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Abstract

We show in this paper that for any graph E and for a commutative unital
ring R, the nil ideals of the Leavitt path algebra LR(E) depend solely on
the nil ideals of the ring R. A connection between the Jacobson radical of
LR(E) and the Jacobson radical of R is obtained. We also prove that for
a nil ideal I of a Leavitt path algebra LR(E) the ideal M2(I) is also nil,
thus obtaining that Leavitt path algebras over arbitrary graphs satisfy the
Köethe’s conjecture.
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1. Introduction

Throughout this paper, R denotes a commutative ring with identity, J(R) the
Jacobson radical of R, N(R) the nilradical of R and LR(E) shall denote the
Leavitt path algebra of a directed graph E with coefficients from R. An important
note to make in these introductory lines about Leavitt path algebras is that they
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are locally unital. We recall that a ring R is locally unital if for each finite set F of
elements of R, there is an idempotent u (i.e., u2 = u ∈ R) such that ua = au = a
for all a ∈ F . The set of all such idempotents u is said to be a set of local units.

We begin this paper with some basic definitions concerning Leavitt path
algebras. Some known properties of Leavitt path algebras which will be helpful
to us later in establishing our main results are also included. We would like to
refer to [1, 12] and [8] for the details of this section.

A quadruple E = (E0, E1, r, s) consisting of a set of vertices E0, a set of
edges E1 and two maps r, s : E1 −→ E0 (the range and source maps of E) is
called a (directed) graph. A sink is a vertex that emits no edge. When a vertex
emits a non-empty finite set of edges, it is called a regular vertex. We denote the
set of regular vertices as E0

reg. A vertex which is a source of infinitely many edges
is called an infinite emitter. For each e ∈ E1, we call e∗ a ghost edge such that
the source and range of e∗ is equal to the range and source of e respectively.

A path ρ of finite length |ρ| = n ≥ 0 is a sequence of n edges ρ = f1f2 · · · fn
with r(fi) = s(fi+1) for all i = 1, . . . , n− 1. Accordingly ρ∗ = f∗

n · · · f
∗
2f

∗
1 will be

considered as the corresponding ghost path of ρ. A vertex is a path of length 0.
In this case, the vertex is considered as the ghost path of itself. The set of all
vertices on the path µ is denoted by µ0. The set of all paths in E is denoted by
Path(E) :=

⋃

∞

n=0 E
n, where En is the set of paths of length n > 0.

A path µ = e1e2 · · · en in E is closed if r(en) = s(e1), in which case µ is
said to be based at the vertex s(e1). A closed path µ as above is called simple
provided it does not pass through its base more than once, i.e., s(ei) 6= s(e1) for
all i = 2, . . . , n. A closed path µ is called a cycle if it does not pass through any
of its vertices twice, that is, if s(ei) 6= s(ej), for every i 6= j.

Given an arbitrary graph E and a unital commutative ringR, the Leavitt path
algebra LR(E) is defined to be the R-algebra generated by a set {v : v ∈ E0} of
pair-wise orthogonal idempotents together with a set of variables {e, e∗ : e ∈ E1}
which satisfy the following conditions:

1. s(e)e = e = er(e) for all e ∈ E1.

2. r(e)e∗ = e∗ = e∗s(e) for all e ∈ E1.

3. (The CK-1 relations) For all e, f ∈ E1, e∗e = r(e) and e∗f = 0 if e 6= f .

4. (The CK-2 relations) For every regular vertex v ∈ E0,

v =
∑

e∈E1, s(e)=v

ee∗.

The first useful observation about LR(E) is that every element a can be
written in the form a =

∑n
i=1 kiαiβ

∗
i , where ki ∈ R, αi, βi are paths in E and n

is a suitable integer. Secondly, elements of the subset {v, e, e∗ : v ∈ E0, e ∈ E1}



On Nil ideals and Jacobson radical of Lpas 441

of LR(E) are all nonzero (Proposition 3.4 [11]). Thirdly, a Leavitt path algebra
is a Z− graded algebra [11].

It may be recalled that a ring R is Z − graded (or, simply, graded) if there
exists a collection of additive subgroups {Rk}k∈Z of R such that the following
conditions hold:

1. R =
⊕

k∈Z

Rk

2. RjRk ⊆ Rj+k for all j, k ∈ Z.

The subgroup Rk here is called the homogeneous component of R of degree k.
For a Leavitt path algebra, the homogeneous components are given as

LR(E)k :=

{

N
∑

i=1

riαiβ
∗
i : αi, βi ∈ Path(E), ri ∈ R, and |αi| − |βi| = k, ∀i

}

.

In order to study the description of ideals in Leavitt path algebras, the following
concepts concerning some subsets of LR(E) are needed.

A subset H ⊆ E0 is hereditary if whenever a vertex v ∈ H, r(ρ) ∈ H for any
path ρ ∈ Path(E) with s(ρ) = v. Also, a subset S ⊆ E0 is saturated if whenever
the set {r(e)|e ∈ E1, s(e) = v} ⊆ S for a regular vertex v ∈ E0, v ∈ S. For a
hereditary saturated subset H of E0, the set of breaking vertices, BH of H is
defined to be the collection of infinite emitters of E0 \H emitting finitely many
edges into itself, i.e.,

BH :=
{

v ∈ E0 \H : |s−1(v)| = ∞, 0 < |s−1(v) ∩ r−1(E0 \H)| < ∞
}

.

Also, for a vertex v ∈ BH , we denote

vH := v −
∑

s(e)=v,r(e)/∈H

ee∗.

and BH
H := {vH | v ∈ BH}.

Results about generators of ideals in Leavitt path algebras over a field have
been studied extensively by [2, 3, 5, 9]. In [5] it has been proved that given a
row-finite graph E, if K is a field and I is a two-sided ideal of LK(E), then I is
generated by elements of the form v +

∑n
i=1 λig

i where v ∈ E0, g is a cycle at v
and λi ∈ K, for 1 ≤ i ≤ n.

Larki [8] made a study for ideals with coefficients in a commutative ring. A
recent paper by Rigby and van den Hove [10] about generators of ideals in Leavitt
path algebras over a commutative ring R with identity, proves that a two-sided
ideal of a Leavitt path algebra LR(E) is generated by elements of the following
three types:
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Type 1. Scalar multiples of vertices.

Type 2. Scalar multiples of elements of the form

vH = v −
∑

e∈s−1(v),r(e)/∈H

ee∗,

with v a breaking vertex for a hereditary saturated subset H ⊆ E0.

Type 3. Laurent polynomials evaluated at cycles in the graph E.

Let us quickly recall here that, the formal expression of a Laurent polynomial
f in a single indeterminate x with coefficients in a ring R is given by

f(x, x−1) = a−nx
−n + · · ·+ a−1x

−1 + a0 + a1x+ · · ·+ amxm,

where m,n ∈ Z+, ai ∈ R (cf. [13]).
If c is any cycle in E, we write f(c, c∗) to mean the evaluation of f(x, x−1)

at the cycle c, that is,

f(c, c∗) = a−nc
∗n + · · ·+ a−1c

∗1 + a0s(c) + a1c+ · · · + amcm.

Here a0s(c) is the degree 0 element of f(c, c∗).
This recent discovery by Rigby and van den Hove prompted us to study the

behaviour of nil ideals and Jacobson radical in Leavitt path algebras.
Recall that an ideal I of a ring R is a nil ideal if each of its elements is

nilpotent. The well-known Köethe’s conjecture asks whether the sum of two
one-sided nil ideals is one-sided nil. In one of its equivalent forms the Köethe’s
conjecture asks whether the ring of 2× 2 matrices over a nil ideal is nil. In this
paper, we establish that for Leavitt path algebras (though they are in general
non-commutative) over a commutative ring, the Köethe’s conjecture is indeed
true. We also prove here that the nil ideals of Leavitt path algebras are locally
nilpotent.

Another algebraic object which is of interest to us is the Jacobson radical.
In order to define Jacobson radical we first recall the definition of a right quasi-
regular ideal. Following [6], an element a of an arbitrary ring R is called right

quasi-regular if there exists an element a′ ∈ R (called the right quasi-inverse of
a) such that a+a′+aa′ = 0. A right ideal is right quasi-regular if all its elements
are right quasi-regular. The Jacobson radical of a ring is the join of all right
quasi-regular right ideals of the ring.

It may be noted here that the Jacobson radical of an arbitrary ring is a (right)
quasi-regular two sided ideal (Theorem 1 [6]).

To summarize, in this paper, we show how the nil ideals and the Jacobson
radical of the Leavitt path algebra LR(E) depend on the ring R. Indeed, the
nil ideals of the Leavitt path algebra over R are defined by the nil ideals of the
ring R.
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2. Results

We begin this section with a lemma citing an example of a particular class of
idempotent elements in LR(E).

Lemma 1. For any u ∈ E0 and edges e1, e2, . . . , en with s(ei) = u, the element

u−
∑n

i=1 eie
∗
i is idempotent.

Proof. We first observe that for a single edge, say e1.

(u− e1e
∗
1)(u− e1e

∗
1) = (u− e1e

∗
1 − e1e

∗
1 + e1e

∗
1) = (u− e1e

∗
1).

Assuming that the result is true for (n− 1) edges, we get that
(

u− e1e
∗
1 − e2e

∗
2 − · · · − en−1e

∗
n−1 − ene

∗
n

)2

=
(

u− e1e
∗
1 − · · · − en−1e

∗
n−1

)2
− ene

∗
n

(

u− e1e
∗
1 − · · · − en−1e

∗
n−1

)

+ ene
∗
n

−
(

u− e1e
∗
1 − · · · − en−1e

∗
n−1

)

ene
∗
n

=
(

u− e1e
∗
1 − · · · − en−1e

∗
n−1

)

− ene
∗
n + ene

∗
n − ene

∗
n

=
(

u− e1e
∗
1 − en−1e

∗
n−1 − ene

∗
n

)

.

Hence, u−
∑n

i=1 eie
∗
i is idempotent.

Remark 2. For a breaking vertex u of a hereditary saturated subset H of E0,
the set {e ∈ E1|e ∈ s−1(u), r(e) /∈ H} is finite and hence uH is an idempotent
element of LR(E).

Lemma 3. All coefficients of a nilpotent Laurent polynomial f evaluated at a

cycle x of E are nilpotent in R.

Proof. Let af(x, x∗) be a nilpotent Laurent monomial evaluated at a cycle x
of E with index of nilpotency k, where a ∈ R is the coefficient of the mono-
mial. Then it follows easily that ak = 0, i.e., a is nilpotent in R. Hence, the
lemma is true for nilpotent Laurent monomials. We assume this to be true
for nilpotent Laurent polynomials with less than n monomials. Let f ′(x, x∗) =
bh(x, x∗) + g(x, x∗) be a nilpotent Laurent polynomial with n monomials and
bh(x, x∗) be its highest degree monomial with coefficient b. Suppose m is the
index of nilpotency of f ′(x, x∗), then 0 = {f ′(x, x∗)}m = g′(x, x∗)+{bh(x, x∗)}m,
where g′(x, x∗) = {g(x, x∗)}m + bH(x, x∗) for some polynomial H(x, x∗) with
deg(g′(x, x∗)) < m{deg(bh(x, x∗)}. This implies that bm = 0, i.e., b is nilpo-
tent and g′(x, x∗) = 0. So, {g(x, x∗)}m + bH(x, x∗) = 0. i.e., {g(x, x∗)}m =
−bH(x, x∗), yielding {g(x, x∗)}m

2

= (−b)m{H(x, x∗)}m = 0. Thus g is nilpotent.
But g is a Laurent polynomial with less than n monomials. Hence according to
our assumption, each coefficient of g is nilpotent. This implies that each coeffi-
cient of f ′(x, x∗) is nilpotent. Thus the lemma is true for any nilpotent Laurent
polynomial.
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For each ideal I in LR(E), we define I(R) to be the ideal of R generated by
the coefficients of a system of generators of I.

Theorem 4. An ideal I of LR(E) is nil iff I(R) is nil in R.

Proof. By Corollary 5.6 of [10], each ideal I of LR(E) is generated by generators
of the form k1v1, k2v2, . . . , l1u

H1

1 , l2u
H2

2 , . . . , f1, f2, . . . for some ki, lj ∈ R and
vi ∈ E0, uj ∈ BHj

, and Laurent polynomials fh’s evaluated at cycles of E over R.
Let I(R) be the ideal of R generated by the coefficients ki, lj and the coefficients
of the monomials of the Laurent polynomials fh.

We first assume that I(R) is nil in R. If α ∈ I, then α is a finite sum of
monomials with coefficients in I(R). If J is the ideal of R generated by the
coefficients of the monomials occurring in α, then J is a subideal of I(R). Again
since J is finitely generated, J is nilpotent of index (say) k. Now, the coefficient
of each monomial in αk belongs to Jk. This yields αk = 0

Conversely, if I is a nil ideal in LR(E), then the generators are nilpotent.
So, for kivi, there exists a non negative integer di such that 0 = (kivi)

di = kdii vi
(as vi is idempotent). Since each vi is a vertex, we get kdii = 0 and so each ki is
nilpotent. Similarly each lj is nilpotent. Further as each fh is nilpotent, Lemma
3 suggests that the coefficients of fh are nilpotent for all h = 1, 2, . . . .

Recall that a ring R is a reduced ring if it has no non zero nilpotent ele-
ments [7].

Corollary 5. Over a reduced ring R, LR(E) has no non-trivial nil ideal.

Corollary 6. Sum of two nil ideals is again nil in LR(E).

Theorem 7. For a Leavitt path algebra LR(E), and a nil ideal I of LR(E), M2(I)
is a nil ideal of M2(LR(E)).

Proof. Let A be a matrix with coefficients in a nil ideal I of LR(E), i.e., let
A ∈ M2(I) and I(R) be its corresponding ideal in R generated by the coefficients
of a system of generators of I. If J is the ideal of R generated by the coefficients
of the monomials of the entries of A, then we may observe that J is a finitely
generated subideal of I(R). Thus by Theorem 4, J is also nil in R. Being finitely
generated, J is nilpotent. But the coefficients of the monomials of the entries of
Ak belong to Jk, therefore the matrix A is also nilpotent.

The above theorem shows that the Leavitt path algebra of an arbitrary graph
over a unital commutative ring satisfies the Köethe’s conjecture.

Below, we record another result about nil ideals in LR(E). Recall that a
subset S of a ring T is locally nilpotent (see [7]) if for any finite subset {s1, . . . , sn}
of S, there exists a positive integer k, such that any product of k elements from
{s1, . . . , sn} is zero.
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Theorem 8. Every nil ideal of LR(E) is locally nilpotent.

Proof. As in Theorem 4, if I is a nil ideal of LR(E), the ideal I(R) is a nil ideal
of R and so is locally nilpotent. Therefore the ideal I is also locally nilpotent.

We now turn our attention towards Jacobson radicals of Leavitt path algebras
over a unital commutative ring. We first record the following two lemmas:

Lemma 9. For any vertex v ∈ E0 \ E0
reg

and a non-zero element a ∈ R, if

av ∈ J(LR(E)) then a ∈ J(R).

Proof. Let a(6= 0) ∈ R and v ∈ E0\E0
reg such that av ∈ J(LR(E)). That implies

rv.av = rav ∈ J(LR(E)), ∀r ∈ R. Since any element in J(LR(E)) is right quasi
regular, for each r ∈ R there exists br ∈ LR(E) such that rav+ br + (rav)br = 0.

Without loss of generality, we may assume

br = vbrv = s′v +
n
∑

i=1

kiαiβ
∗
i

with αiβ
∗
i 6= v where r(αi) = r(βi) and s′, ki ∈ R, for 1 ≤ i ≤ n.

Thus the expression rav + br + (rav)br = 0 becomes

(ra+ s′ + ras′)v + (1 + ra)
n
∑

i=1

kiαiβ
∗
i = 0.

Since αiβ
∗
i 6= v for any 1 ≤ i ≤ n, we get ra+ s′ + ras′ = 0 and hence ra is a

right quasi regular element of R. Thus (1 + ra) is an unit in R for all r ∈ R and
by Proposition 1.9 [14], a ∈ J(R).

Lemma 10. For a breaking vertex v of hereditary saturated subset H of E0 and

for a non-zero element a ∈ R, if avH ∈ J(LR(E)), a ∈ J(R).

Proof. Let a(6= 0) ∈ R and v ∈ BH for a hereditary saturated subset H of
E0 such that avH ∈ J(LR(E)). This implies that rv.avH = ravH ∈ J(LR(E)).
Hence, there exists an element b ∈ LR(E) such that ravH + b+ (ravH)b = 0.

Since it is clear by the definition of breaking vertices that the set A = {e | e ∈
s−1(v), r(e) /∈ H} is finite, let A = {e1, . . . , en}. Then vH = v −

∑

e∈A ee∗ and
we may assume

b = vbv = s′v +
∑

e∈A

seee
∗ +

m
∑

i=1

kiαiβ
∗
i ,

with ee∗ 6= αiβ
∗
i 6= v for each e ∈ A, and s′, ki, se ∈ R for 1 ≤ i ≤ m and e ∈ A.

The expression ravH + b+ ravHb = 0 becomes

(ra+ s′ + ras′)v − (ra+ ras′)
∑

e∈A

ee∗ +
∑

e∈A

seee
∗ + (1 + ra)

m
∑

i=1

kiαiβ
∗
i
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−ra
∑

e∈A

ee∗
m
∑

i=1

kiαiβ
∗
i = 0.

Since ee∗, αiβ
∗
i and ee∗αiβ

∗
i are not equal to v for any e ∈ A and 1 ≤ i ≤ m,

we get ra+s′+ras′ = 0. Thus (1+ra) is a unit for all r ∈ R and hence a ∈ J(R)
(Proposition 1.9 [14]).

Remark 11. Since the Jacobson radical of a Z-graded ring is a homogeneous
ideal (Corollary 2 [4]), a Laurent polynomial evaluated at a cycle of E over R
can be a generator of J(LR(E)) if the polynomial is homogeneous, i.e., it is a
monomial of a Laurent polynomial.

The fact that the Jacobson radical is a two-sided ideal, the monomials of a
Laurent polynomial can be substituted by an R-multiple of their source vertex.
Therefore they can be reduced to Type 1 generators of the Jacobson radical and
hence for a graph E, with no regular vertex, we have the following result.

Theorem 12.

J(LR(E)) ⊆ J(R)

(

E0 ∪
⋃

H∈H

BH
H

)

where H is the set of the hereditary and saturated subsets of E0 and BH is the

set of the breaking vertices of H.

Proof. The proof of this theorem follows directly from the proofs of Lemmas 9
and 10 and also Remark 11.

Question. For any vertex v ∈ E0
reg with av ∈ J(LR(E)), is it necessary that

a ∈ J(R)?

It may be remarked that the converse of the above question is false in general.
For if we take the power series R := Q[[Y ]] in one indeterminate Y and if E is
the graph having one vertex v and a single loop c, then a = Y is in J(R) but
av is not in J(LR(E)): indeed 1 + A(Y )Y is invertible in R for each A(Y ) ∈ R,
while v + Y c = 1LR(E) + Y c is not invertible in LR(E). However, if the element
a is in N(R), then we get the following result.

Lemma 13. For all v ∈ E0, if a ∈ N(R) then av ∈ J(LR(E)).

Proof. Let a ∈ N(R) and n ∈ Z>0 be its index of nilpotency. We claim that
avLR(E) is a right quasi regular ideal of LR(E).

Let av
∑m

i=1 αiβ
∗
i = a

∑m
i=1 αiβ

∗
i be any arbitrary element of avLR(E), where

s(αi) = v and r(αi) = r(βi) for all 1 ≤ i ≤ m. We now choose

b = −a

m
∑

i=1

αiβ
∗
i + a2

(

m
∑

i=1

αiβ
∗
i

)2

− · · ·+ (−1)n−1an−1

(

m
∑

i=1

αiβ
∗
i

)n−1

.
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It is now easy to see that

av

m
∑

i=1

αiβ
∗
i + b+

(

av

m
∑

i=1

αiβ
∗
i

)

b = 0.

Hence every element of avLR(E) is right quasi regular. Thus it is a right quasi
regular ideal and is contained in J(LR(E)). Therefore, av ∈ J(LR(E)).

Lemma 14. For a breaking vertex v of a hereditary saturated subset H of E0, if

a ∈ N(R) then avH ∈ J(LR(E)) .

It may be noted that the reverse implication of Lemma 13 may not always
hold. Taking R to be the power series ring Q[[Y ]] and E to be the oriented 2-line
graph with two vertices and a single edge, we see that as LR(E) ∼= M2(R) of 2×2

matrices over R, Y

(

0 1
0 0

)

is an element of J(LR(E)) but Y is not nilpotent in R.

However, if we let I0 = {v ∈ E0 \E0
reg | there exists a closed path γ such that

v ≥ s(γ) }, where v ≥ s(γ) denotes that there is a path from v to s(γ), then we
have the following result.

Theorem 15. For any v ∈ I0 and a non-zero element a ∈ R, av ∈ J(LR(E)) iff
a ∈ N(R).

Proof. The proof of (⇐) follows from Lemma 13.

(⇒) Let av ∈ J(LR(E)), where v ∈ I0. Since v ∈ I0, there exists a closed
path γ and a path β in E such that 0 6= avβγ ∈ J(LR(E)), implying that
aγ ∈ J(LR(E)). Let ω ∈ LR(E) such that

aγ + ω + aγω = 0.

Without loss of generality, let us assume that

ω =

(

s′v′ +

n
∑

i=1

aiγ
i +

m
∑

j=1

bjαjβ
∗
j

)

where v′ = s(γ), r(αj) = r(βj), αjβ
∗
j 6= γi 6= v′ and s′, ai, bj ∈ R for all 1 ≤ i ≤ n

and 1 ≤ j ≤ m. Putting the value of ω in the equation aγ + ω + aγω = 0 we get

s′v′+(as′+a+a1)γ+

n
∑

i=1

(ai+aai−1)γ
i+aanγ

n+1+

m
∑

j=1

bjαjβ
∗
j +

m
∑

j=1

abjγαjβ
∗
j = 0.
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Since αjβ
∗
j and γαjβ

∗
j are not equal to v′ or γi for any i, j, by comparing the

coefficients of v′ and γi for each i of both the sides we have the following equations,

s′ = 0

as′ + a+ a1 = 0 =⇒ a1 = −a

a2 + aa1 = 0 =⇒ a2 = a2

...

an + aan−1 = 0 =⇒ an = (−1)nan

aan = 0 =⇒ a(−1)nan = 0 =⇒ an+1 = 0.

Thus a ∈ N(R).

We end this paper with the following question.

Question. If v ∈ E0\I0 and a ∈ J(R)\N(R), is it necessary that av should be

an element of J(LR(E))?
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