, k denotes a base field and R a base commutative ring both are151

supposed to have a unit 1. Sometimes, we do not distinguish unit objects I and152

I
′
when no confusion may appear and we also write 1 to designate the identity153

map id.154

3. Semi-normal functors155

Definition. Let (C;⊗; I) and (D;⊗′
; I

′
) be two monoidal categories.156

A semi-normal monoidal functor from C to D is a triple
(
F ; (φ0, φ

−
0 );φ2

)
, where157

(F ;φ0;φ2) is a monoidal functor and φ−
0 : F (I) −→ I

′
is a morphism in D such158

that φ−
0 φ0 = idI′ .159

A semi-normal comonoidal functor from C to D is a triple
(
F ; (φ0, φ

−
0 );φ

∼
2

)
160

where, (F ;φ−
0 ;φ

∼
2 ) is a comonoidal functor and φ0 : I

′ −→ F (I) is a morphism161

in D, such that φ−
0 φ0 = idI′ .162

Example 1. A strong monoidal (resp., comonoidal) functor is a semi-normal163

monoidal (resp., comonoidal) functor.164

Recall that a Frobenius monoidal functor
(
F ; (r0, i0); (r, i)

)
is a functor165

F : C −→ D between monoidal categories, such that (F ; r0; r) is monoidal and166

(F ; i0; i) is comonoidal, subject to adequate coherence axioms [3].167

Example 2. A Frobenius monoidal functor
(
F ; (r0, i0); (r, i)

)
, such that i0r0 =168

id, is a semi-normal monoidal and comonoidal functor.169

Remark 3. Let F : C −→ D be a contravariant semi-normal monoidal func-
tor between monoidal categories. For every split monomorphism f : I −→ V
(equivalently, split epimorphism f : V −→ I), V ∈ Ob(C); the following short
sequence is left and right split:

0 −→ I
φ0−→ F (I)

F (f)−−−→ F (V ) −→ 0.

Example 4. Let F : (vectk;⊗k; k) −→ (Set;×; {∗}) be the underlying (forgetful)170

functor between the category of finite dimensional vector spaces over a field k and171

the category of sets with cartesian product as tensor product, and the unit object172

is given by the set {∗} of one element. Consider the following monoidal structures173

on F :174

φ2V ;W : F (V )× F (W ) −→ F (V ⊗k W )
(v, w) 7−→ v ⊗ w

175
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φ0 : {∗} −→ F (k) = k
∗ 7−→ 1

;;
φ−
0 : k −→ {∗}

x 7−→ ∗176

Then,
(
F ; (φ0, φ

−
0 );φ2

)
is a semi-normal monoidal functor, and which is neither177

normal, nor strong monoidal functor. In fact, the associativity diagram:178

F (U)× F (V )× F (W )
(1,φ2) //

(φ2,1)

��

F (U)× F (V ⊗k W )

φ2

��
F (U ⊗k V )× F (W )

φ2 // F (U ⊗k V ⊗k W )
179

and the unitality diagrams:180

181

{∗} × F (U)
1 //

(φ0,1)

��

F (U)

k× F (U)

φ2

88
and F (U)× {∗} 1 //

(1,φ0)

��

F (U)

F (U)× k
φ2

88
182

183

are clearly commutative. Moreover, we have φ−
0 φ0 = id.184

Definition. Let C be a monoidal category and M and N objects of C.185

An augmented monoid is a triple
(
M ;m; (η, η−)

)
where, (M ;m; η) is a monoid186

and η− :M −→ I is a map in C such that η− ◦ η = idI .187

A coaugmented comonoid is a triple
(
N ; ∆; (ε−, ε)

)
where, (M ; ∆; ε−) is a comonoid188

and ε : I −→ N is a map in C such that ε− ◦ ε = idI .189

A morphism of augmented monoids
(
M ;m; (η, η−)

)
−→

(
M ′;m′; (η′, η

′−)
)
is a190

morphism of monoids (M ;m; η) −→ (M ′;m′; η′) (given by a map f :M −→M ′),191

such that η
′− ◦ f = η−.192

Similarly, a morphism of coaugmented comonoids
(
N ; ∆; (ε−, ε)

)
−→

(
N ′; ∆′; (ε

′−, ε′)
)

193

is a morphism of comonoids which commutes with ε and ε′.194

Example 5. Every bimonoid is an augmented (resp. coaugmented) monoid195

(resp. comonoid).196

It is well known that (covariant) monoidal (resp., comonoidal) functors send197

monoids (resp., comonoids) to monoids (resp., comonoids) [1]. We get the next198

result.199

Proposition 6.200

(a) A covariant semi-normal monoidal functor between monoidal categories201

sends augmented monoids to augmented monoids.202
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(b) A covariant semi-normal comonoidal functor between monoidal categories203

sends coaugmented comonoids to coaugmented comonoids.204

(c) A contravariant semi-normal monoidal functor between monoidal categories205

sends augmented monoids to coaugmented comonoids.206

(d) A contravariant semi-normal comonoidal functor between monoidal cate-207

gories sends coaugmented comonoids to augmented monoids.208

Proof. Straightforward209

Corollary 7. Let F be a semi-normal monoidal (resp., comonoidal) functor be-210

tween monoidal categories. Then, F (I) is an augmented monoid (resp., coaug-211

mented comonoid).212

Corollary 8. A (covariant) semi-normal monoidal (resp., comonoidal) functor213

sends a morphism of augmented monoids (resp., coaugmented comonoids) to a214

morphism of augmented monoids (resp., coaugmented comonoids).215

Theorem 9. Every left (resp., right) rigid braided monoidal category admits a216

semi-normal monoidal and comonoidal endofunctor.217

Proof. We prove the result only for left rigidity, since it holds similarly for right
rigidity. Assume that every object V of C admits a left dual V ∗. Let F : C −→ C
be the left duality functor, i.e., the functor defined by F (V ) = V ∗ and F (f) = f∗

for every object V of C and every morphism f of C and let:

φ0 : I −→ I∗ ; ; φ−
0 : I∗ −→ I ; ; φ2 U,V : U∗ ⊗ V ∗ −→ (U ⊗ V )∗

be the morphisms defined by:

φ2 U,V = λU,V ◦ cU∗,V ∗ ; ; φ0 = bI ; ; φ−
0 = dI

where, c is the braiding on C, dI and bI are the corresponding evaluation and218

coevaluation maps of the unit object, and λU,V is the isomorphism defined in219

(5). Then, we have φ−
0 φ0 = dIbI = (idI ⊗ dI)(bI ⊗ idI) = idI , by strictness of220

C as it is assumed throughout the paper. Moreover, the following (associativity)221

diagram commutes:222

U∗ ⊗ V ∗ ⊗W ∗ idU∗⊗cV ∗;W∗
//

cU∗;V ∗⊗idW∗

��

U∗ ⊗W ∗ ⊗ V ∗ 1⊗λ //

cU∗;W∗⊗V ∗

��

U∗ ⊗ (V ⊗W )∗

cU∗;(U⊗W )∗

��
V ∗ ⊗ U∗ ⊗W ∗ cV ∗⊗U∗;W∗

//

λ⊗1
��

W ∗ ⊗ V ∗ ⊗ U∗ λ⊗1 //

1⊗λ
��

(V ⊗W )∗ ⊗ U∗

λ
��

(U ⊗ V )∗ ⊗W ∗ c(U⊗V )∗;W∗
//W ∗ ⊗ (U ⊗ V )∗

λ // (U ⊗ V ⊗W )∗
223
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In fact, for the commutativity of the upper left square: by the first and second
axioms of the braiding c as displayed in (1) and (2), we have

cU∗;W ∗⊗V ∗ = (idW ∗ ⊗ cU∗;V ∗)(cU∗;W ∗ ⊗ idV ∗)

cV ∗⊗U∗;W ∗ = (cV ∗;W ∗ ⊗ idU∗)(idV ∗ ⊗ cU∗;W ∗).

Then, commutativity of this square is equivalent to prove that224

(idW ∗ ⊗ cU∗;V ∗)(cU∗;W ∗⊗idV ∗)(idU∗ ⊗ cV ∗;W ∗)

= (cV ∗;W ∗ ⊗ idU∗)(idV ∗ ⊗ cU∗;W ∗)(cU∗;V ∗ ⊗ idW ∗)

which holds since this is exactly the Yang-Baxter equation as displayed in (4).225

For the commutativity of the upper right and lower left squares, this is due to226

the naturality of the braiding (3). For the lower right square, this holds by (6).227

Now, the left unitality diagram:228

U∗ ⊗ I
1U∗ //

1U∗⊗bI
��

U∗

U∗ ⊗ I∗
λU,I ◦ cU∗,I∗

::

229

is commutative. In fact, we have230

λU,I ◦ cU∗,I∗ ◦ (1U∗ ⊗ bI) = (dI ⊗ 1U∗) ◦ cU∗,I∗ ◦ (1U∗ ⊗ bI)

= (dI ⊗ 1U∗) ◦ (bI ⊗ 1U∗) ◦ cU∗,I

= 1U∗ ◦ cU∗,I

= 1U∗ .

Similarly, the following right unitality diagram is commutative:231

I ⊗ U∗ 1U∗ //

bI⊗1U∗
��

U∗

I∗ ⊗ U∗
λI,U ◦ cI∗,U∗

::

232

Hence,
(
F ; (φ0, φ

−
0 );φ2

)
is a semi-normal monoidal functor. Furthermore, for233

any objects U and V of C, the morphism λU,V ◦ cU,V is invertible with inverse234

c−1
U,V ◦ λ−1

U,V , then, in a similar way, one can easily check that
(
F ; (φ0, φ

−
0 );φ

−1
2

)
235

is a semi-normal comonoidal functor.236
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Remark 10. Note that the above defined semi-normal monoidal structures on237

the left duality functor do not turn out, in general, to normal monoidal structures238

on it. If C is moreover a ribbon Ab−category, then this turns out to a normal239

(resp., strong) monoidal functor. In fact, I being isomorphic in this case to its240

bidual I∗∗, implies that we also have φ0φ
−
0 = idI∗ , see [10, Corollary 2.6.2].241

The composite of semi-normal (co)monoidal functors is again a semi-normal242

(co)monoidal functor. More exactly, we have243

Proposition 11. Let F : C −→ D and G : D −→ E be two functors between244

monoidal categories.245

(a) If G is covariant, we have246

(i) if F and G are both semi-normal monoidal functors, then, G ◦ F is a247

semi-normal monoidal functor as well;248

(ii) if F and G are both semi-normal comonoidal functors, then, G ◦ F is249

a semi-normal comonoidal functor as well.250

(b) If G is contravariant, we have251

(i) if F is a semi-normal comonoidal functor and G is a semi-normal252

monoidal functor, then, G ◦ F is a semi-normal monoidal functor;253

(ii) if F is a semi-normal monoidal functor and G is a semi-normal comonoidal254

functor, then, G ◦ F is a semi-normal comonoidal functor.255

Proof. Denote by F0, F
−
0 and F2, the monoidal structures of F and by G0, G

−
0

and G2 those of G. Hence, the monoidal structures of G ◦ F are denoted and
given as follows:
If G is covariant:

(G ◦ F )0 = G(F0)G0 ; ; (G ◦ F )−0 = G−
0 G(F

−
0 ).

If G is contravariant:

(G ◦ F )0 = G(F−
0 )G0 ; ; (G ◦ F )−0 = G−

0 G(F0).

In both cases we have
(G ◦ F )−0 (G ◦ F )0 = id.

In the first and third cases (a), (i) and (b), (i) of the Proposition, (G ◦ F )2 is
given by

(G ◦ F )2A;B = G(F2A;B)G2F (A);F (B).

In the second and fourth cases (a), (ii) and (b), (ii), (G ◦ F )2 is given by

(G ◦ F )2A;B = G2F (A);F (B)G(F2A;B),

for any objects A and B of C.256
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Proposition 12. Let F and F ′ be semi-normal monoidal functors between monoidal257

categories. Then, F × F ′ is as well a semi-normal monoidal functor.258

Proof. Let F : C −→ D and F ′ : C ′ −→ D′ be functors as assumed. Then,259

F × F ′ : C × C ′ −→ D ×D′ is a semi-normal monoidal functor in the canonical260

way, namely via the structures defined as follows. For any U, V ∈ Ob(C) and261

U ′, V ′ ∈ Ob(C ′) :262

(1) (F × F ′)2(U,U ′);(V,V ′) := F2U ;V × F ′
2U ′;V ′ .263

(2) (F × F ′)0 := F0 × F ′
0.264

(3) (F × F ′)−0 := F−
0 × F

′−
0 .265

We give now some examples of monoidal categories admitting semi-normal,266

which are not necessarily normal, monoidal functors to other ones.267

Proposition 13. Let bialgR be the category of finitely generated and projective268

bialgebras over R (see [11, page 101] for a definition). Then269

(i) bialgR admits a covariant semi-normal monoidal functor to the category270

ModR of modules over R, via the forgetful functor F : bialgR −→ ModR.271

(ii) Let (B;m; η; ∆; ε) be an object of bialgR. Then, bialgR admits a con-272

travariant semi-normal monoidal functor to ModR via the functor defined273

by274

FB := (−)∗ ⊗B : bialgR −→ ModR

H 7−→ H∗ ⊗B

f 7−→ FB(f) = f∗ ⊗ idB

where, H∗ = HomR(H,R), and f
∗ is the dual morphism of f .275

Proof. (i) Straightforward.276

(ii) The category ModR is a monoidal category (ModR;⊗R;R), but not strict.277

The associativity constraint is αU,V,W : U⊗(V ⊗W ) −→ (U⊗V )⊗W , defined by278

α(u⊗(v⊗w)) = (u⊗v)⊗w, for any u ∈ U , v ∈ V and w ∈W , for any R−modules279

U , V and W . The left unitality constraint is defined by lU : R ⊗ U −→ U ,280

r⊗u 7→ r.u, with ”.” the R−module structure product of U in ModR. The right281

unitality constraint rU is defined similarly. The monoidal structures on FB are282

defined by:283

(a) For any objects N and M of bialgR, (FB)2 N,M is the following composite:284
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(N∗ ⊗B)⊗ (M∗ ⊗B)
(FB)2 N,M //

α

��

(N ⊗M)∗ ⊗B

[(N∗ ⊗B)⊗M∗]⊗B

α−1⊗idB
��

(M∗ ⊗N∗)⊗B

λ⊗idB

OO

[N∗ ⊗ (B ⊗M∗)]⊗B

(idN∗⊗τ)⊗idB
��

(M∗ ⊗N∗)⊗ (R⊗B)

(idM∗⊗idN∗ )⊗lB

OO

[N∗ ⊗ (M∗ ⊗B)]⊗B

α⊗idB
��

(M∗ ⊗N∗)⊗ (B ⊗B)

(idM∗⊗idN∗ )⊗(ε⊗idB)

OO

[(N∗ ⊗M∗)⊗B]⊗B
(τ⊗idB)⊗idB // [(M∗ ⊗N∗)⊗B]⊗B

α−1

OO

285

286

where, τ is the flip map, and λ is the isomorphism (5).287

(b) (FB)0 = (β⊗idB) l−1
B η : R −→ B −→ R⊗B −→ R∗⊗B, where β : R→ R∗

288

is the canonical isomorphism.289

(c) (FB)
−
0 = ε lB (β−1 ⊗ idB) : R

∗ ⊗B −→ R⊗B −→ B −→ R.290

FB is contravariant by definition and we have (FB)
−
0 (FB)0 = εη = idR by the291

compatibility bialgebra structures of B. Furthermore, the following left unitality292

diagram:293

R⊗ (U∗ ⊗B)
l(U∗⊗B) //

(FB)0⊗id(U∗⊗B)

��

U∗ ⊗B

(R∗ ⊗B)⊗ (U∗ ⊗B)
(FB)2 R,U

// (R⊗ U)∗ ⊗B

FB(l−1
U )

OO

294

and the right unitality diagram:295

(U∗ ⊗B)⊗R
r(U∗⊗B) //

id(U∗⊗B)⊗(FB)0
��

U∗ ⊗B

(U∗ ⊗B)⊗ (R∗ ⊗B)
(FB)2 U,R

// (U ⊗R)∗ ⊗B

FB(r−1
U )

OO

296

are commutative. In fact, for the first diagram: for any r ∈ R, u ∈ U , b ∈ B, we297

have298
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299

FB(l
−1
U ) ◦ (FB)2 R,U◦

(
(FB)0 ⊗ id(U∗⊗B)

)(
r ⊗ (u⊗ b)

)
= FB(l

−1
U ) ◦ (FB)2 R,U

((
β(1R)⊗ η(r)

)
⊗ (u⊗ b)

)
= FB(l

−1
U )

(
λ
(
u⊗ β(1R)

)
⊗
(
εη(r).b

))
= FB(l

−1
U )

(
λ
(
u⊗ β(1R)

)
⊗ (r.b)

)
= λ

(
u⊗ β(1R)

)
◦ l−1

U ⊗ (r.b)

= r.
(
λ
(
u⊗ β(1R)

)
l−1
U ⊗ b

)
.

On the other hand, for every a ∈ U we have

λ
(
u⊗ β(1R)

)
l−1
U (a) = λ

(
u⊗ β(1R)

)
(1R ⊗ a) = u(a)

where, the isomorphism λ as in (5) is given in this case by:

λN ;M :M∗ ⊗N∗ −→ (N ⊗M)∗, f ⊗ g 7→
(
g ⊗ f : n⊗m 7→ g(n)f(m) ∈ R

)
.

Hence

r.
(
λ
(
u⊗ β(1R)

)
l−1
U ⊗ b

)
= r.(u⊗ b) = l(U∗⊗B)

(
r ⊗ (u⊗ b)

)
,

which completes the proof. Similarly, commutativity of the second (right unitality)300

diagram holds.301

For the commutativity of the associativity diagram of FB : let N , M and P be302

three objects of bialgR, and let n ∈ N∗, m ∈ M∗, p ∈ P ∗ and b, b′, b′′ ∈ B. In303

order to simplify the computations, we will omit the associativity constraint α.304

Then, on the one hand, we have305

(FB)2
(
(FB)2 ⊗ 1

)
(n⊗ b⊗m⊗ b′ ⊗ p⊗ b′′) = (FB)2

(
ε(b).λ(n⊗m)⊗ b′ ⊗ p⊗ b′′

)
= ε(b)ε(b′).λ

(
λ(n⊗m)⊗ p

)
⊗ b′′.

On the other hand, we have306

(FB)2
(
1⊗ (FB)2

)
(n⊗ b⊗m⊗ b′ ⊗ p⊗ b′′) = (FB)2

(
ε(b′).n⊗ b⊗ λ(m⊗ p)⊗ b′′

)
= ε(b)ε(b′).λ

(
n⊗ λ(m⊗ p)

)
⊗ b′′.

Hence, the main step consists of showing that

λP ;M⊗N (λM ;N ⊗ idP ∗) = λP⊗M ;N (idN∗ ⊗ λP ;M ),

which holds generally as in (6), and in particular, this holds for any three objects307

of bialgR. Hence,
(
FB; ((FB)0, (FB)

−
0 ), (FB)2

)
is a contravariant semi-normal308

monoidal functor.309
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Remark 14. Note that since the dual of a finitely generated and projective bial-310

gebra is also a finitely generated projective bialgebra, then the category bialgR311

admits also a contravariant semi-normal monoidal functor to ModR via the func-312

tor defined by313

FB∗ := (−)∗ ⊗B∗ : bialgR −→ ModR

H 7−→ H∗ ⊗B∗

f 7−→ FB∗(f) = f∗ ⊗ idB∗

with monoidal structures defined this time as follows.314

(a) For any objects N andM of bialgR, (FB∗)2 N,M is the following composite:315

(N∗ ⊗B∗)⊗ (M∗ ⊗B∗)
(FB∗ )2 N,M //

α

��

(N ⊗M)∗ ⊗B∗

[(N∗ ⊗B∗)⊗M∗]⊗B∗

α−1⊗idB∗
��

(M∗ ⊗N∗)⊗ (R⊗B∗)

λ⊗ lB∗

OO

[N∗ ⊗ (B∗ ⊗M∗)]⊗B∗

(idN∗⊗τ)⊗idB∗
��

(M∗ ⊗N∗)⊗ (R∗ ⊗B∗)

(idM∗⊗idN∗ )⊗ (β−1⊗idB∗ )

OO

[N∗ ⊗ (M∗ ⊗B∗)]⊗B∗

α⊗idB∗
��

(M∗ ⊗N∗)⊗ (B∗ ⊗B∗)

(idM∗⊗idN∗ )⊗ (η∗⊗idB∗ )

OO

[(N∗ ⊗M∗)⊗B∗]⊗B∗ (τ⊗idB∗ )⊗idB∗// [(M∗ ⊗N∗)⊗B∗]⊗B∗

α−1

OO

316

(b) (FB∗)0 = (β ⊗ idB∗) l−1
B∗ ε∗ β : R −→ R∗ −→ B∗ −→ R⊗B∗ −→ R∗ ⊗B∗,317

(c) (FB∗)−0 = β−1 η∗ lB∗ (β−1 ⊗ idB∗) : R∗ ⊗ B∗ −→ R ⊗ B∗ −→ B∗ −→318

R∗ −→ R.319

Corollary 15. For every B ∈ Ob(bialgR), the covariant functor FB of Propo-320

sition 13, extends to a covariant semi-normal monoidal functor, given by321

F : (bialgR;⊗R;R) −→
(
SNFun(bialgR;ModR);⊗; I

)
B 7−→ FB

f : B → B
′ 7−→

(
F(f)

)
H∈bialgR

= idH∗ ⊗ f : FB(H) → FB′ (H)

from bialgR to the category
(
SNFun(bialgR;ModR);⊗; I

)
of contravariant322

semi-normal monoidal functors from bialgR to ModR, which is monoidal, see323
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Section 4 for proof of its monoidality, where the monoidal product is the pointwise324

monoidal product, and the unit object I is the functor associating to each bialgebra325

H, the R−module R.326

Proof. The monoidal structures are defined by:327

(a) F0 : I −→ FR, subject to

(F0)H∈Ob(bialgR) := r−1
H∗ ε

∗
H β : R −→ R∗ −→ H∗ −→ H∗ ⊗R.

(b) F−
0 : FR −→ I, subject to

(F−
0 )H∈Ob(bialgR) := β−1 η∗H rH∗ : H∗ ⊗R −→ H∗ −→ R∗ −→ R.

(c) F2 N,M : FN ⊗FM −→ FN⊗M , for any objects N and M of bialgR, subject
to

(F2 N,M )H : (FN⊗FM )H = (H∗⊗N)⊗(H∗⊗M) −→ (FN⊗M )H = H∗⊗(N⊗M)

for every H ∈ Ob(bialgR), which is defined by the following composite:328

(H∗ ⊗N)⊗ (H∗ ⊗M)
(F2 N,M )H //

α

��

H∗ ⊗ (N ⊗M)

[(H∗ ⊗N)⊗H∗]⊗M

α−1⊗idM
��

[H∗ ⊗ (N ⊗H∗)]⊗M

(idH∗⊗τ)⊗idM
��

(R⊗H∗)⊗ (N ⊗M)

lH∗⊗(idN⊗idM )

OO

[H∗ ⊗ (H∗ ⊗N)]⊗M

α⊗idM
��

(R∗ ⊗H∗)⊗ (N ⊗M)

(β−1⊗idH∗ )⊗(idN⊗idM )

OO

[(H∗ ⊗H∗)⊗N ]⊗M
α−1

// (H∗ ⊗H∗)⊗ (N ⊗M)

(η∗H⊗idH∗ )⊗(idN⊗idM )

OO

329

The following left unitality diagram:330

I⊗ FB
lFB //

F0⊗id
��

FB

FR ⊗ FB F2 R,B

// FR⊗B

F(lB)

OO

331
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and the right unitality diagram:332

FB ⊗ I
rFB //

id⊗F0

��

FB

FB ⊗ FR F2 B,R

// FB⊗R

F(rB)

OO

333

are commutative, where for every B ∈ Ob(bialgR), the left and right unitality334

constraints on objects FB are also denoted by lFB and rFB respectively. In fact,335

for the first diagram, one should prove that for every H ∈ Ob(bialgR), the336

following diagram commutes:337

R⊗ (H∗ ⊗B)
l(H∗⊗B) //

(F0)H⊗id(U∗⊗B)

��

H∗ ⊗B

(H∗ ⊗R)⊗ (H∗ ⊗B)
(F2 R,B)H

// H∗ ⊗ (R⊗B)

idH∗⊗lB

OO

338

Let us proceed by elementary calculus, where we will also omit the associativity339

constraint α. For every r ∈ R, h ∈ H∗, b ∈ B, we have340 (
idH∗ ⊗ lB

)
◦
(
F2 R,B

)
H
◦
(
(F0)H ⊗ id(U∗⊗B)

)(
r ⊗ (h⊗ b)

)
=

(
idH∗ ⊗ lB

)
◦
(
F2 R,B

)
H

(
β(r)ε⊗ 1R ⊗ h⊗ b

)
=

(
idH∗ ⊗ lB

)(
β−1β(r).h⊗ 1R ⊗ b

)
=

(
idH∗ ⊗ lB

)(
r.h⊗ 1R ⊗ b

)
= r.h⊗ b

= l(H∗⊗B)(r ⊗ h⊗ b).

Commutativity of the second (right unitality) diagram holds in a similar way.341

For the commutativity of the associativity diagram of F : let H, N , M and P342

be objects of bialgR, and let n ∈ N , m ∈ M , and p ∈ P . Then, for every343

H ∈ Ob(bialgR) and for any h, h′, h′′ ∈ H∗, on the one hand, we have344

(F)2
(
(F)2 ⊗ 1

)
(h⊗ n⊗ h′ ⊗m⊗ h′′ ⊗ p) = (F)2

(
β−1(hη).h′ ⊗ n⊗m⊗ h′′ ⊗ p

)
= β−1(hη)β−1(h′η).h′′ ⊗ n⊗m⊗ p.



On a class of semi–normal monoidal functors 17

On the other hand, we have345

(F)2
(
1⊗ (F)2

)
(h⊗ n⊗ h′ ⊗m⊗ h′′ ⊗ p) = (F)2

(
h⊗ n⊗ β−1(h′η).h′′ ⊗m⊗ p

)
= (F)2

(
β−1(h′η).h⊗ n⊗ h′′ ⊗m⊗ p

)
= β−1(h′η)β−1(hη).h′′ ⊗ n⊗m⊗ p.

Hence, F is monoidal. Now, for every H ∈ Ob(bialgR), we have(
F−
0 ◦ F0

)
H

= β−1 η∗H rH∗r−1
H∗ ε

∗
H β = β−1 (εHηH)

∗ β = β−1β = idR.

Finally,
(
F ; (F0,F−

0 );F2

)
is a semi-normal monoidal functor.346

Similarly to the previous Corollary and based on Remark 14, we get the next347

conclusion.348

Corollary 16. For every B ∈ Ob(bialgR), the contravariant functor FB∗ of349

Remark 14, extends to a functor between bialgR and SNFun(bialgR;ModR),350

given by351

F∗ : (bialgR;⊗R;R) −→
(
SNFun(bialgR;ModR);⊗; I

)
B 7−→ FB∗

f : B → B
′ 7−→

(
F∗(f)

)
H∈Ob(bialgR)

= idH∗ ⊗ f∗ : FB′∗ (H) → FB∗(H)

Then, F∗ is again a contravariant semi-normal monoidal functor.352

Proof. In fact, the monoidal structures are given this time as follows.353

(a) F∗
0 : I −→ FR∗ , subject to

(
F∗

0

)
H∈Ob(bialgR)

:= (idH∗ ⊗ β) r−1
H∗ ε∗H β :

R −→ R∗ −→ H∗ −→ H∗ ⊗R −→ H∗ ⊗R∗.

(b) F∗−
0 : FR∗ −→ I, subject to

(
F∗−

0

)
H∈Ob(bialgR)

:= β−1η∗HrH∗(idH∗⊗β−1) :

H∗ ⊗R∗ −→ H∗ ⊗R −→ H∗ −→ R∗ −→ R.

(c) F∗
2 N,M : FN∗ ⊗ FM∗ −→ F(N⊗M)∗ , for any N,M ∈ Ob(bialgR), subject

to
(
F∗

2 N,M

)
H

:

(FN∗⊗FM∗)H = (H∗⊗N∗)⊗(H∗⊗M∗) −→ (F(N⊗M)∗)H = H∗⊗(N⊗M)∗

for every H ∈ Ob(bialgR), which is defined by the following composite:354
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(H∗ ⊗N∗)⊗ (H∗ ⊗M∗)
(F∗

2 N,M )H //

α

��

H∗ ⊗ (N ⊗M)∗

[(H∗ ⊗N∗)⊗H∗]⊗M∗

α−1⊗idM∗
��

H∗ ⊗ (M∗ ⊗N∗)

idH∗⊗λ

OO

[H∗ ⊗ (N∗ ⊗H∗)]⊗M∗

(idH∗⊗τ)⊗idM∗
��

(R⊗H∗)⊗ (M∗ ⊗N∗)

lH∗⊗(idM∗⊗idN∗ )

OO

[H∗ ⊗ (H∗ ⊗N∗)]⊗M∗

α⊗idM∗
��

(R∗ ⊗H∗)⊗ (N∗ ⊗M∗)

(β−1⊗idH∗ )⊗τ

OO

[(H∗ ⊗H∗)⊗N∗]⊗M∗ α−1
// (H∗ ⊗H∗)⊗ (N∗ ⊗M∗)

(η∗H⊗idH∗ )⊗(idN∗⊗idM∗ )

OO

355

Thus, proceeding as in the proof of Corollary 15,
(
F∗; (F∗

0,F∗−
0 );F∗

2

)
is a356

contravariant semi-normal monoidal functor.357

Proposition 17. Let C be a monoidal Ab−category. Then, C admits a con-358

travariant semi-normal monoidal functor to the category (ModkC ;⊗kC ;kC).359

Proof. This is due to the fact that HomC(M,N) admits the structure of a left360

kC−module, for any objects M and N of C. Consider the functor:361

F : C −→ (ModkC ;⊗kC ;kC)
M 7−→ HomC(M, I)

f :M → N 7−→ F (f)

where, F (f)(h) = hf , for every h ∈ HomC(N, I). F is then a contravariant362

semi-normal monoidal functor, with the following structures: F0 = F−
0 = idkC ,363

and364

F2M,N : HomC(M, I)⊗kC HomC(N, I) −→ HomC(M ⊗N, I)

f ⊗ g 7−→ f ⊗ g .

365

Remark 18. In the above example of the Proposition 17, this just reduces to366

the ordinary (linear) duality when considering C to be the category of finitely367

generated modules over a commutative noetherian ring R.368
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Proposition 19. Let C be a monoidal Ab−category, equipped with a braid-369

ing c. Assume there exists a dualizable object A of C, with duality structures370

(A∗; dA; bA), satisfying dA ◦ c◦ bA = id. Then, C admits the following contravari-371

ant semi-normal monoidal functor to (ModkC ;⊗kC ;kC) :372

GA : C −→ (ModkC ;⊗kC ;kC)
M 7−→ HomC(M,A⊗A∗)

f :M → N 7−→ F (f)(g) = g ◦ f

for every g ∈ HomC(N,A⊗A∗).373

Proof. Define the following semi-normal monoidal structures on GA :374

(GA)0 : kC −→ HomC(I, A⊗A∗)

k 7−→ bA ◦ k
375

(GA)
−
0 : HomC(I, A⊗A∗) −→ kC

h 7−→ dA ◦ c ◦ h
376

(GA)2M,N : HomC(M,A⊗A∗)⊗kC HomC(N,A⊗A∗) −→ HomC(M ⊗N,A⊗A∗)

f ⊗ g 7−→ (id⊗ dA ⊗ id)(f ⊗ g) .

Clearly, we have (GA)
−
0 (GA)0 = id, and for every k ∈ kC and f ∈ HomC(M,A⊗377

A∗), we have378

(GA)2
(
(GA)0 ⊗ id

)
(k ⊗ f) = (GA)2(bA ◦ k ⊗ f)

= (id⊗ dA ⊗ id)(bA ◦ k ⊗ f)

= (id⊗ dA ⊗ id)(bA ⊗ id⊗ id)(id⊗ f)(k ⊗ id)

= k ⊗ f.

Hence, the left unitality axiom holds, and similarly for the right unitality one.379

For the associativity axiom, we have380

(GA)2
(
(GA)2 ⊗ id

)
(f ⊗ g ⊗ h) = (id⊗ dA ⊗ id)

(
(id⊗ dA ⊗ id)(f ⊗ g)⊗ h

)
= (id⊗ dA ⊗ id)

(
f ⊗ (id⊗ dA ⊗ id)(g ⊗ h)

)
= (GA)2

(
id⊗ (GA)2

)
(f ⊗ g ⊗ h).

Thus,
(
GA; ((GA)0, (GA)

−
0 ); (GA)2

)
is a contravariant semi-normal monoidal func-381

tor.382
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In the next Proposition, we explicitly prove that a natural isomorphism be-383

tween two functors transforms semi-normality structures from one to the other.384

Proposition 20. Let F, G : C −→ D be functors between monoidal categories,385

and φ : F −→ G a natural isomorphism. If F is a semi-normal monoidal386

(resp., comonoidal) functor, then G is as well a semi-normal monoidal (resp.,387

comonoidal) functor.388

Proof. Let ψ denote the inverse of φ. Assume that F is a semi-normal monoidal
functor. Then, G is a semi-normal monoidal functor via the maps given as follows.
For any A,B ∈ Ob(C) :

G2A,B = φA⊗B ◦ F2A,B ◦ (ψA ⊗ ψB) : G(A)⊗G(B) −→ G(A⊗B).

G0 = φI ◦ F0 : I
′ −→ G(I).

G−
0 = F−

0 ◦ ψI : G(I) −→ I
′
.

Consider the following diagram, expressing the associativity constraint of G (the389

larger square) :390



On a class of semi–normal monoidal functors 21

G
(A

)
⊗

G
(B

)
⊗

G
(C

)

ψ
⊗
ψ
⊗
1

tt

1
⊗
G

2
//

1
⊗
ψ
⊗
ψ

**

G
2
⊗
1

��

G
(A

)
⊗

G
(B

⊗
C
)

1
⊗
ψ

uu

G
2

��

ψ
⊗
ψ

))
F
(A

)
⊗

F
(B

)
⊗

G
(C

)

1
⊗
1
⊗
ψ

,,
F
2
⊗
1

��

G
(A

)
⊗

F
(B

)
⊗

F
(C

)
1
⊗
F
2
//

ψ
⊗
1
⊗
1

��

G
(A

)
⊗

F
(B

⊗
C
)

1
⊗
φ

55

ψ
⊗
1

//

ψ
⊗
1

��

F
(A

)
⊗

F
(B

⊗
C
)

F
2

��

F
(A

)
⊗

F
(B

)
⊗

F
(C

)
1
⊗
F
2
//

F
2
⊗
1

��

F
(A

)
⊗

F
(B

⊗
C
)

1

22

F
2

��
F
(A

⊗
B
)
⊗

G
(C

)
1
⊗
ψ

//

φ
⊗
1

**

F
(A

⊗
B
)
⊗

F
(C

)

φ
⊗
φ

tt

F
2

// F
(A

⊗
B

⊗
C
)

φ

))

1
// F

(A
⊗

B
⊗

C
)

φ
uu

G
(A

⊗
B
)
⊗

G
(C

)

ψ
⊗
ψ

44

G
2

// G
(A

⊗
B

⊗
C
)

391



22 K. Draoui, H. Choulli and H. Mouanis

This is a commutative diagram. In fact, the two (left and right) hexagonal
diagrams are clearly commutative through the commutativity of the interior di-
agrams constituting a three diagrams decomposition of each one. The commu-
tativity of the interior central square holds by using only the left invertibility
ψ ◦ φ = id of φ (the double-headed arrows in the above diagram) and by the
associativity constraint of F .
On the other hand, the following unitality diagrams commute:

I
′ ⊗G(A)

1 //

F0⊗ψA

!!

F0⊗1

��

G(A)

F (I)⊗G(A)
1⊗ψA

((
φI⊗1

��

F (A)

φA

OO

G(I)⊗G(A)
ψI⊗ψA// F (I)⊗ F (A)

F2

OO

and G(A)⊗ I
′ 1 //

ψA⊗F0

!!

1⊗F0

��

G(A)

G(A)⊗ F (I)
ψA⊗1

((
1⊗φI

��

F (A)

φA

OO

G(A)⊗G(I)
ψA⊗ψI// F (A)⊗ F (I)

F2

OO

For the first diagram: The right upper triangle is commutative now due to the
right invertibility φA ◦ ψA = idG(A) of φ. Whilst, the left lower triangle is com-
mutative due to the datum: ψI ◦ φI = idF (I).
Similar arguments hold for the second diagram. Furthermore, we have

G−
0 ◦G0 = F−

0 ◦ ψI ◦ φI ◦ F0 = idI′ .

Hence, G is a semi-normal monoidal functor.
Assume now that F is a semi-normal comonoidal functor. Then, G is as well a
semi-normal comonoidal functor via the following maps: for all A,B ∈ Ob(C) :

G2A,B = (φA ⊗ φB) ◦ F2A,B ◦ ψA⊗B : G(A⊗B) −→ G(A)⊗G(B).

G0 = φI ◦ F0 : I
′ −→ G(I).

G−
0 = F−

0 ◦ ψI : G(I) −→ I
′
.

By reversing the arrows in the associativity and unitality diagrams, the proof in392

this case is done similarly.393

4. Functor category394

Denote by SNFun(C;D), the category of semi-normal monoidal functors be-395

tween monoidal categories C and D, with all the natural transformations between396

the functors.397
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Proposition 21. If D is a (strict) braided monoidal category, then SNFun(C;D)398

is also a (strict) monoidal and braided category.399

Proof. The monoidal product in SNFun(C;D) is the pointwise monoidal prod-400

uct (we denote it also by ” ⊗ ”), which is obviously associative and unital. The401

unit object is the functor I, sending any object of C to the unit object I ′ of402

D, and any morphism of C to the identity on I ′. It is clear that id D is strict403

then SNFun(C;D) is as well. Now, for any semi-normal monoidal functors404

F, G : C −→ D, the following maps, where c will denote the braiding of D,405

define the semi-normality monoidal structures on F ⊗G.406

(1) For any A,B ∈ Ob(C), (F ⊗G)2A,B = (F2A,B ⊗G2A,B)(id⊗ c⊗ id) :407

F (A)⊗′
G(A)⊗′

F (B)⊗′
G(B)

(F⊗G)2A,B //

1⊗c⊗1
��

F (A⊗B)⊗′
G(A⊗B)

F (A)⊗′
F (B)⊗′

G(A)⊗′
G(B)

F2⊗G2

22

408

(2) (F ⊗G)0 = F0 ⊗G0 : I
′
= I

′ ⊗ I
′ −→ (F ⊗G)(I) = F (I)⊗′

G(I).409

(3) (F ⊗G)−0 = F−
0 ⊗G−

0 : F (I)⊗′
G(I) −→ I

′
.410

Indeed, we have

(F ⊗G)−0 (F ⊗G)0 = (F−
0 ⊗G−

0 )(F0 ⊗G0) = F−
0 F0 ⊗G−

0 G0 = id⊗ id = id.

On the other hand, it is not so difficult to see that (F ⊗G)2 and (F ⊗G)0 satisfy
the commutativity of the associativity, left and right unitality diagrams.
The braiding is given by: cF ;G : F ⊗G −→ G⊗ F , subject to:

(cF ;G)A∈Ob(C) = cF (A);G(A) : F (A)⊗
′
G(A) −→ G(A)⊗′

F (A).

411

Corollary 22. Let C, D and D
′
be three monoidal categories and G : D −→ D

′

a semi-normal monoidal functor. Then, the category SNFun(C;D) of semi-
normal monoidal functors from C to D admits a semi-normal monoidal functor
to the category SNFun(C;D

′
) via the following functor:

φ : SNFun(C;D) −→ SNFun(C;D
′
)

F 7−→ φ(F ) = G ◦ F
α =

{
(α)A : F (A) → F

′
(A)

}
A

7−→ φ(α) =
{
(φ(α))A = G((α)A)

}
A

for every A ∈ Ob(C).412
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Proof. The functor φ is clearly well defined by Proposition 11. Thus, we have413

to show that φ is semi-normal and monoidal. The monoidal structures on φ are414

given by415

(1) : φ0 : I
′ −→ φ(I) = G ◦ I, given by416

φ0 =
{
(φ0)A : I

′
(A) −→ G ◦ I(A)

}
A∈Ob(C)

=
{
(φ0)A : ID′ −→ G(ID)

}
A∈Ob(C)

where (φ0)A = G0, for every A ∈ Ob(C).417

(2) : φ−
0 : φ(I) −→ I′ , given by418

φ−
0 =

{
(φ−

0 )A : G ◦ I(A) −→ I
′
(A)

}
A∈Ob(C)

=
{
(φ−

0 )A : G(ID) −→ ID′

}
A∈Ob(C)

where (φ−
0 )A = G−

0 , for every A ∈ Ob(C). Here, I′ is the unit object of419

SNFun(C;D
′
), which is the functor associating to each object of C, the unit420

object of D, and ID and ID′ are the unit objects of D and D′ respectively.421

(3) : φ2F,F ′ is defined as follows:422

φ2F,F ′ =
{
(φ2F,F ′ )A :

(
φ(F )⊗ φ(F

′
)
)
(A) −→ φ(F ⊗ F

′
)(A)

}
A∈Ob(C)

=
{
(φ2F,F ′ )A : G

(
F (A)

)
⊗G

(
F

′
(A)

)
−→ G

(
F (A)⊗ F

′
(A)

)}
A∈Ob(C)

where (φ2F,F ′ )A = G2F (A),F ′ (A). Thus defined, it is not difficult to see that423 (
φ; (φ0, φ

−
0 );φ2

)
is a semi-normal monoidal functor.424
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