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1. Introduction

The concept of a term is one of the principal concepts of universal algebra, which
can be considered as an appropriate language for describing classes of algebras.
Let τn := (ni)i∈I be a type of algebras in which all operation symbols fi are
indexed by some set I and have arity ni = n, for a fixed positive integer n. Let
Xn = {x1, . . . , xn} be an n-element alphabet of variables. ByWτn(Xn) we denote
the set of all n-ary terms of type τn. Recent contributions on terms can be found,
for example, in [2, 3, 10, 12, 16]. Actually, in [5], K. Denecke and P. Jampachon
defined n-ary full terms of type τn in the following way:

(i) Let s : {1, . . . , n} → {1, . . . , n} and fi be an operation symbol of type τn.
Then fi(xs(1), . . . , xs(n)) is an n-ary full term of type τn.

(ii) If t1, . . . , tn are n-ary full terms of type τn, then fi(t1, . . . , tn) is an n-ary full

term of type τn.

The set of all n-ary full terms of type τn is closed under finite application of
(ii) and is denoted by WF

τn
(Xn). If s is an identity mapping, then WF

τn
(Xn) is

denoted by W SF
τn

(Xn), and it is called the set of all n-ary strongly full terms of

type τn [4]. If s is a permutation, then WF
τn(Xn) is denoted by WPF

τn (Xn), and it
is called the set of all n-ary permutational full terms of type τn [13]. Obviously,

W SF
τn

(Xn) ⊆WPF
τn

(Xn) ⊆WF
τn
(Xn) ⊆Wτn(Xn).

There are several possibilities to define other classes of terms by different
mappings in a finite set. Recall that the semigroup of all mappings from a
nonempty set X into itself under the usual composition is called the full trans-
formation semigroup and denoted by T (X). If X = {1, . . . , n}, we may write Tn
instead of T (X).

Recently, Wattanatripop and Changphas introduced the notions of an
K∗(n, r)-full terms [21] by considering a subsemigroup K∗(n, r) := {α ∈ Tn |
|im(α)| ≤ r} ∪ {1id} of Tn in which each element is called a restricted range

transformation. It is observed that K∗(n, r) = K(n, r) = Tn if r = n. Thus, a
clone denoted by cloneK∗(n,r)(τn) consisting of the set of all n-ary K∗(n, r)-full
terms of type τn and a superposition Sn was constructed. On the other hand, the
set ODn = {α ∈ Tn | ∀k ∈ {1, . . . , n}, α(k) ≤ k} of all order-decreasing full trans-

formations on a finite chain which is a submonoid of Tn was applied to define an
n-ary order-decreasing full term of type τn in [22]. An identity of a variety that
determined by a pair of terms in MAODn(τn) and full closed variesties were ex-
amined. In [20], a semigroup S(n̄, Y ) := {β ∈ Tn | β(Y ) ⊆ Y } of transformations
on a finite set n̄ leaving Y ⊆ n̄ invariant was applied to set a new term in such a
way that each pair of these terms was extended to be S(n̄, Y )-hyperidentity of a
variety V . Similarly, in [18], the theorem which gave the freeness of an algebra
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consisting of the set of all terms generated by transformations with restricted
range and (n+ 1)-ary operation satisfying certain equational laws was proved.

In [11], Honyam and Sanwong introduced a semigroup Fix(X,Y ) which is
called a transformation semigroup with fixed set, which contains the identity map-
ping on X, denoted by 1X . Actually, for a fixed subset Y of X,

Fix(X,Y ) = {α ∈ T (X) | α(a) = a for all a ∈ Y }.

It is clear that Fix(X,Y ) = T (X) if Y = ∅ and Fix(X,Y ) contains only the
identity mapping 1X if |X| = 1 or X = Y .

Our main goal of this paper is to generalize the concepts of strongly full
terms, permutational full terms and full terms. In Section 2, applying the notion
of transformations with fixed set, we introduce a special kind of n-ary terms of
type τn, the so-called Fix(In, Y )-full terms. The combination between full terms
and transformation with fixed set is established. This leads us to form a Menger
algebra of Fix(In, Y )-full terms consisting the set of all Fix(In, Y )-full terms
with (n+ 1)-ary superposition operation. The generating system and freeness of
such algebra are studied. We continue the results in Section 3 by introducing the
monoid of Fix(In, Y )-full hypersubstitutions and Fix(In, Y )-full substitutions.
Particularly, the relation between these monoids is provided. The last section,
we apply the former results for classifying the algebras of type τn.

2. The Menger algebra of Fix(In, Y )-full terms

Let In = {1, . . . , n} where n is an arity of the operation symbol fi. Throughout
this paper, we consider X = In. This leads us to define

Fix(In, Y ) = {α ∈ T (In) | α(a) = a for all a ∈ Y }

where T (In) is the semigroup of all mappings from In into itself under the usual
composition of functions.

We then have the following example.

Example 1. Let τ4 = (4) be a type. This means that we have I4 = {1, 2, 3, 4}.
If we let Y = {2, 4} ⊆ I4, then

Fix(I4, Y ) ={(
1 2 3 4
1 2 1 4

)
,

(
1 2 3 4
1 2 2 4

)
,

(
1 2 3 4
1 2 3 4

)
,

(
1 2 3 4
1 2 4 4

)
,

(
1 2 3 4
2 2 1 4

)
,

(
1 2 3 4
2 2 2 4

)
,

(
1 2 3 4
2 2 3 4

)
,

(
1 2 3 4
2 2 4 4

)
,
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(
1 2 3 4
3 2 1 4

)
,

(
1 2 3 4
3 2 2 4

)
,

(
1 2 3 4
3 2 3 4

)
,

(
1 2 3 4
3 2 4 4

)
,

(
1 2 3 4
4 2 1 4

)
,

(
1 2 3 4
4 2 2 4

)
,

(
1 2 3 4
4 2 3 4

)
,

(
1 2 3 4
4 2 4 4

)}
.

The following example shows that, if Y = ∅, then Fix(In, Y ) = Tn.

Example 2. Consider a type τ2 = (2). Then we have I2 = {1, 2}. Let Y = ∅.
Thus

Fix(I2, Y ) =

{(
1 2
1 1

)
,

(
1 2
1 2

)
,

(
1 2
2 1

)
,

(
1 2
2 2

)}
= T (I2).

In the case that In = Y , we have the following example.

Example 3. Consider type τ3 = (3). Then I3 = {1, 2, 3}. If Y = I3, then

Fix(I3, Y ) =

{(
1 2 3
1 2 3

)}
.

The next example shows that, if |In| = 1, then Fix(In, Y ) = 1In where 1In
is the identity mapping on In.

Example 4. Consider a type τ1 = (1). That is I1 = {1}. For arbitrary subset

Y of I1. Then Fix(I1, Y ) =

{(
1
1

)}
.

Now, we inductively define n-ary Fix(In, Y )-full terms of type τn as follows.

(i) If fi is an n-ary operation symbol and α ∈ Fix(In, Y ), then
fi(xα(1), . . . , xα(n)) is an n-ary Fix(In, Y )-full term of type τn.

(ii) If fi is an n-ary operation symbol and t1, . . . , tn are n-ary Fix(In, Y )-full
terms of type τn, then fi(t1, . . . , tn) is an n-ary Fix(In, Y )-full term of

type τn.

The set of all n-ary Fix(In, Y )-full terms of type τn which is closed under

finite applications of (ii), is denoted by W
F ix(In,Y )
τn (Xn).

Example 5. Consider τ4 = (4) with a 4-ary operation symbol f . Let I4 =

{1, 2, 3, 4}. If Y = ∅, then there are many elements in W
F ix(I4,Y )
τ4 (X4) such as

f(x1, x1, x2, x3), f(x2, x3, x4, x1), f(x2, x4, x1, x1), f(x1, x4, x4, x4),
f(x2, x3, x3, x1), f(x2, x2, x2, x3), f(f(x2, x3, x3, x1), f(x2, x4, x1, x1),

f(x1, x2, x3, x4), f(x1, x1, x2, x3)). If Y = {1, 2, 3}, then W
F ix(I4,Y )
τ4 (X4) consists

many elements, for instance,
f(x1, x2, x3, x1), f(x1, x2, x3, x2), f(x1, x2, x3, x3), f(x1, x2, x3, x4),
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f(f(x1, x2, x3, x1), f(x1, x2, x3, x2), f(x1, x2, x3, x3), f(x1, x2, x3, x4)).

If Y = I4, then the followings are some elements in W
F ix(I4,Y )
τ4 (X4):

f(x1, x2, x3, x4), f(f(x1, x2, x3, x4), f(x1, x2, x3, x4), f(x1, x2, x3, x4),
f(x1, x2, x3, x4)).

Remark 6. Let τn = (ni) where ni = n for every i ∈ I be a type. Let In =
{1, . . . , n} and Y ⊆ In. Then the following statements are valid.

(i) If Y = ∅, then W SF
τn

(Xn) ⊂WPF
τn

(Xn) ⊂W
F ix(In,Y )
τn (Xn) =WF

τn
(Xn).

(ii) If ∅ 6= Y ⊂ In, then W
SF
τn (Xn) ⊂W

F ix(In,Y )
τn (Xn) ⊂WF

τn(Xn).

(iii) If In = Y , then W SF
τn

(Xn) =W
F ix(In,Y )
τn (Xn) ⊂WPF

τn
(Xn) ⊂WF

τn
(Xn).

Example 7. By Example 4, we have f(x1),f(f(x1)),f(f(f(x1)))∈W
F ix(I1,Y )
τ1 (X1).

Remark 8. If |In| = 1 and Y ⊆ In, then

W SF
τn (Xn) =WPF

τn (Xn) =WF ix(In,Y )
τn (Xn) =WF

τn(Xn).

For W
F ix(In,Y )
τn (Xn), the set of all n-ary Fix(In, Y )-full terms of type τn, the

superposition operation

Sn : (WF ix(In,Y )
τn (Xn))

n+1 →WF ix(In,Y )
τn (Xn)

is defined by

(i) Sn(fi(xα(1), . . . , xα(n)), t1, . . . , tn) := fi(tα(1), . . . , tα(n)).

(ii) Sn(fi(s1, . . . , sn), t1, . . . , tn) := fi(S
n(s1, t1, . . . , tn), . . . , S

n(sn, t1, . . . , tn))
where α ∈ Fix(In, Y ).

Now we may consider the following algebra of type (n+ 1)

MAF ix(In,Y )(τn) := (WF ix(In,Y )
τn

(Xn), S
n).

An algebra (M,Sn) of type τ = (n+ 1) is said to be a Menger algebra of rank n
if (M,Sn) satisfies the superassociative law

S̃n(S̃n(X0, Y1, . . . , Yn),X1, . . . ,Xn)

≈ S̃n(X0, S̃
n(Y1,X1, . . . ,Xn), . . . , S̃

n(Yn,X1, . . . ,Xn))

where S̃n is an (n + 1)-ary operation symbol and Xi, Yj are variables. For
more details, see [7, 8, 14, 17]. The following theorem shows that an algebra
MAF ix(In,Y )(τn) is a Menger algebra of rank n.
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Theorem 9. The algebra MAF ix(In,Y )(τn) satisfies the superassociative law.

Proof. We prove the theorem by induction on the complexity of the Fix(In, Y )-
full term which is substituted for X0. Firstly, if X0 = fi(xα(1), . . . , xα(n)) where
α ∈ Fix(In, Y ), then

Sn(Sn(fi(xα(1), . . . , xα(n)), s1, . . . , sn), t1, . . . , tn)

= Sn(fi(sα(1), . . . , sα(n)), t1, . . . , tn)

= fi(S
n(sα(1), t1, . . . , tn), . . . , S

n(sα(n), t1, . . . , tn))

= Sn(fi(xα(1), . . . , xα(n)), S
n(s1, t1, . . . , tn), . . . , S

n(sn, t1, . . . , tn)).

Let fi(r1, . . . , rn) ∈W
F ix(In,Y )
τn (Xn) be such that r1, . . . , rn satisfy the superasso-

ciative law. Then

Sn(Sn(fi(r1, . . . , rn), s1, . . . , sn), t1, . . . , tn)

= Sn(fi(S
n(r1, s1, . . . , sn), . . . , S

n(rn, s1, . . . , sn)), t1, . . . , tn)

= fi(S
n(Sn(r1, s1, . . . , sn), t1, . . . , tn), . . . , S

n(Sn(rn, s1, . . . , sn), t1, . . . , tn))

= fi(S
n(r1, S

n(s1, t1, . . . , tn), . . . , S
n(sn, t1, . . . , tn)), . . . ,

Sn(rn, S
n(s1, t1, . . . , tn), . . . , S

n(sn, t1, . . . , tn)))

= Sn(fi(r1, . . . , rn), S
n(s1, t1, . . . , tn), . . . , S

n(sn, t1, . . . , tn)).

This completes the proof.

According to Theorem 9, if Y = In and α ∈ Fix(In, Y ) is the identity
mapping, then the following corollary is obtained.

Corollary 10 ([4], Proposition 2.1). Let t, t1, . . . , tn, s1, . . . , sn be strongly full

terms of type τn. Then

Sn(Sn(t, t1, . . . , tn), s1, . . . , sn) = Sn(t, Sn(t1, s1, . . . , sn), . . . , S
n(tn, s1, . . . , sn)).

In addition, if a subset Y of In is empty, then by Theorem 9, we have the
following.

Corollary 11 ([5], Proposition 1). Let t, t1, . . . , tn, s1, . . . , sn ∈WF
τn(Xn). Then

Sn(Sn(t, t1, . . . , tn), s1, . . . , sn) = Sn(t, Sn(t1, s1, . . . , sn), . . . , S
n(tn, s1, . . . , sn)).

The next aim is to study the freeness of algebra MAF ix(In,Y )(τn). First, the
generating system of such algebra is constructed. We see that

F
W

Fix(In,Y )
τn (Xn)

:=
{
fi(xα(1), . . . , xα(n)) | i ∈ I, α ∈ Fix(In, Y )

}
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generates MAF ix(In,Y )(τn).

Let VMenger be the variety of all Menger algebras of type (n + 1) satisfying
(SASS), and let FVMenger

(Z) be the free algebra with respect to VMenger, freely
generated by Z := {zj | j ∈ J} where Z is an alphabet of variables indexed by
the set J := {(i, α) | i ∈ I, α ∈ Fix(In, Y )}. The operation of FVMenger

(Z) will

be denoted by S̃n. We have the following theorem.

Theorem 12. The algebra MAF ix(In,Y )(τn) is free with respect to the variety

VMenger of Menger algebras of rank n, freely generated by the set

Z =
{
z(i,α) | i ∈ I, α ∈ Fix(In, Y )

}
.

Proof. Claim thatMAF ix(In,Y )(τn) is isomorphic to FVMenger
(Z) under the map-

ping

ϕ :WF ix(In,Y )
τn

(Xn) → FVMenger
(Z)

defined by

(i) ϕ(fi(xα(1), . . . , xα(n))) := z(i,α).

(ii) ϕ(Sn(fi(xα(1), . . . , xα(n)), t1, . . . , tn) := S̃n(z(i,α), ϕ(t1), . . . , ϕ(tn)).

We prove the theorem by induction on the complexity of the term t that

ϕ(Sn(t, t1, . . . , tn)) = S̃n(ϕ(t), ϕ(t1), . . . , ϕ(tn))

for all t, t1, . . . , tn ∈W
F ix(In,Y )
τn (Xn). If t = fi(xα(1), . . . , xα(n)), then

ϕ(Sn(t, t1, . . . , tn)) = ϕ(Sn(fi(xα(1), . . . , xα(n)), t1, . . . , tn))

= S̃n(z(i,α), ϕ(t1), . . . , ϕ(tn))

= S̃n(ϕ(fi(xα(1), . . . , xα(n))), ϕ(t1), . . . , ϕ(tn))

= S̃n(ϕ(t), ϕ(t1), . . . , ϕ(tn)).

Let t = fi(r1, . . . , rn) and assume that, for 1 ≤ k ≤ n,

ϕ(Sn(rk, t1, . . . , tn)) = S̃n(ϕ(rk), ϕ(t1), . . . , ϕ(tn)).

By the fact,

ϕ(fi(t
′
1, . . . , t

′
n)) = S̃n(z(i,1n), ϕ(t

′
1), . . . , ϕ(t

′
n))
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for all t′1, . . . , t
′
n ∈W

F ix(In,Y )
τn (Xn), we then have

ϕ(Sn(t, t1, . . . , tn))

= ϕ(Sn(fi(r1, . . . , rn), t1, . . . , tn))

= ϕ(fi(S
n(r1, t1, . . . , tn), . . . , S

n(rn, t1, . . . , tn))

= S̃n(z(i,1n), ϕ(S
n(r1, t1, . . . , tn)), . . . , ϕ(S

n(rn, t1, . . . , tn)))

= S̃n(z(i,1n), S̃
n(ϕ(r1), ϕ(t1), . . . , ϕ(tn)), . . . , S̃

n(ϕ(rn), ϕ(t1), . . . , ϕ(tn)))

= S̃n(S̃n(z(i,1n), ϕ(r1), . . . , ϕ(rn)), ϕ(t1), . . . , ϕ(tn))

= S̃n(ϕ(t), ϕ(t1), . . . , ϕ(tn)).

Here, ϕ is a homomorphism.
For a bijection of mapping ϕ, it can be proved by the following

z(i,α) = z(j,β) ⇒ (i, α) = (j, β) ⇒ fi
(
xα(1), . . . , xα(n)

)
= fj

(
xβ(1), . . . , xβ(n)

)

and
z(i,α) ∈ Z ⇒ ϕ

(
fi(xα(1), . . . , xα(n))

)
= z(i,α).

Thus ϕ is an isomorphism.

As we have seen in Theorem 12, if a mapping α ∈ Fix(In, Y ) is identity and
a subset Y of In is empty, then we have Theorem 2.2 in [4] and Theorem 1 in [5],
respectively.

3. Embedding theorem of Fix(In, Y )-full hypersubstitutions and

Fix(In, Y )-full substitutions

The concept of hypersubstitutions was introduced by Graczyńska and Schweigert
[9]. For more details about hypersubstitution theory, see [6]. In this section, the
concept of a mapping which maps from the set of all operation symbols of type
τn to the set of all n-ary Fix(In, Y )-full terms of type τn is defined as follows.

A Fix(In, Y )-full hypersubstitution of type τn is a mapping

σ : {fi | i ∈ I} → WF ix(In,Y )
τn (Xn)

taking every n-ary operation symbol of type τn to an n-ary Fix(In, Y )-full term
of the same type. The set of all Fix(In, Y )-full hypersubstitutions of type τn is
denoted by HypF ix(In,Y )(τn).

For t ∈ W
F ix(In,Y )
τn (Xn) and α, β ∈ Fix(In, Y ), we define a Fix(In, Y )-full

term arising from a mapping β as follows:

(i) If t = fi
(
xα(1), . . . , xα(n)

)
, then tβ := fi

(
xβ(α(1)), . . . , xβ(α(n))

)
.
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(ii) If t = fi(t1, . . . , tn), then tβ := fi
(
(t1)β , . . . , (tn)β

)
.

It is observed that if t is a Fix(In, Y )-full term of type τn, then tβ is a
Fix(In, Y )-full term of type τn for all β ∈ Fix(In, Y ).

Any Fix(In, Y )-full hypersubstitution σ : {fi | i ∈ I} → W
F ix(In,Y )
τn (Xn) of

type τn can be extended to a mapping

σ̂ : W
F ix(In,Y )
τn (Xn) →W

F ix(In,Y )
τn (Xn)

defined by the following steps:

(i) σ̂[fi(xα(1), . . . , xα(n))] := (σ(fi))α where α ∈ Fix(In, Y ).

(ii) σ̂[fi(t1, . . . , tn)] := Sn(σ(fi), σ̂[t1], . . . , σ̂[tn]).

Now, we define a binary operation ◦h as follows

(σ1 ◦h σ2) := σ̂1 ◦ σ2

where σ1, σ2 ∈ HypF ix(In,Y )(τn) and ◦ is the usual composition of functions.
Now, we present connections between the superposition operation and σ̂.

Lemma 13. Let t, t1, . . . , tn ∈W
F ix(In,Y )
τn (Xn). Then

Sn(t, σ̂[tα(1)], . . . , σ̂[tα(n)]) = Sn(tα, σ̂[t1], . . . , σ̂[tn])

for all α ∈ Fix(In, Y ).

Proof. Let t = fi(xβ(1), . . . , xβ(n)) where β ∈ Fix(In, Y ). For α ∈ Fix(In, Y ),
we then have

Sn(t, σ̂[tα(1)], . . . , σ̂[tα(n)]) = Sn(fi(xβ(1), . . . , xβ(n)), σ̂[tα(1)], . . . , σ̂[tα(n)])

= fi(σ̂[tα(β(1))], . . . , σ̂[tα(β(n))])

= Sn(fi(xα(β(1)), . . . , xα(β(n))), σ̂[t1], . . . , σ̂[tn])

= Sn(tα, σ̂[t1], . . . , σ̂[tn]).

Let t = fi(s1, . . . , sn) and assume that

Sn(sk, σ̂[tα(1)], . . . , σ̂[tα(n)]) = Sn((sk)α, σ̂[t1], . . . , σ̂[tn])

for all 1 ≤ k ≤ n and for all α ∈ Fix(In, Y ). Then, for α ∈ Fix(In, Y ), we have

Sn(t, σ̂[tα(1)], . . . , σ̂[tα(n)])

= Sn(fi(s1, . . . , sn), σ̂[tα(1)], . . . , σ̂[tα(n)])

= fi(S
n(s1, σ̂[tα(1)], . . . , σ̂[tα(n)]), . . . , S

n(sn, σ̂[tα(1)], . . . , σ̂[tα(n)]))

= fi(S
n((s1)α, σ̂[t1], . . . , σ̂[tn]), . . . , S

n((sn)α, σ̂[t1], . . . , σ̂[tn]))

= Sn(fi((s1)α, . . . , (sn)α), σ̂[t1], . . . , σ̂[tn])

= Sn(tα, σ̂[t1], . . . , σ̂[tn]).
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Applying Theorem 9 and Lemma 13, we can prove the following theorem.

Theorem 14. For σ ∈ HypF ix(In,Y )(τn), an extension

σ̂ : WF ix(In,Y )
τn (Xn) →WF ix(In,Y )

τn (Xn)

is an endomorphism on the algebra MAF ix(In,Y )(τn).

Proof. We prove the theorem by induction on the complexity of t0 that for any

t0, t1, . . . , tn ∈W
F ix(In,Y )
τn (Xn), σ̂[S

n(t0, t1, . . . , tn)] = Sn(σ̂[t0], σ̂[t1], . . . , σ̂[tn]).
Firstly, if we substitute for t0 a term fi(xα(1), . . . , xα(n)) where α ∈ Fix(In, Y ),

then

σ̂[Sn(t0, t1, . . . , tn)] = σ̂[Sn(fi(xα(1), . . . , xα(n)), t1, . . . , tn)]

= σ̂[fi(tα(1), . . . , tα(n))]

= Sn(σ(fi), σ̂[tα(1)], . . . , σ̂[tα(n)])

= Sn((σ(fi))α, σ̂[t1], . . . , σ̂[tn])

= Sn(σ̂[t0], σ̂[t1], . . . , σ̂[tn]).

Assume t0 = fi(s1, . . . , sn) such that

σ̂[Sn(sk, t1, . . . , tn)] = Sn(σ̂[sk], σ̂[t1], . . . , σ̂[tn])

for all 1 ≤ k ≤ n. Then

σ̂[Sn(t0, t1, . . . , tn)]

= σ̂[Sn(fi(s1, . . . , sn), t1, . . . , tn)]

= σ̂[fi(S
n(s1, t1, . . . , tn), . . . , S

n(sn, t1, . . . , tn)]

= Sn(σ(fi), σ̂[S
n(s1, t1, . . . , tn)], . . . , σ̂[S

n(sn, t1, . . . , tn)])

= Sn(σ(fi), S
n(σ̂[s1], σ̂[t1], . . . , σ̂[tn]), . . . , S

n(σ̂[sn], σ̂[t1], . . . , σ̂[tn]))

= Sn(Sn(σ(fi), σ̂[s1], . . . , σ̂[sn]), σ̂[t1], . . . , σ̂[tn])

= Sn(σ̂[fi(s1, . . . , sn)], σ̂[t1], . . . , σ̂[tn])

= Sn(σ̂[t0], σ̂[t1], . . . , σ̂[tn]).

The following proposition shows a property of a term that arises from a
mapping and the extension of each element in HypF ix(In,Y )(τn).

Proposition 15. Let t ∈W
F ix(In,Y )
τn (Xn) and β ∈ Fix(In, Y ). Then

σ̂[t]β = σ̂[tβ].

Proof. It can be proved by induction on the complexity of the term t.
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By using Theorem 14 and Proposition 15, we get the following result showing
the relationship between the operation ◦h and the extension of σ.

Lemma 16. Let σ̂1, σ̂2 ∈ Hyp
F ix(In,Y )(τn). Then

(σ1 ◦h σ2)
ffl̂ = σ̂1 ◦ σ̂2.

Proof. We prove the lemma by induction on the complexity of the Fix(In, Y )-full
term which is substituted for t. If t = fi(xα(1), . . . , xα(n)) where α ∈ Fix(In, Y ),
then

(σ1 ◦h σ2)
ffl̂[t] = (σ1 ◦h σ2)

ffl̂[fi(xα(1), . . . , xα(n))]

= (σ̂1 ◦ σ2)
ffl̂[fi(xα(1), . . . , xα(n))]

= ((σ̂1 ◦ σ2)(fi))α

= (σ̂1[σ2(fi)])α

= σ̂1[σ2(fi)]α

= σ̂1[σ̂2[fi(xα(1), . . . , xα(n))]]

= (σ̂1 ◦ σ̂2)[t].

Let t = fi(s1, . . . , sn). Assume that (σ1 ◦hσ2)
ffl̂[sk] = σ̂1 ◦ σ̂2[sk] for all 1 ≤ k ≤ n.

Then

(σ1 ◦h σ2)
ffl̂[t] = (σ1 ◦h σ2)

ffl̂[fi(s1, . . . , sn)]

= Sn((σ̂1 ◦ σ2)(fi), (σ1 ◦h σ2)
ffl̂[s1], . . . , (σ1 ◦h σ2)

ffl̂[sn])

= Sn((σ̂1 ◦ σ2)(fi), (σ̂1 ◦ σ̂2)[s1], . . . , (σ̂1 ◦ σ̂2)[sn])

= Sn(σ̂1[σ2(fi)], σ̂1[σ̂2[s1]], . . . , σ̂1[σ̂2[sn]])

= σ̂1[S
n(σ2(fi), σ̂2[s1], . . . , σ̂2[sn])]

= σ̂1[σ̂2[fi(s1, . . . , sn)]]

= (σ̂1 ◦ σ̂2)[t].

Therefore (σ1 ◦h σ2)
ffl̂ = σ̂1 ◦ σ̂2.

Now, we have the important result.

Theorem 17.
(
HypF ix(In,Y )(τn); ◦h, σid

)
is a monoid where σid is the identity

hypersubstitution which is defined by σid(fi) := fi(x1, . . . , xn).

Proof. The associativity of a binary operation ◦h on HypF ix(In,Y )(τn) follows
directly from Lemma 16. Furthermore, the proof of the identity element σid(fi) :=
fi(x1, . . . , xn) with respect to ◦h is clearly straightforward.
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If a subset Y of In is empty, then by Theorem 17 we have

Corollary 18 [5]. (HypF (τn); ◦h, σid) forms a monoid.

If Y = In and α ∈ Fix(In, Y ) is the identity mapping, then by Theorem 17
we obtain

Corollary 19 [4]. (HypSF (τn); ◦h, σid) forms a monoid.

Applying an operation + on the set of all hypersubstitutions mentioned in
[1], our next purpose is to define a second binary operation on HypF ix(In,Y )(τn).
Let σ1 and σ2 be elements in HypF ix(In,Y )(τn). Define a binary operation on
HypF ix(In,Y )(τn) by

(σ1 + σ2)(fi) := Sn(σ2(fi), σ1(fi), . . . , σ1(fi)).

It is observed that σ1 + σ2 is an element in HypF ix(In,Y )(τn).
The following theorem shows that the set HypF ix(In,Y )(τn) together with two

binary operations ◦h and + forms a left-seminearring.

Theorem 20. (HypF ix(In,Y )(τn), ◦h,+) forms a left-seminearring.

Proof. We first prove that the operation + is associative. For this, let σ1, σ2, σ3
be elements in HypF ix(In,Y )(τn). By Theorem 9, we have

((σ1 + σ2) + σ3)(fi)

= Sn(σ3(fi), (σ1 + σ2)(fi), . . . , (σ1 + σ2)(fi))

= Sn(σ3(fi), S
n(σ2(fi), σ1(fi), . . . , σ1(fi)), . . . , S

n(σ2(fi), σ1(fi), . . . , σ1(fi)))

= Sn(Sn(σ3(fi), σ2(fi), . . . , σ2(fi)), σ1(fi), . . . , σ1(fi))

= Sn((σ2 + σ3)(fi), σ1(fi), . . . , σ1(fi))

= (σ1 + (σ2 + σ3))(fi).

Next, the left distributive law σ1 ◦h (σ2 + σ3) = (σ1 ◦h σ2) + (σ1 ◦h σ3) is
satisfied by using Theorem 14. In fact, we have

(σ1 ◦h (σ2 + σ3))(fi) = σ̂1[(σ2 + σ3)(fi)]

= σ̂1[S
n(σ3(fi), σ2(fi), . . . , σ2(fi))]

= Sn(σ̂1[σ3(fi)], σ̂1[σ2(fi)], . . . , σ̂1[σ2(fi)])

= Sn((σ1 ◦h σ3)(fi), (σ1 ◦h σ2), . . . , (σ1 ◦h σ2))

= (σ1 ◦h σ2) + (σ1 ◦h σ3).

It is not difficult to see that the right distributivity, (σ1 + σ2) ◦h σ3 =
(σ1 ◦h σ3) + (σ2 ◦h σ3), is not true for arbitrary Fix(In, Y )-full hypersubstitu-
tions σ1, σ2, σ3. The following counter example shows such statement.
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Example 21. Let I be a singleton indexed set and τ2 = (2) with a binary
operation symbol f . Assume that σ1, σ2, σ3 are elements in HypF ix(I2,{2})(2)
which are defined by

σ1(f) = f(xα1(1), xα1(2)) where α1 =

(
1 2
1 2

)

σ2(f) = f(xα2(1), xα2(2)) where α2 =

(
1 2
2 2

)

σ3(f) = f(f(xβ1(1), xβ1(2)), f(xβ2(1), xβ2(2))) where β1 =

(
1 2
2 2

)
and

β2 =

(
1 2
1 2

)
.

Consider

((σ1 + σ2) ◦h σ3)(f)

= (σ1 + σ2)
ffl̂ [f(f(xβ1(1), xβ1(2)), f(xβ2(1), xβ2(2)))]

= S2((σ1 + σ2)(f), (σ1 + σ2)
ffl̂ [f(xβ1(1), xβ1(2))], (σ1 + σ2)

ffl̂ [f(xβ2(1), xβ2(2))])

= S2(f(f(x1, x2), f(x1, x2)), f(f(x1, x2), f(x1, x2))β1 , f(f(x1, x2), f(x1, x2))β2)

= f(f(f(f(x2, x2), f(x2, x2)), f(f(x1, x2), f(x1, x2))),

f(f(f(x2, x2), f(x2, x2)), f(f(x1, x2), f(x1, x2))))

and

((σ1 ◦h σ3) + (σ2 ◦h σ3))(f) = S2((σ2 ◦h σ3)(f), (σ1 ◦h σ3)(f), (σ1 ◦h σ3)(f)).

Since (σ1 ◦h σ3)(f) = f(f(x2, x2), f(x1, x2)) and (σ2 ◦h σ3)(f) = f(f(x2, x2),
f(x2, x2)), a term ((σ1 ◦h σ3) + (σ2 ◦h σ3))(f) differs from ((σ1 + σ2) ◦h σ3)(f).
Hence, (σ1 + σ2) ◦h σ3 6= (σ1 ◦h σ3) + (σ2 ◦h σ3). This means that the right
distributivity does not hold.

To close this section, we discuss an embedding theorem for Fix(In, Y )-full
hypersubstitution. Since the algebra MAF ix(In,Y )(τn) is generated by the set

F
W

Fix(In,Y )
τn (Xn)

:=
{
fi(xα(1), . . . , xα(n)) | i ∈ I, α ∈ Fix(In, Y )

}
,

then any mapping

η : F
W

Fix(In,Y )
τn (Xn)

→WF ix(In,Y )
τn (Xn),

called a Fix(In, Y )-full substitution, can be uniquely extended to an endomor-
phism

η̄ : WF ix(In,Y )
τn

(Xn) →WF ix(In,Y )
τn

(Xn).
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Let SubstF ix(In,Y )(τn) be the set of all Fix(In, Y )-full substitutions.

For η1, η2 ∈ SubstF ix(In,Y )(τn), define

η1 ⊙ η2 := η̄1 ◦ η2

where ◦ is the usual composition. Let idF
W

Fix(In,Y )
τn (Xn)

be the identity mapping

on F
W

Fix(In,Y )
τn (Xn)

. The equation η1 ◦ η2 = η1 ◦ η2 holds due to an applica-

tion of Theorem 12. In fact, every clone substitution η in SubstF ix(In,Y )(τn) that

maps from a generating set F
W

Fix(In,Y )
τn (Xn)

toW
F ix(In,Y )
τn (Xn) can be uniquely ex-

tended to an endomorphism η from the algebra MAF ix(In,Y )(τn) to itself because
MAF ix(In,Y )(τn) is free. Thus we have that (SubstF ix(In,Y )(τn);⊙, idF

W
Fix(In,Y )
τn (Xn)

)

is a monoid.

Consider σ ∈ HypF ix(In,Y )(τn). By Theorem 14,

σ̂ : WF ix(In,Y )
τn (Xn) →WF ix(In,Y )

τn (Xn)

is an endomorphism. Since F
W

Fix(In,Y )
τn (Xn)

generates MAF ix(In,Y )(τn), we have

σ̂/F
W

Fix(In,Y )
τn (Xn)

is a Fix(In, Y )-full substitution with

σ̂/F
W

Fix(In,Y )
τn (Xn)

= σ̂.

Define a mapping ψ : HypF ix(In,Y )(τn) → SubstF ix(In,Y )(τn) by

ψ(σ) = σ̂/F
W

Fix(In,Y )
τn (Xn)

.

Let σ1, σ2 ∈ HypF ix(In,Y )(τn). By Lemma 16, we then have

ψ(σ1 ◦h σ2) = (σ1 ◦h σ2)
ffl̂/F

W
Fix(In,Y )
τn (Xn)

= (σ̂1 ◦ σ̂2)/FW
Fix(In,Y )
τn (Xn)

= σ̂1/FW
Fix(In,Y )
τn (Xn)

◦ σ̂2/FW
Fix(In,Y )
τn (Xn)

= ψ(σ1) ◦ ψ(σ2)

= ψ(σ1)⊙ ψ(σ2).

Here, ψ is a homomorphism. Clearly, ψ is an injection. Hence we have the
following theorem.

Theorem 22. (HypF ix(In,Y )(τn); ◦h, σid) can be embedded into(
SubstF ix(In,Y )(τn);⊙, idF

W
Fix(In,Y )
τn (Xn)

)
.
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Using the definition of a Fix(In, Y )-full substitution, if we take Y = ∅ or

|In| = 1, then W
F ix(In,Y )
τn (Xn) = WF

τn
(Xn). According to Theorem 22, we have

the following corollary.

Corollary 23 ([5], Proposition 3). The monoid (HypF (τn); ◦h, σid) can be em-

bedded into the monoid (SubstFC ;⊙, idFsτn
).

Moreover, if Y = In and α ∈ Fix(In, Y ) is an identity mapping, then the
following result decribing a close connection between the monoid of strongly full
hypersubstitutions and the monoid of strongly full substitutions is obtained di-
rectly.

Corollary 24 ([4], Proposition 3.3). The monoid (HypSF (τn); ◦h, σid) can be

embedded into the monoid
(
SubstSF ;⊙, idFsτn

)
.

4. Algebraic applications of Fix(In, Y )-full terms

Let V be a variety of algebras of type τn, and let IdV be the set of all identities
of V . Let IdF ix(In,Y )V be the set of all identities s ≈ t of V such that s and t
are both Fix(In, Y )-full terms of type τn; that is

IdF ix(In,Y )V :=
(
WF ix(In,Y )

τn
(Xn)

)2
∩ IdV.

It is well-known that IdV is a congruence on the absolutely free algebra Fτn(Xn).
However, in general, this is not true for IdF ix(In,Y )V .

Recall from [6] that a congruence relation θ on an algebra A := (A, (fAi )i∈I)
of type τn is said to be fully invariant if for all endomorphisms ϕ : A → A,
(a, b) ∈ θ ⇒ (ϕ(a), ϕ(b)) ∈ θ for all a, b ∈ A.

The following theorem shows that IdF ix(In,Y )V is a congruence relation on
MAF ix(In,Y )(τn).

Theorem 25. Let V be a variety of type τn. Then IdF ix(In,Y )V is a congruence

relation on MAF ix(In,Y )(τn).

Proof. Assume that

r ≈ t, r1 ≈ t1, . . . , rn ≈ tn ∈ IdF ix(In,Y )V.

We will prove that

Sn(r, r1, . . . , rn) ≈ Sn(t, t1, . . . , tn) ∈ IdF ix(In,Y )V.

Firstly, we prove by induction on the complexity of the Fix(In, Y )-full term r
that

Sn(r, r1, . . . , rn) ≈ Sn(r, t1, . . . , tn) ∈ IdF ix(In,Y )V.
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Assume that r = fi(xα(1), . . . , xα(n)) for some α ∈ Fix(In, Y ). By the fact that
IdV is compatible with the operations f̄i of the absolutely free algebra Fτn(Xn)
and the definition of Fix(In, Y )-full terms, we have

fi(rα(1), . . . , rα(n)) ≈ fi(tα(1), . . . , tα(n)) ∈ Id
F ix(In,Y )V .

That is

Sn(fi(xα(1), . . . , xα(n)), r1, . . . , rn)

≈ Sn(fi(xα(1), . . . , xα(n)), t1, . . . , tn) ∈ IdF ix(In,Y )V.

And,

Sn(r, r1, . . . , rn) ≈ Sn(r, t1, . . . , tn) ∈ IdF ix(In,Y )V .

Assume that r = fi(s1, . . . , sn) such that for all 1 ≤ k ≤ n,

Sn(sk, r1, . . . , rn) ≈ Sn(sk, t1, . . . , tn) ∈ IdF ix(In,Y )V.

Thus

fi(S
n(s1, r1, . . . , rn), . . . , S

n(sn, r1, . . . , rn))

≈ fi(S
n(s1, t1, . . . , tn), . . . , S

n(sn, t1, . . . , tn)) ∈ Id
F ix(In,Y )V

and

Sn(fi(s1, . . . , sn), r1, . . . , rn) ≈ Sn(fi(s1, . . . , sn), t1, . . . , tn) ∈ IdF ix(In,Y )V .

This means

Sn(r, r1, . . . , rn) ≈ Sn(r, t1, . . . , tn) ∈ IdF ix(In,Y )V .

So we have the claim.
Since IdV is a fully invariant congruence relation on the absolutely free al-

gebra Fτn(Xn), r ≈ t ∈ IdF ix(In,Y )V implies

Sn(r, t1, . . . , tn) ≈ Sn(t, t1, . . . , tn) ∈ IdF ix(In,Y )V .

Finally, assume that r ≈ t, ri ≈ ti ∈ IdF ix(In,Y )V for all i = 1, . . . , n. Then

Sn(r, r1, . . . , rn) ≈ Sn(t, r1, . . . , rn) ≈ Sn(t, t1, . . . , tn) ∈ IdF ix(In,Y )V,

which shows that IdF ix(In,Y )V is a congruence relation on the algebra
MAF ix(In,Y )(τn).

By using the concept of Fix(In, Y )-full hypersubstitutions, a Fix(In, Y )-full
closed identity and a Fix(In, Y )-full closed variety are introduced.

Definition. Let V be a variety of type τn.
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(i) An identity s ≈ t ∈ IdF ix(In,Y )V is called a Fix(In, Y )-full closed identity

of V if σ̂[s] ≈ σ̂[t] ∈ IdF ix(In,Y )V for all σ ∈ HypF ix(In,Y )(τn).

(ii) A variety V is called Fix(In, Y )-full closed if every identity in IdF ix(In,Y )V
is a Fix(In, Y )-full closed identity.

Then we have the following theorem.

Theorem 26. Let V be a variety of type τn. If IdF ix(In,Y )V is a fully invariant

congruence on MAF ix(In,Y )(τn), then V is Fix(In, Y )-full closed.

Proof. Assume that IdF ix(In,Y )V is a fully invariant congruence on
MAF ix(In,Y )(τn). Let s ≈ t ∈ IdF ix(In,Y )V and σ ∈ HypF ix(In,Y )(τn). By
Theorem 14, σ̂ is an endomorphism of MAF ix(In,Y )(τn). Hence σ̂[s] ≈ σ̂[t] ∈

IdF ix(In,Y )V , that is V is Fix(In, Y )-full closed.

One of the concrete application of Theorem 26 can be shown by the following
example.

Example 27. Let CA be a variety of commutative algebras type τ2 = (2). This
means that CA =Mod{f(x1, x2) ≈ f(x2, x1)}. We easily see that IdF ix(I2,Y )CA
is a fully invariant congruence on MAF ix(I2,Y )(τ2). By Theorem 26, CA is a
Fix(I2, Y )-full closed variety.

For a variety V of type τn, Id
F ix(In,Y )V is a congruence on MAF ix(In,Y )(τn)

by Theorem 25. We then form the quotient algebra

MAF ix(In,Y )(V ) :=MAF ix(In,Y )(τn)/Id
F ix(In,Y )V .

The quotient algebra obtained belongs to VMenger. Note that we have a natural
homomorphism

natIdFix(In,Y )V :MAF ix(In,Y )(τn) →MAF ix(In,Y )(V )

such that
natIdFix(In,Y )V (t) = [t]IdFix(In,Y )V .

Finally, we prove the following theorem.

Theorem 28. Let V be a variety of type τn. If s ≈ t ∈ IdF ix(In,Y )V , then s ≈ t
is a Fix(In, Y )-full closed identity of V .

Proof. Assume that s ≈ t ∈ IdF ix(In,Y )V and σ ∈ HypF ix(In,Y )(τn). By Theo-

rem 14, we have that σ̂ :W
F ix(In,Y )
τn (Xn) →W

F ix(In,Y )
τn (Xn) is an endomorphism

on the algebra MAF ix(In,Y )(τn). Thus

natIdFix(In,Y )V ◦ σ̂ :MAF ix(In,Y )(τn) →MAF ix(In,Y )(V )
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is a homomorphism. By the assumption,

natIdFix(In,Y )V ◦ σ̂(s) = natIdFix(In,Y )V ◦ σ̂(t).

That is
natIdFix(In,Y )V (σ̂[s]) = natIdFix(In,Y )V (σ̂[t]).

Thus
[σ̂[s]]IdFix(In,Y )V = [σ̂[t]]IdFix(In,Y )V .

That is
σ̂[s] ≈ σ̂[t] ∈ IdF ix(In,Y )V.

Hence s ≈ t is a Fix(In, Y )-full closed identity of V .

Example 29. Let CA be a variety of commutative algebras of type τ2 = (2). We
see that f(x1, x2) ≈ f(x2, x1) is an identity in MAF ix(I2,Y )(CA) where f(x1, x2)
and f(x2, x1) are binary Fix(I2, Y )-full terms of type τ2 = (2). By Theorem
28, we obtain that f(x1, x2) ≈ f(x2, x1) is a Fix(I2, Y )-full closed identity of a
variety of commutative algebras of type τ2 = (2).

5. Conclusions

In this paper, we define n-ary Fix(In, Y )-full terms of type τn by using the
concept of transformations with fixed set and n-ary full terms of type τn. The
relationship between Fix(In, Y )-full terms, strongly full terms, permutational full
terms and full terms of type τn are given. After that, the superposition operation
for n-ary Fix(N, Y )-full terms is established. It turns out that the set of all such
terms together with the superposition forms a Menger algebra. In Section 3, the
concept of mapping from the collection of all operation symbols to the set of
all n-ary Fix(In, Y )-full terms of type τn is studied. This leads us to construct
three algebraic structures. Finally, we studied some properties of identities of
Fix(In, Y )-full terms. Our results play essentially significant roles for the study of
classical algebras in various directions, for examples, the algebraic construction of
new algebras and the classification of algebras via Fix(In, Y )-full closed identity.
The extending from a Fix(In, Y )-full terms to a generalized Fix(In, Y )-full terms
(see the papers [15, 19] for this research direction) and the characterization of
some special elements in the monoid (HypF ix(In,Y )(τn); ◦h, σid) based on theory
of semigroups still remain open problem.
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