Discussiones Mathematicae General Algebra and Applications 44 (2024) 319–331 <https://doi.org/10.7151/dmgaa.1452>

SOLVABILITY OF B-ALGEBRAS

Joemar Endam

Mathematics Department Negros Oriental State University Dumaguete City, Philippines

e-mail: joemar.endam@norsu.edu.ph

Gil Dael

Crisostomo O. Retes National High School Division of Negros Oriental San Jose, Negros Oriental, Philippines e-mail: gil.dael@deped.gov.ph

AND

Benjamin Omamalin

Bohol Island State University Balilihan Campus Magsija Balilihan, Bohol, Philippines e-mail: benjamin.omamalin@bisu.edu.ph

Abstract

In this paper, we introduce and characterize solvable B-algebras. We also establish some of the basic properties of solvable B-algebras. Keywords: solvable B-algebras, composition B-series, solvable B-series. 2020 Mathematics Subject Classification: 08A05, 06F35.

1. INTRODUCTION

A B-algebra [21] is an algebra $(X;*,0)$ of type $(2, 0)$ satisfying the following axioms:

(I) $x * x = 0$,

(II) $x * 0 = x$,

(III) $(x * y) * z = x * (z * (0 * y))$, for any $x, y, z \in X$.

This algebra was introduced and established by Neggers and Kim (2002). From then on, several properties and characterizations as well as several notions relating to B-algebras were established, including the basic properties of B-algebras [2, 3, 7, 9, 11, 13, 29, 30], homomorphisms of B-algebras [14, 22, 28], B_p -subalgebras [8, 10, 12], cyclic B-algebras [15, 16], and fuzzy B-algebras [1, 4, 5, 6, 17, 18, 20, 23, 24, 25, 26, 27]. In this paper, we introduce and characterize solvable B-algebras. We also establish some of the basic properties of solvable B-algebras.

We recall first some concepts needed in this study. Throughout this paper, let X be a B-algebra $(X; *, 0)$. In [21], X is said to be *commutative* if $x*(0*y) =$ $y * (0 * x)$ for any $x, y \in X$.

Example 1. Let $X = \{0, 1, 2, 3, 4, 5\}$ be a set with the following table of operations:

Then $(X;*,0)$ is a B-algebra [22]. Since $2*(0*3) = 5 \neq 4 = 3*(0*2)$, X is not commutative.

In [22], a nonempty subset N of X is called a *subalgebra* of X if $x * y \in N$ for any $x, y \in N$. A subalgebra N of X is called normal in X if $(x * a) * (y * b) \in N$ for any $x * y$, $a * b \in N$. A map $\varphi : X \to Y$ is called a *B*-homomorphism if $\varphi(x * y) = \varphi(x) * \varphi(y)$ for any $x, y \in X$. The subset $\{x \in X : \varphi(x) = 0\}$ of X is called the kernel of the B-homomorphism φ , denoted by Ker φ . If N is normal in X, then X/N is a B-algebra, called the *quotient B-algebra* of X by N, where binary operation in X/N is defined by $x\overline{N} * yN = (x * y)N$; $X/N = \{xN : x \in X\}; xN = \{y \in X : x \sim_N y\}$ the equivalence class containing x by xN; $x \sim_N y$ if and only if $x * y \in N$. In [7], for subalgebra H of X and $x \in X$, we have $xH = \{x * (0 * h) : h \in H\}$ and $Hx = \{h * (0 * x) : h \in H\}$, called the *left* and *right B-cosets* of H in X, respectively. In [14], if H, K are subalgebras of X, we define the subset HK of X to be the set $HK = \{x \in$ $X: x = h * (0 * k)$ for some $h \in H, k \in K$. In [10], we say that a B-algebra is B-simple if it has no nontrivial normal subalgebras.

2. B-series

This section presents the notions of subnormal, normal, composition, and solvable B-series of B-algebras.

Definition. Let $X = H_0 \supseteq H_1 \supseteq H_2 \supseteq \cdots \supseteq H_n = \{0\}$ be a series of subalgebras of X. The series is called a *subnormal B-series* if each H_i is normal in H_{i-1} . The series is called a *normal B-series* if each H_i is normal in X. The series is called a composition B-series if each H_i is a maximal normal subalgebra of H_{i-1} . The number of proper inclusions \supset in the series is called the *length* of the series. The quotient B-algebras H_{i-1}/H_i are called the *factors* of the series.

If $H_{i-1} = H_i$, then the quotient B-algebra H_{i-1}/H_i consists of a single element and is called a trivial factor of the series. Given a series of subalgebras $X = H_0 \supseteq H_1 \supseteq H_2 \supseteq \cdots \supseteq H_n = \{0\}$ of X, then the length of the series is the number of nontrivial factors H_{i-1}/H_i of the series. Since $\{0\}$ is normal in X, every B-algebra has a normal B-series.

Lemma 2. H is a maximal normal in X if and only if X/H is B-simple.

Proof. This follows from [8, Corollary 16].

 \blacksquare

Theorem 3. Every finite B-algebra has a composition B-series.

Proof. Let X be a finite B-algebra. Since X is finite, there exists a maximal normal subalgebra H_1 of X. Thus, by Lemma 2, X/H_1 is B-simple. If $H_1 \neq \{0\}$, then since H_1 is finite, there exists a maximal normal subalgebra H_2 of H_1 . Hence, H_1/H_2 is B-simple. If $H_2 \neq \{0\}$, then continuing the process, we obtain the following series $X = H_0 \supset H_1 \supset H_2 \supset \cdots \supset H_n \supset \cdots$ such that H_i/H_{i+1} is B-simple for all *i*. Since X is finite, there exists $n \geq 0$ such that $H_n = \{0\}$. Thus, $X = H_0 \supset H_1 \supset H_2 \supset \cdots \supset H_n = \{0\}$ is a composition B-series for X. \blacksquare

Example 4. Let $X = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11\}$ be a set with the following table of operations:

Then $(X;*,0)$ is a B-algebra [10]. Moreover, X is commutative. Thus, by [30, Corollary 2.3], the subalgebras {0, 6}, {0, 4, 8}, {0, 3, 6, 9}, {0, 2, 4, 6, 8, 10} are normal in X . The following series are normal B-series for X :

$$
X \supset \{0,6\} \supset \{0\},
$$

\n
$$
X \supset \{0,3,6,9\} \supset \{0,6\} \supset \{0\},
$$

\n
$$
X \supset \{0,2,4,6,8,10\} \supset \{0,6\} \supset \{0\},
$$

\n
$$
X \supset \{0,2,4,6,8,10\} \supset \{0,4,8\} \supset \{0\}.
$$

The first normal B-series is not a composition B-series for X . The remaining three normal B-series are composition B-series for X.

Definition. Let

$$
(1) \qquad \qquad X = H_0 \supseteq H_1 \supseteq H_2 \supseteq \cdots \supseteq H_{n-1} \supseteq H_n = \{0\},
$$

be a subnormal B-series in X . A one-step refinement of this series is any series of the form

$$
X = H_0 \supseteq H_1 \supseteq \cdots \supseteq H_{i-1} \supseteq H \supseteq H_i \supseteq \cdots \supseteq H_{n-1} \supseteq H_n = \{0\},
$$

where H is a normal subalgebra of H_{i-1} and H_i is a normal subalgebra of H , $i = 1, 2, \ldots, n$. A refinement of (1) is a subnormal B-series which is obtained from (1) by a finite sequence of one-step refinements. A refinement

$$
(2) \qquad X = K_0 \supseteq K_1 \supseteq K_2 \supseteq \cdots \supseteq K_{m-1} \supseteq K_m = \{0\},
$$

of (1) is called a *proper refinement* if there exists a subalgebra K_i in (2) which is different from each H_i of (1). Thus, a series of subalgebras

$$
X = K_0 \supseteq K_1 \supseteq K_2 \supseteq \cdots \supseteq K_{m-1} \supseteq K_m = \{0\}
$$

of X is called a *refinement* of a series of subalgebras

$$
X = H_0 \supseteq H_1 \supseteq H_2 \supseteq \cdots \supseteq H_{n-1} \supseteq H_n = 0,
$$

of X if

$$
\{H_0, H_1, H_2, \ldots, H_n\} \subseteq \{K_0, K_1, K_2, \ldots, K_m\}
$$

and is called a proper refinement if

$$
\{H_0, H_1, H_2, \ldots, H_n\} \subset \{K_0, K_1, K_2, \ldots, K_m\}.
$$

Example 5. In Example 4, $X \supset \{0,3,6,9\} \supset \{0,6\} \supset \{0\}$ is a refinement of $X \supset \{0,6\} \supset \{0\}$ while $X \supset \{0,2,4,6,8,10\} \supset \{0,4,8\} \supset \{0\}$ is not.

Theorem 6. A subnormal B-series in X is a composition B-series if and only if it has no proper refinement.

Proof. Let

$$
(3) \qquad \qquad X = H_0 \supseteq H_1 \supseteq H_2 \supseteq \cdots \supseteq H_{n-1} \supseteq H_n = \{0\}
$$

be a composition B-series of X . Suppose that

$$
X = H_0 \supseteq H_1 \supseteq \cdots \supseteq H_{i-1} \supseteq H \supseteq H_i \supseteq \cdots \supseteq H_{n-1} \supseteq H_n = \{0\}
$$

is a one-step refinement of (3). Since (3) is a composition B-series, H_i is a normal subalgebra of H_{i-1} . Thus, either $H = H_{i-1}$ or $H = H_i$. Hence, it follows that (3) has no proper refinement. Conversely, suppose that

$$
(4) \qquad \qquad X = H_0 \supseteq H_1 \supseteq H_2 \supseteq \cdots \supseteq H_{n-1} \supseteq H_n = \{0\}
$$

is a subnormal B-series which has no proper refinement. Suppose that (4) is not a composition B-series. Then there exists a subalgebra H_i in (4) such that H_i is not a maximal normal subalgebra in H_{i-1} . Thus, there exists a subalgebra H such that $H_{i-1} \neq H \neq H_i$, H is normal in H_{i-1} , and H_i is normal in H. This produces a proper refinement of (4), a contradiction. Therefore, (4) is a composition B-series.

Definition. Two subnormal B-series

(5)
$$
X = H_0 \supseteq H_1 \supseteq H_2 \supseteq \cdots \supseteq H_{n-1} \supseteq H_n = \{0\}
$$

and

(6)
$$
X = K_0 \supseteq K_1 \supseteq K_2 \supseteq \cdots \supseteq K_{m-1} \supseteq K_m = \{0\}
$$

for a B-algebra X are called equivalent if there is a one-one correspondence between the nontrivial factors of (5) and (6) such that correponding factors are B-isomorphic.

Lemma 7. Let H' , H , K' , and K be subalgebras of X such that H' is a normal subalgebra of H and K' is a normal subalgebra of K. Then $H'(H \cap K')$ is a normal subalgebra of $H'(H \cap K)$ and $K'(H' \cap K)$ is a normal subalgebra of $K'(H \cap K)$. Furthermore,

$$
H'(H \cap K)/H'(H \cap K') \cong K'(H \cap K)/K'(H' \cap K).
$$

Proof. Since H' is normal in H and K' is normal in K, $H \cap K'$ and $H' \cap K$ are normal subalgebras of $H \cap K$ by [14, Lemma 2.10]. Also $(H \cap K')(H' \cap K)$ is normal in $H \cap K$ by [14, Lemma 2.12]. For simplicity, let $J = (H \cap K')(H' \cap K)$. Define $f: H'(H \cap K) \to (H \cap K)/J$ as follows: if $x \in H'(H \cap K)$, then $x = h' * (0 * y)$, where $h' \in H'$ and $y \in H \cap K$. Set $f(x) = Jy$.

Let $a_1, a_2 \in H'(H \cap K)$. Then $a_1 = h'_1 * (0 * b_1)$ and $a_2 = h'_2 * (0 * b_2)$ for some $h'_1, h'_2 \in H'$ and $b_1, b_2 \in H \cap K$.

Claim 1. f is well-defined.

Suppose that $a_1 = a_2$. Then by (III), (I), and [21, Lemma 2.6], we have

$$
h'_1 * (0 * b_1) = h'_2 * (0 * b_2)
$$

\n
$$
b_2 * (h'_1 * (0 * b_1)) = b_2 * (h'_2 * (0 * b_2))
$$

\n
$$
(b_2 * b_1) * h'_1 = (b_2 * b_2) * h'_2
$$

\n
$$
(b_2 * b_1) * h'_1 = 0 * h'_2
$$

\n
$$
((b_2 * b_1) * h'_1) * (0 * h'_1) = (0 * h'_2) * (0 * h'_1)
$$

\n
$$
b_2 * b_1 = (0 * h'_2) * (0 * h'_1).
$$

Thus, $(0 * h'_2) * (0 * h'_1) = b_2 * b_1 \in H \cap K$. Hence, $(0 * h'_2) * (0 * h'_1) \in H'(H \cap K) \subseteq$ $H' \cap K \subseteq J$. It follows that $b_2 * b_1 \in J$. By [7, Theorem 3.3(ii)], $f(a_1) = Jb_1 =$ $Jb_2 = f(a_2)$. This proves Claim 1.

Claim 2. f is a B-homomorphism.

First, take note that $H'(H \cap K) = (H \cap K)H'$. Since H' and $H \cap K$ are subalgebras of H with H' normal in H, by [14, Lemma 2.11], $H'(H \cap K)$ is a subalgebra of H. And by [14, Theorem 2.8], $H'(H \cap K) = (H \cap K)H'$.

So, for h_2' $y'_2 * (0 * (b_2 * b_1) \in H'(H \cap K), h'_2)$ $y_2' * (0 * (b_2 * b_1) \in (H \cap K)H'$. That is, h'_2 $y'_2 * (0 * (b_2 * b_1) = (b_2 * b_1) * (0 * h'_3)$ $'_{3}$), for some h'_{3} $\frac{1}{3}$ in H' .

Now, by (III) , [29, Lemma 2.3(v)], and [21, Proposition 2.8], we have

$$
a_1 * a_2 = (h'_1 * (0 * b_1)) * (h'_2 * (0 * b_2))
$$

= $h'_1 * ((h'_2 * (0 * b_2)) * b_1)$
= $h'_1 * (h'_2 * (b_1 * b_2))$
= $h'_1 * (h'_2 * (0 * (b_2 * b_1)))$
= $h'_1 * (b_2 * b_1) * (0 * h'_3)$
= $(h'_1 * h'_3) * (b_2 * b_1)$
= $h'_4 * (0 * (b_1 * b_2))$

for $h'_4 \in H'$.

Then,

$$
f(a_1 * a_2) = f(h'_4 * (0 * (b_1 * b_2)))
$$

= $J(b_1 * b_2)$
= $Jb_1 * Jb_2$
= $f(a_1) * f(a_2)$.

This proves Claim 2.

Claim 3. f is onto.

Let $Jy \in (H \cap K)/J$. Then $y = 0 * (0 * y) \in H'(H \cap K)$ and $f(y) = Jy$. This proves Claim 3.

Therefore, by [22, Theorem 3.11], $H'(H \cap K)/Ker f \cong (H \cap K)/J$.

Claim 4. $Ker f = H'(H \cap K')$.

Let $(h'_1 * (0 * b_1)) \in Ker f$, for $h'_1 \in H'$ and $b_1 \in H \cap K$. Then $J = f(h'_1 * (0 * b_1))$ $(b_1$)) = Jb_1 . By [7, Theorem 3.3(ii)], $(0 * b_1) \in J$. If $(0 * b_1) \in J = (H \cap K')(H' \cap K)$, then $(0 * b_1) = h'_2$ $\mu'_2 * (0 * b_2)$ for $h'_2 \in H \cap K'$ and $b_2 \in H' \cap K$.

Hence, $(h'_1 * (0 * b_1)) \in Ker \tilde{f}$ if and only if $h'_1 * (0 * b_1) = h'_1 * (h'_2 * (0 * b_2)) =$ $(h'_1 * b_2) * h'_2$. Note that $h'_1 * b_2 = h'_1 * (0 * (0 * b_2)) \in H'(H' \cap K)$ implies that, by [14, Lemma 2.7], $h'_1 * b_2 \in H'$. Hence, $(h'_1 * (0 * b_1)) \in H'(H \cap K'$. Therefore, $Ker f = H'(H \cap K').$

Therefore, $H'(H \cap K)/H'(H \cap K') \cong (H \cap K)/(H \cap K)(H' \cap K)$. Similar argument applies for $K'(H \cap K)/K'(H' \cap K) \cong H \cap K/(H \cap K')(H' \cap K)$. Therefore, $H'(H \cap K)/H'(H \cap K') \cong K'(H \cap K)/K'(H' \cap K)$.

Theorem 8. Any two subnormal B-series

$$
X = H_0 \supseteq H_1 \supseteq H_2 \supseteq \cdots \supseteq H_{n-1} \supseteq H_n = \{0\}
$$

and

$$
X = K_0 \supseteq K_1 \supseteq K_2 \supseteq \cdots \supseteq K_{m-1} \supseteq K_m = \{0\}
$$

of X have refinements which are equivalent.

Proof. Between each H_i and H_{i+1} , insert the subalgebra

$$
H_{i+1}(H_i \cap K_j), j = 0, 1, 2, \ldots, m.
$$

Between each K_j and K_{j+1} , insert the subalgebra

$$
K_{j+1}\left(K_{j}\cap H_{i}\right), i=0,1,2,\ldots,n.
$$

These refinements are subnormal B-series with mn inclusions. The final refinements are

$$
\cdots \supseteq H_{i+1}(H_i \cap K_j) \supseteq H_{i+1}(H_i \cap K_{j+1}) \supseteq \cdots
$$

and

$$
\cdots \supseteq K_{j+1}(K_j \cap H_i) \supseteq K_{j+1}(K_j \cap H_{i+1}) \supseteq \cdots
$$

By Lemma 7,

$$
H_{i+1}(H_i \cap K_j) / H_{i+1}(H_i \cap K_{j+1}) \cong K_{j+1}(K_j \cap H_i) / K_{j+1}(K_j \cap H_{i+1}).
$$

The result follows.

Theorem 9. Any two composition B-series of X are equivalent.

Proof. Any two composition B-series of X have equivalent refinements and by Theorem 6, a composition B-series has no proper refinements. Thus, a composition B-series is equivalent to every refinement of itself. Therefore, any two composition B-series of X are equivalent.

If X has a subnormal B-series $X = H_0 \supseteq H_1 \supseteq H_2 \supseteq \cdots \supseteq H_{n-1} \supseteq H_n = \{0\}$ such that H_i/H_{i+1} is commutative, $i = 0, 1, \ldots, n-1$, then we say that X is solvable. Such a subnormal B-series is called a solvable B-series for X.

Remark 10. Every commutative B-algebra is solvable.

Example 11. The noncommutative B-algebra X in Example 1 is solvable since $X \supset \{0, 1, 2\} \supset \{0\}$ is a solvable B-series for X.

3. Properties of solvable B-algebra

We now present some of the basic properties of solvable B-algebras.

Theorem 12. Every subalgebra of a solvable B-algebra is solvable.

Proof. Let $X = H_0 \supseteq H_1 \supseteq H_2 \supseteq \cdots \supseteq H_{n-1} \supseteq H_n = \{0\}$ be a solvable B-series of X. Let K be any subalgebra of X. Set $K_i = K \cap H_i$, $i = 0, 1, ..., n$. Since H_{i+1} is a normal subalgebra of H_i , $H_{i+1} \cap K$ is a normal subalgebra of $H_i \cap K$. Thus, K_{i+1} is a normal subalgebra of K_i . Now, $K_{i+1} = K \cap H_{i+1}$ $K \cap H_i \cap H_{i+1} = K_i \cap H_{i+1}$. Hence, $K_i/K_{i+1} = K_i/(K_i \cap H_{i+1})$. By [14, Theorem 3.4], $K_i/K_{i+1} \cong K_iH_{i+1}/H_{i+1}$. Since K_iH_{i+1}/H_{i+1} is a subalgebra of H_i/H_{i+1} and H_i/H_{i+1} is commutative, K_iH_{i+1}/H_{i+1} is commutative. Therefore, K_i/K_{i+1} is commutative and so the series

$$
K = K_0 \supseteq K_1 \supseteq K_2 \supseteq \cdots \supseteq K_{n-1} \supseteq K_n = \{0\}
$$

is a solvable B-series for K . Consequently, K is a solvable.

Proof. Let $f: X \to Y$ be a B-epimorphism. Suppose that X is solvable. Let $X = H_0 \supseteq H_1 \supseteq H_2 \supseteq \cdots \supseteq H_{n-1} \supseteq H_n = \{0\}$ be a solvable B-series of X. Set $K_i = f(H_i)$, $i = 0, 1, \ldots, n$. Since f is a B-epimorphism, $f(H_{i+1})$ is a normal subalgebra of $f(H_i)$. Since $H_i \supseteq H_{i+1}$, $f(H_i) \supseteq f(H_{i+1})$. Hence, $Y = K_0 \supseteq K_1 \supseteq K_2 \supseteq \cdots \supseteq K_{n-1} \supseteq K_n = \{0\}$ is a subnormal B-series of Y. Define $g: H_i \to K_i/K_{i+1}$ by $g(h_i) = f(h_i)K_{i+1}$. Since f is a B-epimorphism, g is a B-epimorphism of H_i onto K_i/K_{i+1} . Note that for any $h_{i+1} \in K_{i+1} \subseteq K_i$, $g(h_{i+1}) = f(h_{i+1})K_{i+1} = f(h_{i+1})f(H_{i+1}) = f(H_{i+1}).$ Hence, $H_{i+1} \subseteq Kerg$. Thus, g induces a B-epimorphism of H_i/H_{i+1} onto K_i/K_{i+1} . Since H_i/H_{i+1} is commutative, K_i/K_{i+1} is commutative. Therefore, the subnormal B-series $Y = K_0 \supseteq K_1 \supseteq K_2 \supseteq \cdots \supseteq K_{n-1} \supseteq K_n = \{0\}$ is a solvable B-series for Y and so Y is solvable.

Corollary 14. If X is solvable and H is normal in X, then H and X/H are solvable.

Theorem 15. Let H be normal in X. If both H and X/H are solvable, then X is solvable.

Proof. Suppose that H and X/H are solvable. Let

$$
X/H = K'_0 \supseteq K'_1 \supseteq K'_2 \supseteq \cdots \supseteq K'_{m-1} \supseteq K'_m = \{0H\} = \{H\}
$$

be a solvable B-series for X/H . By [8, Corollary 16], there are subalgebras K_i of X, $i = 0, 1, \ldots, m$, such that K_{i+1} is a normal subalgebra of K_i , $K'_i = K_i/H$, $i = 0, 1, \ldots, m - 1, X = K_0$, and $H = K_m$. By [22, Theorem 3.14],

$$
K_i/K_{i+1} \cong K'_i/K'_{i+1}.
$$

Since H is solvable, H has a solvable B-series

$$
H = H_0 \supseteq H_1 \supseteq H_2 \supseteq \cdots \supseteq H_{n-1} \supseteq H_n = \{0\}.
$$

Thus,

$$
X = K_0 \supseteq K_1 \supseteq \cdots \supseteq K_{m-1} \supseteq H \supseteq H_1 \supseteq \cdots \supseteq H_{n-1} \supseteq H_n = \{0\}
$$

is a solvable B-series for X . Therefore, X is solvable.

Corollary 16. Let H and K be subalgebras of X and H be normal in X. If both H and K are solvable, then HK is solvable.

 \blacksquare

Proof. Suppose that H and K are solvable. By [14, Lemma 2.11], HK is a subalgebra of X. By [14, Theorem 3.4], $HK/H \cong K/H \cap K$. By [14, Lemma 2.1], $H \cap K$ is a subalgebra of K. Thus, by Theorem 12, $H \cap K$ is solvable. Hence, $K/H \cap K$ is solvable by Corollary 14. Therefore, HK/H is solvable. Therefore, by Theorem 15, HK is solvable.

Corollary 17. Let H and K be normal subalgebras of X such that X/H and X/K are solvable. Then X is solvable if and only if $H \cap K$ is solvable.

Proof. Suppose that X is solvable. By Theorem 12, $H \cap K$ is solvable. Conversely, suppose that $H \cap K$ is solvable. By [14, Theorem 3.4], $HK/H \cong K/H \cap K$. Since HK/H is a subalgebra of a solvable B-algebra X/H , HK/H is solvable by Theorem 12. Thus, $K/H \cap K$ is solvable. By Theorem 15, K is solvable. Therefore, by Theorem 15, X is solvable.

Theorem 18. Any refinement of a solvable B-series of X is a solvable B-series.

Proof. Let

(7)
$$
X = H_0 \supseteq H_1 \supseteq H_2 \supseteq \cdots \supseteq H_{n-1} \supseteq H_n = \{0\}
$$

be a solvable B-series for X and let

$$
(8) \qquad X = H_0 \supseteq H_1 \supseteq \cdots \supseteq H_{i-1} \supseteq H \supseteq H_i \supseteq \cdots \supseteq H_{n-1} \supseteq H_n = \{0\}
$$

be a one-step refinement of (7). From (7), H_{i-1}/H_i is commutative. Since H/H_i is a subalgebra of H_{i-1}/H_i , H/H_i is commutative. By [22, Theorem 3.14], $(H_{i-1}/H_i)/(H/H_i) \cong H_{i-1}/H$ and so H_{i-1}/H is commutative. Thus, (8) is a solvable B-series. Hence, any one-step refinement of (7) is a solvable B-series. By induction, any refinement of (7) is a solvable B-series.

Recall from $[2]$ that the center of X is given by

$$
Z(X) = \{ x \in X : x * (0 * y) = y * (0 * x) \text{ for all } y \in X \}.
$$

Note that $Z(X)$ is a subalgebra of X [2]. Moreover, it is normal in X [30].

Theorem 19. X is solvable if and only if $X/Z(X)$ is solvable.

Proof. If X is solvable, then $X/Z(X)$ is solvable by Corollary 14. Conversely, if $X/Z(X)$ is solvable, then X is solvable by Remark 10 and Theorem 15.

Acknowledgement

The authors would like to thank the referee and the editor for the remarks, comments, and suggestions which were incorporated into this revised version.

REFERENCES

- [1] S.S. Ahn and K. Bang, On fuzzy subalgebras in B-algebras, Commun. Korean Math. Soc. 18 (2003) 429–437. <https://doi.org/10.4134/CKMS.2003.18.3.429>
- [2] P.J. Allen, J. Neggers and H.S. Kim, B-algebras and groups, Sci. Math. Jpn. 9 (2003) 159–165. https://www.jams.or.jp/scm/contents/Vol-9-2/9-17.pdf
- [3] R. Ameri, A. Borumand Saied, S.A. Nematolah Zadeh, A. Radfar and R.A. Borzooei, On finite B-algebra, Afr. Mat. 26 (2015) 825–847. <https://doi.org/10.1007/s13370-014-0249-8>
- [4] A.Z. Baghini and A.B. Saeid, Redefined fuzzy B-algebras, Fuzzy Optimization and Decision Making 7 (2008) 373–386. <https://doi.org/10.1007/s10700-008-9045-y>
- [5] A.Z. Baghini and A.B. Saeid, Generalized Fuzzy B-Algebras, Fuzzy Information and Engineering 40 (2007) 226–233. [https://doi.org/10.1007/978-3-540-71441-5](https://doi.org/10.1007/978-3-540-71441-5$underline {~}$25) 25
- [6] M. Balamurugan, G. Balasubramanian and C. Ragavan, Translations of intuitionistic fuzzy soft structure of B-algebras, Malaya J. Mat. 6 (2018) 685–700. <https://doi.org/10.26637/MJM0603/0033>
- [7] J.S. Bantug and J.C. Endam, Lagrange's Theorem for B-algebras, Int. J. Algebra 11 (2017) 15–23. <https://doi.org/10.12988/ija.2017.616>
- [8] J.S. Bantug and J.C. Endam, Maximal Bp-subalgebras of B-algebras, Discuss. Math. Gen. Algebra Appl. 40 (2020) 25–36. <https://doi.org/doi:10.7151/dmgaa.1323>
- [9] J.R. Cho and H.S. Kim, On B-algebras and quasigroups, Quasigroups and Related Systems 8 (2001) 1–6. http://www.quasigroups.eu/contents/download/2001/8 1.pdf
- [10] J.C. Endam, A note on maximal Bp-subalgebras of B-algebras, Afr. Mat. 34 (2023). <https://doi.org/10.1007/s13370-023-01042-y>
- [11] J.C. Endam, Centralizer and Normalizer of B-algebras, Sci. Math. Jpn. 81 (2018) 17–23. https://www.jams.jp/scm/contents/e-2016-2/2016-11.pdf
- [12] J.C. Endam and E.C. Banagua, B-algebras Acting on Sets, Sci. Math. Jpn. 2 (Online-2018) 1–7. https://www.jams.jp/scm/contents/e-2018-1/2018-1.pdf
- [13] J.C. Endam and J.S. Bantug, Cauchy's Theorem for B-algebras, Sci. Math. Jpn. 82 (2019) 221–228. https://www.jams.jp/scm/contents/e-2017-3/2017-21.pdf
- [14] J.C. Endam and J.P. Vilela, *The Second Isomorphism Theorem for B-algebras*, Appl. Math. Sci. 8 (2014) 1865–1872. <https://doi.org/10.12988/ams.2014.4291>
- [15] J.C. Endam and R.C. Teves, Some Properties of Cyclic B-algebras, Int. Math. Forum. 11 (2016) 387–394. <https://doi.org/10.12988/imf.2016.6111>
- [16] N.C. Gonzaga and J.P. Vilela, On Cyclic B-algebras, Appl. Math. Sci. 9 (2015) 5507–5522. <https://doi.org/10.12988/ams.2015.54299>
- [17] N.C. Gonzaga and J.P. Vilela, Fuzzy order relative to fuzzy B-algebras, Italian J. Pure Appl. Math. 42 (2019) 485–493. https://ijpam.uniud.it/online issue/201942/42%20Gonzaga-MS-Vilela.pdf
- [18] Y.B. Jun, E.H. Roh and H.S. Kim, On fuzzy B-algebras, Czechoslovak Math. J. 52 (2002) 375–384. https://cmj.math.cas.cz/full/52/2/cmj52 2 14.pdf
- [19] H.S. Kim and H.G. Park, On 0-commutative B-algebras, Sci. Math. Jpn. 62 (2005) 7–12. https://www.jams.jp/scm/contents/e-2005-1/2005-4.pdf
- [20] Y.H. Kim and S.J. Yoem, Quotient B-algebras via Fuzzy Normal B-algebras, Honam Mathematical Journal 30 (2008) 21–32. <https://doi.org/10.5831/HMJ.2008.30.1.021>
- [21] J. Neggers and H.S. Kim, On B-algebras, Mat. Vesnik 54 (2002) 21–29. http://eudml.org/doc/253204
- [22] J. Neggers and H.S. Kim, A fundamental theorem of B-homomorphism for Balgebras, Int. Math. J. 2 (2002) 207–214.
- [23] A.B. Saeid, Fuzzy Topological B-algebras, International Journal of Fuzzy Systems 8 (2006) 160–164.
- [24] A.B. Saeid, Interval-valued Fuzzy B-algebras, Iranian Journal of Fuzzy Systems 3 (2006) 63–73. <https://doi.org/10.22111/IJFS.2006.467>
- [25] T. Senapati, M. Bhowmik and M. Pal, Fuzzy Dot Subalgebras and Fuzzy Dot Ideals of B-algebras, J. Uncertain Syst. 8 (2014) 22–30. http://www.worldacademicunion.com/journal/jus/jusVol08No1paper03.pdf
- [26] T. Senapati, M. Bhowmik and M. Pal, Fuzzy Closed Ideals of B-Algebras, IJCSET 1 (2011) 669–673. https://ijcset.net/docs/Volumes/volume1issue10/ijcset2011011011.pdf
- [27] T. Senapati, Translations of Intuitionistic Fuzzy B-algebras, Fuzzy Information and Engineering 7 (2015) 389–404. <https://doi.org/10.1016/j.fiae.2015.11.001>
- [28] R. Soleimani, A note on automorphisms of finite B-algebras, Afr. Mat. 29 (2018) 263–275. <https://doi.org/10.1007/s13370-017-0540-6>
- [29] A. Walendziak, Some Axiomatizations of B-algebras, Math. Slovaca 56 (2006) 301– 306. https://dml.cz/handle/10338.dmlcz/131319
- [30] A. Walendziak, A note on normal subalgebras in B-algebras, Sci. Math. Jpn. 62 (2005) 1–6. https://www.jams.or.jp/scm/contents/e-2005-1/2005-6.pdf

Received 3 February 2023 Revised 13 May 2023 Accepted 15 May 2023

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License<https://creativecommons.org/licenses/by/4.0/>