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Abstract

Disjunctive inclusion property of several prime ideals and prime filters of
pseudo-complemented lattices is studied. Algebraic structures like Boolean
algebras and Stone lattices are characterized with the help of the disjunctive
inclusion property of prime ideals and prime filters. A set of equivalent
conditions is given for every Stone lattice to become a Boolean algebra.
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1. Introduction

The theory of pseudo-complements in lattices, and particularly in distributive
lattices was developed by Stone [13], Frink [8], and Gratzer [9]. Later many au-
thors like Balbes [1], Speed [12], and Frink [8]etc., extended the study of pseudo-
complements to characterize Stone lattices. In [4], Chajda, Halaš and Kühr
extensively studied the structure of pseudo-complemented semilattices. In [6],
Cornish investigated various significant properties of pseudo-complemented dis-
tributive lattices in terms of congruences. Frink in [8], generalized and extended
most of the theory of pseudo-complements to semi-lattices without making use
of the join operation. In [10], the concept of δ-ideals was introduced in pseudo-
complemented distributive lattices and Stone lattices are characterized in terms
of δ-ideals.

In this paper, the notion of disjunctive inclusion property is introduced in
pseudo-complemented distributive lattices and observed that every maximal filter
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of a pseudo-complemented lattice satisfies this property. It is showed that every
prime filter of a pseudo-complemented lattice satisfies the disjunctive inclusion
property if and only if the pseudo-complemented lattice is a Boolean algebra.
Similarly, it is showed that the disjunctive inclusion property of prime ideals of
a pseudo-complemented lattice is equivalent to the lattice to become a Boolean
algebra. Some equivalent conditions are given for every Stone lattice to become
a Boolean algebra. A pseudo-complemented lattice is proved to be a Boolean
algebra if and only if every minimal prime ideal satisfies the disjunctive inclusion
property.

It is observed that every prime ideal of a pseudo-complemented lattice need
not satisfy the disjunctive inclusion property and whenever every prime ideal
satisfies the same then the lattice will become a Boolean algebra. It is proved that
every prime ∗-ideal as well as every median prime ideal of a pseudo-complemented
lattice satisfy the disjunctive inclusion property. Finally, the class of all Stone
lattice is characterized with the help of prime ∗-ideals, prime δ-ideals and median
prime ideals of pseudo-complemented lattices.

2. Preliminaries

The reader is referred to [2, 3, 6, 10] and [12] for the elementary notions and
notations of pseudo-complemented lattices. However some of the preliminary
definitions and results are presented for the ready reference of the reader.

A non-empty subset A of a lattice L is called an ideal (filter) of L if a ∨ b ∈
A (a ∧ b ∈ A) and a ∧ x ∈ A (a ∨ x ∈ A) whenever a, b ∈ A and x ∈ L. The set
(a] = {x ∈ L | x ≤ a} (resp. [a) = {x ∈ L | a ≤ x}) is called a principal ideal
(resp. principal filter) generated by a. The set I(L) of all ideals of a distributive
lattice L with 0 forms a complete distributive lattice. The set F(L) of all filters
of a distributive lattice L with 1 forms a complete distributive lattice. A proper
ideal (resp. filter) P of a distributive lattice L is said to be prime if for any
x, y ∈ L, x ∧ y ∈ P (resp. x ∨ y ∈ P ) implies x ∈ P or y ∈ P . A proper ideal
(resp. proper filter) P of a lattice L is called maximal if there exists no proper
ideal (resp. filter) Q of L such that P ⊂ Q. A prime ideal (resp. prime filter) P
of a distributive lattice L is minimal if there exists no prime ideal (resp. prime
filter) Q of L such that Q ⊂ P . Every maximal ideal (resp. maximal filter)
of a distributive lattice is a prime ideal (resp. prime filter). A complemented
distributive lattice is a Boolean algebra.

The pseudo-complement b∗ of an element b is the element satisfying

a ∧ b = 0 ⇔ a ∧ b∗ = a ⇔ a ≤ b∗

where ≤ is the induced order of L.
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A distributive lattice L in which every element has a pseudo-complement is
called a pseudo-complemented distributive lattice. For any two elements a, b of a
pseudo-complemented semilattice [4], we have the following.

(1) a ≤ b implies b∗ ≤ a∗,

(2) a ≤ a∗∗,

(3) a∗∗∗ = a∗,

(4) (a ∨ b)∗ = a∗ ∧ b∗,

(5) (a ∧ b)∗∗ = a∗∗ ∧ b∗∗.

An element a of a pseudo-complemented distributive lattice L is called a
dense element if a∗ = 0 and the set D of all dense elements of L forms a filter in
L. A pseudo-complemented distributive lattice is a Boolean algebra if and only
if every prime ideal is maximal if and only if x ∨ x∗ = 1 for all x ∈ L.

Definition [2]. A pseudo-complemented distributive lattice L is called a Stone
lattice if x∗ ∨ x∗∗ = 1 for all x ∈ L.

Theorem 1 [12]. The following assertions are equivalent in a pseudo-comple-

mented distributive lattice L:

(1) L is a Stone lattice,

(2) for x, y ∈ L, (x ∧ y)∗ = x∗ ∨ y∗,

(3) for x, y ∈ L, (x ∨ y)∗∗ = x∗∗ ∨ y∗∗.

Theorem 2 [6]. Let P be a prime ideal of a pseudo-complemented distributive

lattice and x ∈ L. Then the following assertions are equivalent:

(1) P is minimal,

(2) x ∈ P implies x∗ /∈ P ,

(3) x ∈ P if and only if x∗∗ ∈ P .

An ideal I of a pseudo-complemented lattice L is called a δ-ideal [10] if
there exists a filter F such that I = δ(F ) = {x ∈ L | x∗ ∈ F}. A prime ideal
P of a pseudo-complemented lattice L is called median prime [11] if to each
x ∈ P , there exists y /∈ P such that x∗ ∨ y∗ = 1. A congruence θ of a pseudo-
complemented lattice L is called ∗-congruence [3] if, for all x, y ∈ L, (x, y) ∈ θ
implies (x∗, y∗) ∈ θ. An ideal I of a pseudo-complemented lattice is called a
kernel ideal [3] if there exists a ∗-congruence θ such that I = kerθ. An ideal I
of a pseudo-complemented lattice L is called a ∗-ideal if for all x, y ∈ L, x∗ = y∗

and x ∈ I imply that y ∈ I. Throughout this note, all lattices are bounded
pseudo-complemented distributive lattices unless otherwise mentioned.
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3. Disjunctive inclusion property in lattices

In this section, the notion of disjunctive inclusion property is introduced in
pseudo-complemented lattices. The algebraic structures like Boolean algebras
and Stone lattices are characterized with the help of disjunctive inclusion prop-
erty. The disjunctive inclusion properties of certain classes of prime ideals and
prime filters are derived.

Lemma 3. The following properties hold in a pseudo-complemented lattice L:

(1) every prime ideal contains either x or x∗ for all x ∈ L,

(2) every maximal ideal contains either x or x∗ for all x ∈ L,

(3) every maximal filter contains exactly one of x and x∗ for all x ∈ L.

Proof. (1) Let P be a prime ideal of L and x ∈ L. Clearly x∧x∗ = 0 ∈ P . Since
P is prime, we get either x ∈ P or x∗ ∈ P .

(2) Since every maximal ideal is prime, it is clear.
(3) Let M be a maximal filter of L. Let x ∈ D. Suppose x /∈ M . Since M is

maximal, there exists 0 6= y ∈ M such that x∧y = 0. Hence y ≤ x∗ = 0, which is
a contradiction. Thus x ∈ M , which gives that D ⊆ M . Hence x∨ x∗ ∈ D ⊆ M .
Since M is prime, we get x ∈ M or x∗ ∈ M . Suppose M contains both x and x∗.
Then 0 = x ∧ x∗ ∈ M , which is a contradiction. Therefore M contains exactly
one of x and x∗.

Definition. A subset A of a pseudo-complemented lattice L is said to satisfy
disjunctive inclusion property if A contains exactly one of x and x∗ for all x ∈ L.

Proposition 4. Every minimal prime ideal of a pseudo-complemented lattice

satisfies disjunctive inclusion property.

Proof. Let P be a minimal prime ideal of a pseudo-complemented lattice L.
Then L−P is a maximal filter. By Lemma 3(3), we get L−P satisfies disjunctive
inclusion property. Therefore P satisfies disjunctive inclusion property.

Example 5. Consider the following bounded and finite distributive lattice L =
{0, a, b, c, d, 1} whose Hasse diagram is given by:
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Clearly L is a pseudo-complemented lattice. Observed that a∗ = b, b∗ = c,
c∗ = b and d∗ = 0. This lattice contains only two maximal filters F1 = {1, b, d}
and F2 = {1, a, c, d}. Clearly F1 and F2 are both satisfying disjunctive inclusion
property. Observe that L is not a Boolean algebra because of a ∨ a∗ = d 6= 1.
Further, the lattice contains only two maximal ideals, precisely M1 = {0, a, c}
and M2 = {0, a, b, d}. Clearly neither of them are satisfying the property.

From Lemma 3(3), every maximal filter of a pseudo-complemented lattice
satisfies the disjunctive inclusion property. In general, every prime filter of a
pseudo-complemented lattice need not satisfy the disjunctive inclusion property.
In deed, consider the finite distributive lattice 0 < a, bc < d < 1 where a∗ =
b, b∗ = a, c∗ = d∗ = 0. Clearly the prime filter P = {1, d} neither contains a nor
a∗. However, we have the following result:

Theorem 6. The following assertions are equivalent in a pseudo-complemented

lattice L:

(1) L is a Boolean algebra,

(2) every prime filter satisfies disjunctive inclusion property,

(3) every prime filter contains D,

(4) every minimal prime filter contains D.

Proof. (1)⇒(2) Assume that L is a Boolean algebra. Let x ∈ L and P be a
prime filter of L. Since L is Boolean, we get x ∨ x∗ = 1 ∈ P . Since P is prime,
we get either x ∈ P or x∗ ∈ P . Suppose P contains both of x or x∗. Then
0 = x ∧ x∗ ∈ P , which is a contradiction. Therefore P contains exactly one of x
and x∗ for all x ∈ L.

(2)⇒(3) Assume condition (2). Let P be a prime filter of L. Let x ∈ D. Then
x∗ = 0 /∈ P . By the assumption, we must have x ∈ P . Therefore P contains D.

(3)⇒(4) It is obvious.

(4)⇒(1) Assume condition (4). Let x ∈ L. Clearly x ∨ x∗ ∈ D. Since
x∧x∗ = 0, it is enough to show that x∨x∗ = 1. Suppose x∨x∗ 6= 1. Then there
exists a maximal ideal M such that x∨x∗ ∈ M . Then L−M is a minimal prime
filter of L such that x ∨ x∗ /∈ L−M . Hence D * L−M , which is contradicting
the hypothesis.

Theorem 7. The following assertions are equivalent in a pseudo-complemented

lattice L:

(1) L is a Boolean algebra,

(2) every prime ideal satisfies disjunctive inclusion property,

(3) every maximal ideal satisfies disjunctive inclusion property,
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(4) no maximal ideal contains a dense element.

Proof. (1)⇒(2) Assume that L is a Boolean algebra. Let P be a prime ideal of
L and x ∈ L. Since L is Boolean, we get x ∨ x∗ = 1. By Lemma 3(1), we get
either x ∈ P or x∗ ∈ P . Suppose P contains both x and x∗. Then 1 = x∨x∗ ∈ P ,
which is a contradiction. Therefore P contains exactly one of x and x∗.

(2)⇒(3) Since every maximal ideal is prime, it is clear.

(3)⇒(4) Assume condition (3). Let M be a maximal ideal of L. Let x ∈ D.
Clearly x∗ = 0 ∈ M . Since M satisfies disjunctive inclusion property, we must
have x /∈ M . Therefore M contains no dense element.

(4)⇒(1) Assume condition (4). Let a ∈ L. Clearly a ∧ a∗ = 0. It is enough
to show that a ∨ a∗ = 1. Suppose a ∨ a∗ 6= 1. Then there exists a maximal ideal
M such that a∨ a∗ ∈ M . Since a∨ a∗ ∈ D, it is contradicting the hypothesis.

Corollary 8. A pseudo-complemented lattice L is a Boolean algebra if and only

if every minimal prime filter satisfies disjunctive inclusion property.

Proof. Assume that L is a Boolean algebra. Let P be a minimal prime filter
of L. Then L − P is a maximal ideal of L. By Theorem 7, we get that L − P
satisfies disjunctive inclusion property. Therefore P satisfies disjunctive inclusion
property. Conversely, assume that every minimal prime filter satisfies disjunc-
tive inclusion property. Then every maximal ideal satisfies disjunctive inclusion
property. By Theorem 7, it concludes that L is a Boolean algebra.

Proposition 9. Every Boolean algebra is a Stone lattice.

Proof. Let L be a Boolean algebra. By Theorem 7, every maximal ideal satisfies
disjunctive inclusion property. Let x ∈ L. Suppose x∗ ∨ x∗∗ 6= 1. Then there
exists a maximal ideal M such that x∗ ∨ x∗∗ ⊆ M . Hence x ∨ x∗ ∈ M . Thus
x ∈ M and x∗ ∈ M , which is a contradiction. Therefore L is a Stone lattice.

The converse of Proposition 9 is not true. For, consider any infinite chain
L = {0, a1, a2, . . . , 1}. Clearly a∗

i
= 1∗ = 0 and 0∗ = 1. It can be easily seen that

L is a Stone lattice. Clearly M = {x ∈ L | x 6= 1} is the unique maximal ideal of
the chain L. Then ai ∈ M and a∗

i
= 0 ∈ M . Hence L is not a Boolean algebra.

Though, every Stone lattice is not a Boolean algebra, in the following result, a
set of equivalent conditions is given for every Stone lattice to Boolean.

Theorem 10. Let L be a pseudo-complemented lattice. Suppose L is a Stone

lattice and x, y ∈ L. Then the following assertions are equivalent in L:

(1) L is a Boolean algebra,

(2) for any maximal ideal M , x ∈ M if and only if x∗∗ ∈ M ,

(3) for any maximal ideal M , x∗ = y∗ and x ∈ M imply that y ∈ M .
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Proof. (1)⇒(2) Assume that L is Boolean. Let M be a maximal ideal of L and
x ∈ M . By Theorem 7, we get x∗ /∈ M . Hence x∗∗ ∈ M . Converse is clear.

(2)⇒(3) Assume that x∗ = y∗. Let M be a maximal ideal of L. Suppose
x ∈ M . By (2), we get y∗∗ = x∗∗ ∈ M . Since y ≤ y∗∗, we get y ∈ M .

(3)⇒(1) Assume condition (3). Let M be a maximal ideal of L and x ∈ L.
Clearly x ∧ x∗ = 0 ∈ M . Since M is prime, we get either x ∈ M or x∗ ∈ M .
Suppose M contains both x and x∗. Since x∗ = x∗∗∗ and x ∈ M , by (3), we get
x∗∗ ∈ M . Hence 1 = x∗ ∨ x∗∗ ∈ M , which is a contradiction. Hence M contains
exactly one of x and x∗. Thus M satisfies disjunctive inclusion property. By
Theorem 7, L is Boolean.

Lemma 11. No minimal prime ideal of a pseudo-complemented lattice contains

a dense element.

Proof. Let P be a minimal prime ideal of a pseudo-complemented lattice L.
Suppose P ∩ D 6= ∅. Choose x ∈ P ∩ D. Then x ∈ P and x∗ = 0. Since P is
minimal, there exists y /∈ P such that x ∧ y = 0. Hence y ≤ x∗. Since y /∈ P , we
get 0 = x∗ /∈ P , which is a contradiction. Thus P contains no dense elements.

Theorem 12. The following assertions are equivalent in a pseudo-complemented

lattice L:

(1) L is a Boolean algebra,

(2) every prime ideal is minimal,

(3) every prime ideal satisfies disjunctive inclusion property,

(4) every prime filter satisfies disjunctive inclusion property,

(5) for any x, y ∈ L, x∗ = y∗ implies x = y,

(6) L has a unique dense element,

(7) every prime ideal is maximal.

Proof. (1)⇒(2) Assume that L is Boolean. Let x ∈ L and P be a prime ideal of
L. Suppose x ∈ P . Since L is Boolean, we get x∨x∗ = 1. Suppose x∗ ∈ P . Then
1 = x ∨ x∗ ∈ P which is a contradiction. Hence x∗ /∈ P . Thus P is minimal.

(2)⇒(3) Assume that every prime ideal is minimal. Let x ∈ L and P be a
prime ideal of L. By Lemma 3(1), x ∈ P or x∗ ∈ P . Suppose P contains both x
and x∗. Then, we get x∨ x∗ ∈ P ∩D. Since P is minimal, by Lemma 11, we get
that x ∨ x∗ /∈ P . Thus we have arrived at a contradiction. Therefore P contains
exactly one of x and x∗.

(3)⇒(4) Assume condition (3). Let P be a prime filter of L. Then L− P is
a prime ideal of L. Let x ∈ L. By (3), L− P contains exactly one of x and x∗.
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Hence P must contain exactly one of x and x∗. Therefore P satisfies disjunctive
inclusion property.

(4)⇒(5) Assume condition (4). Let x, y ∈ L be such that x∗ = y∗. Suppose
x 6= y. Then there exists a prime filter P such that x ∈ P and y /∈ P . By (4), we
must have x∗ /∈ P and x∗ = y∗ ∈ P which is a contradiction. Therefore x = y.

(5)⇒(6) Assume condition (5). Let x and y be two dense elements of L.
Then x∗ = 0 = y∗. By (5), we get x = y. Therefore L contains a unique dense
element.

(6)⇒(7) Assume that L has a unique dense element, precisely 1. Let P be
a prime ideal of L. Suppose Q is a proper ideal of L such that P ⊂ Q. Choose
x ∈ Q− P . Clearly x ∨ x∗ ∈ D = {1}. Since x /∈ P , we must have x∗ ∈ P ⊂ Q.
Hence 1 = x∨ x∗ ∈ Q, which is a contradiction. Therefore P is a maximal ideal.

(7)⇒(1) Let x ∈ L. Clearly x∧x∗ = 0. It is enough to show that x∨x∗ = 1.
Suppose x ∨ x∗ 6= 1. Then there exists a prime ideal P such that x ∨ x∗ ∈ P .
Suppose Q is a prime ideal of L such that Q ⊆ P . By (7), Q is maximal and
hence Q = P . Therefore P is minimal. Since x ∨ x∗ ∈ D, we get P ∩D 6= ∅ that
contradicts Theorem 6. Therefore x∗ is the complement of x.

In [3], Blyth studied the properties of kernel ideals and ∗-ideals of pseudo-
complemented distributive lattices. In [10], the author introduced the notion of
δ-ideals of pseudo-complemented distributive lattices. In [11], the author intro-
duced the notion of median prime ideals and investigated certain properties of
these classes of ideals and then characterized Stone lattices and Boolean algebras
with the help of these ideals. In the following, we present the disjunctive inclusion
properties of these class of ideals.

Theorem 13. Every prime ∗-ideal of a pseudo-complemented lattice satisfies

disjunctive inclusion property and hence a prime kernel ideal too.

Proof. Let P be a prime ∗-ideal of a pseudo-complemented lattice L. Since P is
proper, it contains no dense element. Otherwise, if d ∈ D∩P . Then 1 = d∗∗ ∈ P ,
which is a contradiction. Let x ∈ L. Since P is prime, we get that P contains
either x or x∗. Suppose P contains both of x and x∗. Then x∨x∗ ∈ D∩P , which
is a contradiction. Therefore P contains exactly one of x and x∗ for all x ∈ L.

Corollary 14. Every prime δ-ideal of a pseudo-complemented lattice satisfies

disjunctive inclusion property.

Proof. Let P be a prime δ-ideal of a pseudo-complemented lattice L. Then
P = δ(F ) for some filter F of L. Let x, y ∈ L be such that x∗ = y∗. Suppose
x ∈ P = δ(F ). Then y∗ = x∗ ∈ F , which gives y ∈ δ(F ) = P . Hence P is a
prime ∗-ideal of L. By Theorem 13, P satisfies disjunctive inclusion property.
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Theorem 15. Every median prime ideal of a pseudo-complemented lattice sat-

isfies disjunctive inclusion property.

Proof. Let P be a median prime ideals of a pseudo-complemented lattice L.
Let x ∈ L. Since P is prime, we get that P contains either x or x∗. Suppose
x ∈ P . Since P is median, there exists y /∈ P such that x∗ ∨ y∗ = 1. Then
x ∧ y ≤ x∗∗ ∧ y∗∗ = (x∗ ∨ y∗)∗ = 1∗ = 0. Hence x ∧ y = 0 and thus y ≤ x∗. If
x∗ ∈ P , then y ∈ P which is a contradiction. Hence x∗ /∈ P . Suppose x∗ ∈ P .
Similarly, we get x /∈ P . Hence P contains exactly one of x and x∗. Thus P
satisfies disjunctive inclusion property.

Corollary 16. Every median prime ideal of a pseudo-complemented lattice is a

∗-ideal as well as a kernel ideal.

Proof. Let P be a median prime ideal of a pseudo-complemented lattice L. By
the main theorem, P satisfies disjunctive inclusion property. Suppose x, y ∈ L
such that x∗ = y∗ and x ∈ P . Since P satisfies disjunctive inclusion property,
we must have y∗ = x∗ /∈ P . Since P is prime and y ∧ y∗ = 0 ∈ P , one must
have y ∈ P . Hence P is a ∗-ideal of L. Since every ∗-ideal is a kernel ideal, the
remaining part is clear.

The converse of Corollary 16 is not true. In fact, every prime ∗-ideal need not
to be a median prime ideal. Further, in [11], it is proved that every median prime
ideal is a minimal prime ideal but not the converse. For consider the following
example:

Example 17. Consider the following bounded and finite distributive lattice
L = {0, a, b, c, 1} whose Hasse diagram is given by:
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Consider the prime ideal P = {0, a} of the lattice L. It can be routinely verified
that P is prime ∗-ideal of L. Choose a ∈ P . Observe that there exists no x /∈ P
such that a∗ ∨ x∗ = 1. Therefore P is not a median prime ideal of L. Further,
it can be easily observed that P is a minimal prime ideal of L which is not a
median prime ideal.
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In [7], W.H. Cornish introduced the notion of σ-ideals of distributive lattice.
In [5], S.A. Celani investigated the properties of σ-ideals of distributive pseudo-
complemented residuated lattices. In the following, we generalize these ideals
in pseudo-complemented lattices and characterize Stone lattices with the help of
σ-ideals of lattices.

Definition. For any ideal I of a pseudo-complemented lattice L, defined σ(I) =
{x ∈ L | (x∗] ∨ I = L}. Then clearly σ(I) ⊆ I. An ideal I of a pseudo-
complemented lattice is called a σ-ideal if I = σ(I).

In the following theorem, a set of equivalent conditions is given for every
minimal prime ideal is a median prime ideal as well as every prime ∗-ideal is a
median prime ideal which together leads to a characterization of Stone lattices.

Theorem 18. Let L be a pseudo-complemented lattice. Then the following as-

sertions are equivalent in L:

(1) L is a Stone lattice,

(2) every prime ∗-ideal is median,

(3) every prime δ-ideal is median,

(4) every minimal prime ideal is median,

(5) every minimal prime ideal is a σ-ideal.

Proof. (1)⇒(2) Assume that L is a Stone lattice. Let x ∈ L and P be a prime
∗-ideal of L. Suppose x ∈ P . Since P is a ∗-ideal, we get x∗∗ ∈ P . Suppose
x∗ ∈ P . Then 1 = x∗ ∨ x∗∗ ∈ P , which is a contradiction. Hence x∗ /∈ P . Thus,
for each x ∈ P , there exists x∗ /∈ P such that x∗ ∨ x∗∗ = 1. Therefore P is a
median prime ideal of L.

(2)⇒(3) Since every δ-ideal is a ∗-ideal, it is clear.

(3)⇒(4) Since every minimal prime ideal is a prime δ-ideal [10], it is clear.

(4)⇒(5) Assume condition (4). It is enough to show that every median
prime ideal is a σ-ideal. Let P be a median prime ideal of L. Clearly σ(P ) ⊆ P .
Conversely, let x ∈ P . Since P is median, there exists y /∈ P such that x∗∨y∗ = 1.
Hence (x∗] ∨ (y∗] = L. Since y /∈ P , we get y∗ ∈ P and thus (y∗] ⊆ P . Hence
L = (x∗] ∨ (y∗] ⊆ (x∗] ∨ P . Thus x ∈ σ(P ), which gives P ⊆ σ(P ). Therefore P
is a σ-ideal.

(5)⇒(1) Assume that every minimal prime ideal is a σ-ideal. Let x ∈ L.
Suppose x∗ ∨ x∗∗ 6= 1. Then there exists a prime filter P such that x∗ ∨ x∗∗ /∈ P .
Since every prime filter is contained in a maximal filter, there exists a maximal
filter M such that P ⊆ M . Then L−M is a minimal prime ideal of L. By (4),
L−M is a σ-ideal of L and thus L−M = σ(L−M). Suppose x ∈ M . Since M is
maximal, there exists y /∈ M such that x∨ y = 1 ∈ P . Since y /∈ M and P ⊆ M ,
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one must have y /∈ P . Since P is prime, we get x ∈ P . Clearly x ≤ x∗∗ ≤ x∗∨x∗∗.
Since x∗ ∨ x∗∗ /∈ P , we must have x /∈ P which is a contradiction. Hence x /∈ M .
Thus x ∈ L − M = σ(L − M). Hence (x∗] ∨ (L − M) = L, which gives that
1 = x∗∨a for some a ∈ L−M . Hence a /∈ M . Since P ⊆ M , we get a /∈ P . Since
x∗ ∨ a = 1 ∈ P , we get x∗ ∈ P . Hence x∗ ∨ x∗∗ ∈ P , which is a contradiction.
Therefore x∗ ∨ x∗∗ = 1 for all x ∈ L.
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