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Abstract

Let X be any non-empty set and P (X) denote the semigroup (under the
composition of functions) of partial transformations on a set X . Let Y be a
fixed non-empty subset of X and

PT (X,Y ) = {α ∈ P (X) : (domα ∩ Y )α ⊆ Y }.

Then PT (X,Y ) is a semigroup consisting of all mappings in P (X) that
leave Y ⊆ X invariant. In this paper, we present criteria for checking the
intra-regularity of elements in PT (X,Y ) and apply these results to quantify
intra-regular elements in PT (X,Y ), when X is finite.
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1. Introduction and preliminaries

Let S be a semigroup. An element a of S is said to be intra-regular if there exist
x, y ∈ S, such that a = xa2y. The notion of intra regularity was introduced in
Croisot’s theory of decompositions [2, Section 4.1].

Let X be a non-empty set and T (X) denote the semigroup (under the com-
position of mappings) of all transformations from X into itself. It is known as full
transformation semigroup. The study of algebraic properties on semigroups in
such types was started by Doss [4] in 1955. The author completely described its
Green’s relations. Particularly, a characterization of J -relation can be directly
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used to identify intra regularity, because α ∈ T (X) is intra-regular if and only if
α J α2. Several other properties of T (X) have been researched extensively by
the fact that any semigroup can be embedded in T (X) for some an appropriate
set X.

Let Y be a non-empty subset of X. In 1966, Magill [7] introduced a subsemi-
group of T (X), defined by

T (X,Y ) = {α ∈ T (X) | Y α ⊆ Y }.

In addition, T (X,Y ) is a generalization of T (X), since T (X,X) = T (X). This
fact inspired Homyam and Sanwong [5] to give a complete description of Green’s
relations on T (X,Y ). Later in 2013, Choomanee et al. [1] used these results to
provide characterization and number of intra-regular elements on T (X,Y ).

For any non-empty set X, the super semigroup of all transformation semi-
groups on X is a partial transformation semigroup, which is defined by

P (X) = {α : A→ X | A ⊆ X}.

Its Green’s relations was shown in [6]. Similarly, the characterization of intra-
regular was explored immediately.

For a fixed non-empty subset Y of X, in analogy with T (X,Y ), consider

PT (X,Y ) = {α ∈ P (X) | (domα ∩ Y )α ⊆ Y },

where domα and Y α denote the domain of α and (domα ∩ Y )α, respectively.
Since PT (X,X) = P (X), we may regard PT (X,Y ) as a generalization of P (X).
Note that idX , the identity map on X, belongs to PT (X,Y ).

We now provide important preliminaries for this paper. Some basic mathe-
matical terminologies and relevant notations used in what follows on semigroups
are prescribed. Further, we refer to [2, 3, 6] for more information. Indeed,
throughout this paper, the functions are written on the right, i.e., in the com-
position αβ, α is applied first. For any α ∈ P (X), the notations domα and
imα denote the domain of α and the range of α, respectively. Additionally,
for any x ∈ imα, xα−1 denotes the set of inverse images of x under α, i.e.,
xα−1 = {z ∈ domα : zα = x}. In addition, the following notation is applied

α =

(

Xi

ai

)

.

Here, the script i belongs to some (unmentioned) index set I, the abbreviation
{ai} denotes {ai : i ∈ I} and that imα = {ai} and aiα

−1 = Xi ⊆ domα where
⋃

i∈I

Xi = domα. More specifically, when α ∈ PT (X,Y ), we have Y α ⊆ Y . Thus,

the domain of α can be divided into three parts as follows

α =

(

Ai Bj Ck
ai bj ck

)

,
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where Ai ∩ Y 6= ∅, Bj , Ck ⊆ X \ Y ; ai, bj ∈ Y and ck ∈ X \ Y . Here, I, J and K
can be empty.

In this paper, we describe the necessary and sufficient conditions for elements
of PT (X,Y ) to be intra-regular. The results recapture the known results on
P (X) when we focus on Y = X. Moreover, they are used to deduce the results
for T (X,Y ), when elements with X as their domain are considered. We also
apply the results to quantify the intra-regular elements in the PT (X,Y ) when X
is a finite set.

2. Main results

This section provides criteria for checking intra regularity of elements in PT (X,Y ).
By somewhat abusing the notation, we use Aα to denote (domα ∩ A)α for any
A ⊆ X. Note for α, β ∈ PT (X,Y ), we have dom(αβ) ⊆ domα, im (αβ) ⊆ imβ,
and |imα| ≤ |domα|.

Lemma 1. Let α, β ∈ PT (X,Y ). Then, α = γβµ for some γ, µ ∈ PT (X,Y ) if

and only if |imα| ≤ |im β|, |Y α| ≤ |Y β|, and |imα \ Y | ≤ |imβ \ Y |.

Proof. Assume that α = γβµ for some γ, µ ∈ PT (X,Y ). Then |imα| =
|(domα)α| = |(dom (γβµ))γβµ| ≤ |(dom (γβ))γβµ| = |(im (γβ))µ| ≤ |im (γβ)| ≤
|im β|, |Y α| = |(domα∩Y )α| = |(dom (γβµ)∩Y )γβµ| ≤ |(dom (γβ)∩Y )γβµ| =
|(Y γβ)µ| ≤ |Y γβ| ≤ |Y β|, and |imα \ Y | = |im (γβµ) \ Y | ≤ |im (βµ) \ Y | =
|(dom (βµ))βµ \ Y | ≤ |(dom (βµ))β \ Y | ≤ |(dom β)β \ Y | = |imβ \ Y |.

Conversely, assume that |imα| ≤ |im β|, |Y α| ≤ |Y β|, and |imα \ Y | ≤
|im β \ Y |. Write

α =

(

Ai Bj Ck
ai bj ck

)

,

where Ai ∩ Y 6= ∅;Bj , Ck ⊆ X \ Y ; {ai}, {bj} ⊆ Y ; and {ck} ⊆ X \ Y . By our
assumptions, we can write

β =

(

Ui Ul Vm Wn Wk

ui ul vm wn wk

)

,

where Ui ∩ Y 6= ∅ 6= Ul ∩ Y ;Vm,Wn,Wk ⊆ X \ Y ; {ui}, {ul}, {vm} ⊆ Y ; {wn},
{wk} ⊆ X \ Y ; and |I|+ |J |+ |K| ≤ |I|+ |L|+ |M |+ |N |+ |K|.

Case 1. |J | ≤ |L|+ |M |+ |N |. Let L ∪M ∪N = P ∪̇Q, such that |P | = |J |.
Then, we can express {Ul} ∪ {Vm} ∪ {Wn} = {Rp} ∪ {Sq} and rewrite β as

β =

(

Ui Rp Sq Wk

ui rp sq wk

)

.
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Since |J | = |P |, there exists a bijective function ϕ : J → P . For each i, j, and k,
choose yi ∈ Ui ∩ Y , xjϕ ∈ Rjϕ, and zk ∈Wk, respectively. Now, define

γ =

(

Ai Bj Ck
yi xjϕ zk

)

and µ =

(

ui rjϕ wk
ai bj ck

)

.

Hence, γ, µ ∈ PT (X,Y ) and α = γβµ.

Case 2. |J | > |L| + |M | + |N |. Then, im β is an infinite set. This implies
|J | ≤ |I| or |J | ≤ |K| are infinite cardinals.

Subcase 2.1. |J | ≤ |I|. Let I = P ∪̇Q, such that |P | = |I| and |Q| = |J |.
Then, we can express {Ui} = {Rp} ∪ {Sq} in which Rp ∩ Y 6= ∅ and rewrite β as

β =

(

Rp Sq Ul Vm Wn Wk

rp sq ul vm wn wk

)

.

Since |P | = |I| and |Q| = |J |, there exist bijective functions ϕ : I → P and
ψ : J → Q. For each i, j, and k, choose yiϕ ∈ Riϕ ∩ Y, xjψ ∈ Sjψ and zk ∈ Wk,
respectively. Define

γ =

(

Ai Bj Ck
yiϕ xjψ zk

)

and µ =

(

riϕ sjψ wk
ai bj ck

)

.

Hence, γ, µ ∈ PT (X,Y ) and α = γβµ.

Subcase 2.2. |J | ≤ |K|. Let K = G∪̇H, such that |G| = |J | and |H| = |K|.
Then, we can express {Wk} = {Dg} ∪ {Eh} and rewrite β as

β =

(

Ui Ul Vm Wn Dg Eh
ui ul vm wn dg eh

)

.

Since |G| = |J | and |H| = |K|, there exist bijective functions σ : J → G and
θ : K → H. For each i, j, and k, choose yi ∈ Ui ∩ Y, xjσ ∈ Dgσ and zkθ ∈ Ekθ,
respectively. Define

γ =

(

Ai Bj Ck
yi xjσ zkθ

)

and µ =

(

ui djσ ekθ
ai bj ck

)

.

Hence, γ, µ ∈ PT (X,Y ) and α = γβµ.

Since imα2 ⊆ imα, Y α2 ⊆ Y α and imα2 \ Y ⊆ imα \ Y , we obtain the
following criterion.

Theorem 2. Let α ∈ PT (X,Y ). Then, α is intra-regular if and only if |imα| =
|imα2|, |Y α| = |Y α2| and |imα \ Y | = |imα2 \ Y |.

In order to re-writte the above criterion in terms of α, where imα is finite,
the following three lemmas are needed.
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Lemma 3. Let α ∈ PT (X,Y ) be such that α2 6= ∅ and imα is finite. Then,

|imα| = |imα2| if and only if imα ⊆ domα and α|imα is injective.

Proof. Assume |imα| = |imα2|. To show imα ⊆ domα, we suppose, to the
contrary, that there exists x ∈ imα \ domα. Then, |imα2| = |(domα2)α2| ≤
|(domα)α2| = |(imα)α| < |imα| which is a contradiction. Thus, imα ⊆ domα.

To show α|imα is injective, assume the contrary that there exist distinct x1, x2 ∈
imα, such that x1α = x2α. Since x1, x2 ∈ imα, there exist x′

1
, x′

2
∈ domα such

that x′
1
α = x1 and x′

2
α = x2. Since α is a function and x1 6= x2, we obtain

x′
1
6= x′

2
. However, x′

1
α2 = x1α = x2α = x′

2
α2, which leads |imα2| < |imα|, a

contradiction.
Conversely, assume that imα ⊆ domα and α|imα is injective. Let imα =

{x1, . . . , xn} ⊆ domα. Since α|imα is injective,

|imα| = |{x1, . . . , xn}| = |{x1α, . . . , xnα}| = |imα2|.

Lemma 4. Let α ∈ PT (X,Y ) be such that α2 6= ∅ and imα is finite. Then,

|Y α| = |Y α2| if and only if Y α ⊆ domα and α|Y α is injective.

Proof. Assume that |Y α| = |Y α2|. To show Y α ⊆ domα, we suppose, to the
contrary, that there exists x ∈ Y α \domα. Then, |Y α2| = |(Y α)α| < |Y α| which
is a contradiction. To show α|Y α is injective, we assume the contrary that there
exist distinct y1, y2 ∈ Y α, such that y1α = y2α. Since y1, y2 ∈ Y α, there exist
y′
1
, y′

2
∈ domα ∩ Y , such that y′

1
α = y1 and y′

2
α = y2. Since α is a function and

y1 6= y2, we obtain that y′
1
6= y′

2
. Thus, y′

1
α2 = y1α = y2α = y′

2
α2, which leads

|Y α2| < |Y α|, a contradiction.
Conversely, assume that Y α ⊆ domα and α|Y α is injective. Let Y α =

{y1, . . . , yn} ⊆ domα. Since α|Y α is injective,

|Y α| = |{y1, . . . , yn}| = |{y1α, . . . , ynα}| = |Y α2|.

Lemma 5. Let α ∈ PT (X,Y ) be such that α2 6= ∅ and imα is finite. Then,

|imα \Y | = |imα2 \Y | if and only if imα \Y ⊆ domα, α|imα\Y is injective, and

im (α|imα\Y ) ⊆ X \ Y.

Proof. Assume that |imα \ Y | = |imα2 \ Y |. To show imα \ Y ⊆ domα,
we suppose, to the contrary, that there exists x ∈ (imα \ Y ) \ domα. Then,
|imα2\Y | ≤ |(imα\Y )α| < |imα\Y |, which is a contradiction. To show α|imα\Y

is injective, assume the contrary that there exist distinct x1, x2 ∈ imα \ Y such
that x1α = x2α. Since x1, x2 ∈ imα \Y , there exist x′

1
, x′

2
∈ domα \Y such that

x′
1
α = x1 and x′

2
α = x2. Since α is a function and x1 6= x2, then x

′
1
6= x′

2
. Thus,

x′
1
α2 = x1α = x2α = x′

2
α2, which leads |imα2 \ Y | ≤ |(imα \ Y )α| < |imα \ Y |,

a contradiction. To show im (α|imα\Y ) ⊆ X \Y , we letting z ∈ im (α|imα\Y )∩Y .
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Hence, there exists x ∈ (imα \ Y ) ∩ domα such that xα = z. This yields
|imα2 \ Y | < |(imα \ Y )α| ≤ |imα \ Y |, which is a contradiction.

Conversely, assume that all three aforementioned conditions hold. Let imα\
Y = {x1, . . . , xn} ⊆ domα. Since α|imα\Y is injective and im (α|imα\Y ) ⊆ X \ Y ,
we obtain |imα \ Y | = |{x1, . . . , xn}| = |{x1α, . . . , xnα}| = |imα2 \ Y |.

Combining Theorem 2 with Lemmas 3–5, we obtain the following theorem.

Theorem 6. Let α ∈ PT (X,Y ) be such that imα is finite. Then, α is intra-

regular if and only if all of the following statements hold:

1. imα ⊆ domα;

2. α|imα is injective;

3. im (α|imα\Y ) ⊆ X \ Y.

We now provide properties of intra-regular elements with respect to the finite-
ness of their images.

Lemma 7. Let α ∈ PT (X,Y ) be such that imα is finite. If α is intra-regular,

then the following statements hold:

1. (X \ Y )α ⊆ (X \ Y ) ∪ Y α.

2. |yα−1 ∩ Y α| = 1 for all y ∈ Y α.

3. |xα−1 ∩ (imα \ Y α)| = 1 for all x ∈ imα \ Y α.

Proof. Assume that α is intra-regular. According to Theorem 6, we can express
this α as

α =

(

A1 · · · Ar B1 · · · Bs C1 · · · Ct
a1 · · · ar b1 · · · bs c1 · · · ct

)

,

where Ai ∩ Y 6= ∅, Bj , Ck ⊆ X \ Y and ai, bj ∈ Y, ck ∈ X \ Y for all i ∈ I =
{1, . . . , r}, j ∈ J = {1, . . . , s} and k ∈ K = {1, . . . , t}. To show J = ∅, we
suppose, to the contrary, that there exists j0 ∈ J . Then bj0 ∈ imα ⊆ domα.
Since bj0 ∈ Y , we obtain bj0 ∈ Ai0 for some i0 ∈ I. Hence, Bj0α

2 = ai0 . Since
im (α|imα\Y ) ⊆ X \ Y , we obtain

|imα2| = |imα2 ∩ Y |+ |imα2 \ Y | ≤ r + (s− 1) + t < r + s+ t = |imα|

which is a contradiction by Theorem 2. Consequently,

(∗) α =

(

A1 · · · Ar C1 · · · Ct
a1 · · · ar c1 · · · ct

)

.

1. According to (∗), we have (X \ Y )α ⊆ imα ⊆ Y α ∪X \ Y which yields
(X \ Y )α ⊆ (X \ Y ) ∪ Y α.
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2. Since imα ⊆ domα, we obtain a1, . . . , ar belong to Ai for some i ∈ I.
Since α|imα is injective, we obtain |Ai ∩ {a1, . . . , ar}| = 1 for all i ∈ I, that is,
|yα−1 ∩ Y α| = 1 for all y ∈ Y α.

3. Since imα ⊆ domα and α|imα is injective, we obtain c1, . . . , ct belong to
Ck for some k ∈ K and |Ck ∩ {c1, . . . , ct}| = 1 for all k ∈ K, that is, |xα−1 ∩
(imα \ Y α)| = 1 for all x ∈ imα \ Y α.

For the rest of this section, X is assumed to be is a finite set with n elements
and ∅ 6= Y ⊆ X has m elements. The following lemmas will serve as our starting
point as we count the intra-regular elements in PT (X,Y ).

Lemma 8. Let |X| = n, |Y | = m and α ∈ PT (X,Y ) be intra-regular. If imα ∩
Y 6= ∅, then α|Y : (domα ∩ Y ) → Y has

∑m
r=1

∑m−r
s=0

(

m
r

)(

m−r
s

)

r!rs different

forms.

Proof. Let ∅ 6= imα ∩ Y = Y ′ = {a1, . . . , ar}, where 1 ≤ r ≤ m. From (∗), we
obtain Y α = imα ∩ Y = Y ′. We can write

α|Y =

(

A1 · · · Ar
a1 · · · ar

)

,

where
⋃r
i=1

Ai = domα∩Y . By Theorem 6 and Lemma 7, we have imα ⊆ domα,
α|imα is injective and |Ai∩{a1, . . . , ar}| = 1 for all i = 1, . . . , r. Since the number
of permutations on {a1, . . . , ar} is r! and the number of ways of choosing Y ′ with
|Y ′| = r is equal to

(

m
r

)

, we obtain that α|Y ′ : Y ′ → Y ′ has
(

m
r

)

r! different forms.
Let Y ∗ = (domα ∩ Y ) \ Y ′ be such that |Y ∗| = s. Then, the number of ways
of choosing Y ∗ is equal to

(

m−r
s

)

and there are r options for where to place each
elements of Y ∗ in A1, . . . , Ar. Moreover, since 1 ≤ r ≤ m, we conclude that α|Y
has

∑m
r=1

∑m−r
s=0

(

m
r

)(

m−r
s

)

r!rs different forms.

Lemma 9. Let |X| = n, |Y | = m, α ∈ PT (X,Y ) be intra-regular and X ′ =
imα \ Y α. Then α|X′ : X ′ → X ′ has

∑n−m
t=0

(

n−m
t

)

t! different forms.

Proof. Suppose that |X ′| = t where 0 ≤ t ≤ n − m. By Lemma 7(3), α|X′

is a permutation on X ′. Hence, α|X′ has t! different forms. Since the number
of ways of choosing X ′ is equal to

(

n−m
t

)

, we obtain that α|X′ : X ′ → X ′ has
∑n−m

t=0

(

n−m
t

)

t! different forms.

Theorem 10. The number of intra-regular elements in PT (X,Y ) is

m
∑

r=1

m−r
∑

s=0

n−m
∑

t=0

n−m−t
∑

j=0

(

m

r

)(

m− r

s

)(

n−m

t

)(

n−m− t

j

)

r!t!rs(r + t)j

+

n−m
∑

t=1

n−m−t
∑

j=0

(

n−m

t

)(

n−m− t

j

)

t!tj + 1,
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where |X| = n and |Y | = m.

Proof. Let α ∈ PT (X,Y ) be an intra-regular element. Suppose that Y ′ = Y α =
{a1, . . . , ar} and X ′ = imα \ Y α = {c1, . . . , ct}.

Case 1. Y ′ 6= ∅. Lemma 7 allow us to express this α as

α =

(

A1 · · · Ar C1 · · · Ct
a1 · · · ar c1 · · · ct

)

,

where Ai∩Y 6= ∅, Ck ⊆ X\Y and |Ai∩{a1, . . . , ar}| = 1, |Ck∩{c1, . . . , ct}| = 1 for
all i = 1, . . . , r and k = 1, . . . , t. Let Y ∗ = (domα∩Y )\Y ′ be such that |Y ∗| = s.
By Lemmas 8 and 9, there are

∑m
r=1

∑m−r
s=0

∑n−m
t=0

(

m
r

)(

m−r
s

)(

n−m
t

)

r!t!rs different
forms of α|Y ∪X′ . Let X∗ = domα \ (Y ∪X ′) be such that |X∗| = j. Then, there
are r + t different ways to arrange each element of X∗ in A1, . . . , Ar, C1, . . . , Ct
and X∗ has

(

n−m−t
j

)

forms, where 0 ≤ j ≤ n−m− t. Therefore, the number of
intra-regular elements in this case is

m
∑

r=1

m−r
∑

s=0

n−m
∑

t=0

n−m−t
∑

j=0

(

m

r

)(

m− r

s

)(

n−m

t

)(

n−m− t

j

)

r!t!rs(r + t)j.

Case 2. Y ′ = ∅. If X ′ = ∅, then α = ∅, which is intra-regular. If X ′ 6= ∅,
then α|X′ : X ′ → X ′ has

∑n−m
t=1

(

n−m
t

)

t! different forms by Lemma 9. Let X∗ =
domα\X ′ ⊆ (X \Y )\X ′ be such that |X∗| = j. Then, there are t different ways
to arrange each element of X∗ in C1, . . . , Ct and X∗ has

(

n−m−t
j

)

forms, where
0 ≤ j ≤ n −m− t. Therefore, the number of intra-regular elements in this case
is

n−m
∑

t=1

n−m−t
∑

j=0

(

n−m

t

)(

n−m− t

j

)

t!tj .

As a result, PT (X,Y ) has the following number of intra-regular elements

m
∑

r=1

m−r
∑

s=0

n−m
∑

t=0

n−m−t
∑

j=0

(

m

r

)(

m− r

s

)(

n−m

t

)(

n−m− t

j

)

r!t!rs(r + t)j

+

n−m
∑

t=1

n−m−t
∑

j=0

(

n−m

t

)(

n−m− t

j

)

t!tj + 1.

This completes the proof.
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