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Abstract

In this paper, we characterize the actions of symmetric generalized (θ, η)-
biderivations and generalized left (θ, η)-biderivations on Lie ideals and ideals
of a prime ring A . It is shown that L (nonzero square-closed Lie ideal of A )
⊆ Z (A ), whenever traces of these derivations satisfy any of the following
conditions:

(i) ([l1, l2])
∆ = 0,

(ii) (l1l2)
∆ ∈ Z (A ),

(iii) ([l1, l2])
∆ = (l1)

θ ◦ (l2)
∆,

(iv) (l1)
∆(l2)

∆ + (l1)
η(l2)

θ ∈ Z (A ),

(v) a1((l1)
∆(l2)

∆ + (l1l2)
θ) = 0,

(vi) (l1)
∆(l2)

θ + (l1)
θ(l2)

∆ = 0,

(vii) ([l1, l2])
∆ + [(l1)

∆, l2] ∈ Z (A ),

(viii) (l1l2)
∆±(l1)

θ(l2)
∆+(l1l2)

θ ∈ Z (A ), ∀ l1, l2 ∈ L , where 0 6= a1 ∈ A
is a fixed element, ∆ is a trace of these biadditive mappings and θ, η

are automorphisms of A .

Keywords: Lie ideals, prime rings, generalized (θ, η)-biderivations, gener-
alized left (θ, η)-biderivations.
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1. Introduction

In recent years, various authors have examined the commutativity of prime and
semiprime rings, in reference of derivations, generalized derivations and general-
ized (θ, η) derivations (cf. [1,2,5,6,9–15,17]). Generalized biderivations were first
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introduced by Brešar [7] and further studied by Muthana [16]. Thereafter, in [4]
Ashraf and Rehman had explored the concept of generalized (θ, η)-biderivations
of rings and proved a few results regarding these derivations which motivates us
to study more about these derivations and also to characterize generalized left
(θ, η)-biderivations of rings.

Throughout the paper, A represents an associative ring with center Z (A ).
Further, for a1, b1 ∈ A , the symbol [a1, b1] (resp. a1 ◦ b1) will denote the com-
mutator a1b1 − b1a1 (resp. a1b1 + b1a1). An additive subgroup L of A is called
a Lie ideal of A if [L ,A ] ⊆ L and it is a square-closed Lie ideal if l2

1
∈ L , ∀

l1 ∈ L . It is easy to verify that if L is a square-closed nonzero Lie ideal, then
2l1l2 ∈ L , ∀ l1, l2 ∈ L . Following [19], if L is a square-closed Lie ideal of A ,
then 2A [L ,L ] ⊆ L and 2[L ,L ]A ⊆ L . Suppose that θ, η : A → A are
endomorphisms of A . Then, an additive mapping D is called a (θ, η)-derivation
if (a1b1)

D = (a1)
D (b1)

θ + (a1)
η(b1)

D , ∀ a1, b1 ∈ A . By [3], an additive mapping
F : A → A , is said to be a generalized (θ, η)-derivation, if there exists a (θ, η)-
derivation D : A → A such that (a1b1)

F = (a1)
F (b1)

θ+(a1)
η(b1)

D , ∀ a1, b1 ∈ A .
In addition, a mapping Ψ : A × A → A is symmetric if (a1, b1)

Ψ = (b1, a1)
Ψ,

∀ a1, b1 ∈ A . Also, a mapping ∆ : A → A defined by (a1)
∆ = (a1, a1)

Ψ

is called a trace of Ψ. It is obvious that in case Ψ : A × A → A is sym-
metric mapping which is also biadditive, the trace of Ψ satisfies the relation
(a1 + b1)

∆ = (a1)
∆ + (b1)

∆ + 2(a1, b1)
Ψ, ∀ a1, b1 ∈ A .

By a symmetric (θ, η)-biderivation, we mean a symmetric biadditive map-
ping D : A × A → A such that (a1b1, c1)

D = (a1, c1)
D (b1)

θ + (a1)
η(b1, c1)

D ,
∀ a1, b1, c1 ∈ A and a symmetric biadditive mapping Ψ : A × A → A is said
to be a symmetric generalized (θ, η)-biderivation, if there exists a symmetric
(θ, η)-biderivation D : A × A → A such that (a1b1, c1)

Ψ = (a1, c1)
Ψ(b1)

θ +
(a1)

η(b1, c1)
D , ∀ a1, b1, c1 ∈ A . By [18], a symmetric left biderivation is a map

D such that (a1b1, c1)
D = a1(b1, c1)

D + b1(a1, c1)
D , ∀ a1, b1, c1 ∈ A , where

D : A × A → A is a symmetric biadditive map. Similarly, a symmetric bi-
additive mapping D : A × A → A is called a symmetric left (θ, η)-biderivation
if (a1b1, c1)

D = (a1)
θ(b1, c1)

D +(b1)
η(a1, c1)

D , ∀ a1, b1, c1 ∈ A . Also, a symmetric
biadditive mapping Ψ : A ×A → A is called a symmetric generalized left (θ, η)-
biderivation, if there exists a symmetric left (θ, η)-biderivation D : A ×A → A
such that (a1b1, c1)

Ψ = (a1)
θ(b1, c1)

Ψ + (b1)
η(a1, c1)

D , ∀ a1, b1, c1 ∈ A .

In [21], Rehman and Huang had studied generalized (θ, η)-biderivations which
satisfy some algebraic restrictions and assessed the commutativity of rings. This
encouraged us to explore a few results from [18] and [22] for generalized (θ, η)-
biderivations and generalized left (θ, η)-biderivations. In [22], Sandhu and Ali
examined the action of generalized (θ, η)-derivations on Lie ideals of prime rings
and established several algebraic identities. We establish some of these results
in the framework of generalized (θ, η)-biderivations in Section 3 and analyse the
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action of these derivations on Lie ideals of rings. In Section 4, the notion of gen-
eralized left (θ, η)-biderivations is characterized. Furthermore, we extend some
results of [18] for generalized left (θ, η)-biderivations.

2. Preliminary results

In this section, we discuss some key results which are frequently used in proving
the main theorems of this paper. The proof of the upcoming lemmas are quite
easy so we omit the proofs.

Lemma 1. If A is a ring and a1, b1, c1 ∈ A , then the following statements hold:

(i) [a1, b1c1] = b1[a1, c1] + [a1, b1]c1;

(ii) [a1b1, c1] = a1[b1, c1] + [a1, c1]b1;

(iii) [a1, b1 + c1] = [a1, b1] + [a1, c1];

(iv) [a1 + b1, c1] = [a1, c1] + [b1, c1];

(v) [a1b1, a1] = a1[b1, a1];

(vi) [a1, a1b1] = a1[a1, b1];

(vii) [a1, b1a1] = [a1, b1]a1;

(viii) [b1a1, a1] = [b1, a1]a1; (ix1) a1◦(b1c1) = (a1◦b1)c1−b1[a1, c1] = b1(a1◦c1)+
[a1, b1]c1; (x1) (a1b1) ◦ c1 = a1(b1 ◦ c1)− [a1, c1]b1 = (a1 ◦ c1)b1 + a1[b1, c1].

Lemma 2. If L is a nonzero Lie ideal of a ring A and f is an automorphism of
A then f(L ) is a nonzero Lie ideal of A . Moreover, if L is non-central, then
f(L ) is non-central.

Now onwards, A is a prime ring with char(A ) 6= 2 and L is a nonzero Lie
ideal of A unless otherwise stated.

Lemma 3 [6, Lemma 4]. If L * Z (A ) and x1, y1 ∈ A such that x1L y1 = (0),
then either x1 = 0 or y1 = 0.

Lemma 4 [21, Proposition 1]. Suppose that there exists a symmetric (θ, η)-
biderivation D of A with trace ∆ and θ, η are automorphisms such that (L )∆ =
(0), then either L ⊆ Z (A ) or D = 0.

Lemma 5 [20, Lemma 2.6]. If [L ,L ] = (0), then L ⊆ Z (A ).

Lemma 6 [22, Lemma 2.6]. Every square-closed Lie ideal L * Z (A ) contains
a nonzero ideal J = 2A [L ,L ]A of A .

By using Lemma 2 and 3, one can easily prove
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Lemma 7. Let L * Z (A ) and f be an automorphism of A . If x1, y1 ∈ A
such that x1f(L )y1 = (0), then either x1 = 0 or y1 = 0.

The next proposition is an extension to Lemma 2.6 of [20].

Proposition 8. If η is an automorphism of A such that [[(x1)
η, (y1)

η], [(l1)
η,

(l2)
η ]] = 0, ∀ l1, l2, x1, y1 ∈ L , then L ⊆ Z (A ), where L is a square-closed Lie

ideal of A .

Proof. By given hypothesis, we have

(2.1) 0 = [[(x1)
η, (y1)

η], [(l1)
η , (l2)

η]] = ([[x1, y1], [l1, l2]])
η

∀ l1, l2, x1, y1 ∈ L . Since η is an automorphism, so equation (2.1) infers that
[[x1, y1], [l1, l2]] = 0, ∀ l1, l2, x1, y1 ∈ L . If possible, let L * Z (A ). Then by
replacing l2 by 2l1l2 in the last equation and using the fact char(A ) 6= 2, we
obtain

[[x1, y1], l1][l1, l2] = 0.

Putting 2tl2 instead of l2 in the above expression and applying char(A ) 6= 2, we
get

[[x1, y1], l1]t[l1, l2] = 0

∀ l1, l2, t, x1, y1 ∈ L , as char(A ) 6= 2. By Lemma 3 the above equation infers
that for each l1 ∈ L , either [[x1, y1], l1] = 0, ∀ x1, y1 ∈ L or [l1, l2] = 0, ∀ l2 ∈ L .
Let A = {l1 ∈ L : [[L ,L ], l1] = (0)} and B = {l1 ∈ L : [l1,L ] = (0)}. Clearly,
A and B are additive subgroups of L and L = A∪B. By Brauer’s trick, either
L = A or L = B. Suppose that L = A, then [[x1, y1], l1] = 0, ∀ l1, x1, y1 ∈ L .
Now, replacing y1 by 2y1x1 and using char(A ) 6= 2, we conclude that

(2.2) [x1, y1][x1, l1] = 0.

Putting 2l1y1 instead of l1 in equation (2.2) and applying again the fact that
char(A ) 6= 2, we are left with [x1, y1]l1[x1, y1] = 0, ∀ l1, x1, y1 ∈ L and by
Lemma 3, [L ,L ] = (0). By Lemma 5, L ⊆ Z (A ), which is a contradiction.
On other hand, if L = B, then [L ,L ] = (0) and by Lemma 5, L ⊆ Z (A ),
again a contradiction. Therefore, L ⊆ Z (A ).

Corollary 9. If η is an automorphism of A and L is a square-closed Lie ideal
of A such that [(L )η, (L )η] = (0), then L ⊆ Z (A ).

Lemma 10. If J is a nonzero ideal of A such that [J ,J ] = (0), then J ⊆
Z (A ). Moreover, A is commutative.

Proof. Straightforward.
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The proof of the following lemma is quite easy, so we omit the proof.

Lemma 11. If a1 ∈ Z (A ) and b1 ∈ A such that a1b1 ∈ Z (A ), then either
b1 ∈ Z (A ) or a1 = 0.

Lemma 12 [22, Lemma 2.7]. Let η and θ be automorphisms of A such that
[(L )η, (L )θ] = (0). Then L ⊆ Z (A ).

Proposition 13. Let J 6= (0) be an ideal of A and D be a symmetric (θ, η)-
biderivation with θ, η two automorphisms such that ([l1, l2],A )D = (0), ∀ l1, l2 ∈
J . Then, either J ⊆ Z (A ) or D = 0.

Proof. In view of the given hypothesis, we have

([l1, l2],A )D = (0),∀ l1, l2 ∈ J .

Replacing l2 by l2l1 in the above equation and using it, we get ([l1, l2])
η(l1, r)

D =
0, ∀ l1, l2 ∈ J , r ∈ A . Further, taking rs in place of r, we are left with
([l1, l2])

ηA (l1, s)
D = (0), ∀ l1, l2 ∈ J , s ∈ A and by using the primeness of

A , this concludes that for each l1 ∈ J , either ([l1,J ])η = (0) or (l1,A )D =
(0). This implies that either ([J ,J ])η = (0) or (J ,A )D = (0). As η is an
automorphism, so the former case forces [J ,J ] = (0) and by Lemma 10, we can
deduce that J ⊆ Z (A ). In latter case, we have (l1, r)

D = 0, ∀ l1 ∈ J , r ∈ A .
By putting l1s instead of l1, this gives that (l1)

η(s, r)D = 0, ∀ l1 ∈ J , r, s ∈ A .
Now replacing l1 by l1p, we get (l1)

η(p)η(s, r)D = 0, ∀ l1 ∈ J , p, r, s ∈ A . Since
J is nonzero and η is an automorphism, therefore the primeness of A implies
that D = 0. This completes the proof.

In the forthcoming sections, L is a square-closed Lie ideal and θ, η are au-
tomorphisms of A .

3. Symmetric generalized (θ, η)-biderivations

In this section, the action of generalized (θ, η)-biderivation on ideals and Lie ideals
of rings is characterized. Also, we explore some results of [22] for generalized
(θ, η)-biderivations of rings. In this section, Ψ represents a symmetric generalized
(θ, η)-biderivation of A associated with a symmetric (θ, η)-biderivation D and ∆
is a trace of Ψ.

Theorem 14. Let J be a nonzero ideal of A such that ([l1, l2])
∆ = 0, ∀ l1, l2 ∈

J . Then either J ⊆ Z (A ) (A is commutative in this case) or D = 0, and
Ψ = 0.
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Proof. By hypothesis, we get

(3.1) 0 = ([l1, l2])
∆ = ([l1, l2], [l1, l2])

Ψ

∀ l1, l2 ∈ J . Putting l2 + r1 in place of l2 in equation (3.1), we obtain that
0 = 2([l1, l2], [l1, r1])

Ψ, ∀ l1, l2, r1 ∈ J . As char(A ) 6= 2, so

(3.2) ([l1, l2], [l1, r1])
Ψ = 0.

Replacing r1 by r1i in the last expression, we get

0 = ([l1, l2], [l1, r1]i+ r1[l1, i])
Ψ

= ([l1, l2], [l1, r1])
Ψ(i)θ + ([l1, r1])

η([l1, l2], i)
D + ([l1, l2], r1)

Ψ([l1, i])
θ

+ (r1)
η([l1, l2], [l1, i])

D

= ([l1, r1])
η([l1, l2], i)

D + ([l1, l2], r1)
Ψ([l1, i])

θ + (r1)
η([l1, l2], [l1, i])

D .

That is

(3.3) ([l1, r1])
η([l1, l2], i)

D + ([l1, l2], r1)
Ψ([l1, i])

θ + (r1)
η([l1, l2], [l1, i])

D = 0

∀ l1, l2, r1, i ∈ J . Replacing i by l1 in the above equation, we obtain

(3.4) ([l1, r1])
η([l1, l2], l1)

D = 0.

Putting l1+t in place of l1, we get ([l1, r1])
η(([l1, l2], t)

D +([t, l2], l1)
D +([t, l2], t)

D )
+ ([t, r1])

η(([l1, l2], l1)
D + ([l1, l2], t)

D + ([t, l2], l1)
D ) = 0 ∀ l1, l2, r1, t ∈ J .

Replacing l1 by −l1, we have ([l1, r1])
η(([l1, l2], t)

D + ([t, l2], l1)
D ) + ([t, r1])

η

([l1, l2], l1)
D = ([l1, r1])

η([t, l2], t)
D +([t, r1])

η(([l1, l2], t)
D +([t, l2], l1)

D ) and using
this in the above relation, we get ([l1, r1])

η(([l1, l2], t)
D + ([t, l2], l1)

D ) + ([t, r1])
η

([l1, l2], l1)
D = 0, as char(A ) 6= 2. On taking tr1 in place of r1, we have

([l1, t])
η(r1)

η(([l1, l2], t)
D + ([t, l2], l1)

D = 0

∀ l1, l2, r1, t ∈ J . Taking t = l2, we are left with

([l1, l2])
η(r1)

η([l1, l2], l2)
D = 0

∀ l1, l2, r1 ∈ J . Since A is prime and η is an automorphism, therefore either
[l1, l2] = 0 or ([l1, l2], l2)

D = 0, ∀ l1, l2 ∈ J . This infers that

(3.5) ([l1, l2], l2)
D = 0.

On putting l2 = l2 + t, we deduce that

[l1, l2], t)
D + ([l1, t], l2)

D = 0
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∀ l1, l2, t ∈ J . Now, putting tl1 instead of t in, we conclude that

(t)η([l1, l2], l1)
D + ([l1, t])

η(l1, l2)
D = 0.

By using equation (3.5), the above equation leads to ([l1, t])
η(l1, l2)

D = 0. Fur-
ther, by taking t = ti, we obtain ([l1, t])

η(i)η(l1, l2)
D = 0, ∀ l1, l2, t, i ∈ J . As η is

an automorphism and A is prime, so for each l1 ∈ J , either (0) = [(l1)
η, (J )η]

or (l1,J )D = (0). Therefore, for each l1 ∈ J , either (0) = [l1,J ] or (l1,J )D =
(0). Let A = {l1 ∈ J : [l1,J ] = (0)} and B = {l1 ∈ J : (l1,J )D = (0)}.
Clearly, A and B are additive subgroups of J and J = A ∪ B. By Brauer’s
trick, either J = A or J = B. If J = A, then by Lemma 10, J ⊆ Z (A ).
On other hand, if J = B, then (l1, l2)

D = 0, ∀ l1, l2 ∈ J . Now, replacing l2 by
l2r, we have (l2)

η(l1, r)
D = 0, ∀ l1, l2 ∈ J , r ∈ A . This implies that

(J ,A )D = (0)

and by Proposition 13, we have either J ⊆ Z (A ) or D = 0. By using D = 0
in (3.3), we get

([l1, l2], r1)
Ψ([l1, i])

θ = 0

∀ l1, l2, r1 ∈ J and by replacing r1 by rr1, we have ([l1, l2], r)
Ψ(r1)

θ([l1, i])
θ = 0,

∀ l1, l2, r1 ∈ J , r ∈ A . As A is prime and θ is an automorphism of A , so the last
equation implies that for each l1 ∈ J either ([l1,J ],A )Ψ = (0) or ([l1,J ])θ =
(0). This concludes that either ([J ,J ],A )Ψ = (0) or ([J ,J ])θ = (0). If
([J ,J ])θ = (0), then [J ,J ] = (0), as θ is an automorphism. By Lemma 10,
the previous equation gives that J ⊆ Z (A ) and A is commutative. Now
consider ([l1, l2], r)

Ψ = 0, then by taking l2 = sl2 and using D = 0, we obtain

(3.6) (s, r)Ψ([l1, l2])
θ + ([l1, s], r)

Ψ(l2)
θ = 0

∀ l1, l2 ∈ J , r, s ∈ A . Now, replacing l2 by r1l2 for r1 ∈ J in (3.6) and using it
to get

(s, r)Ψ(r1)
θ([l1, l2])

θ = 0

∀ l1, l2, r1 ∈ J , r, s ∈ A . Again by using the primeness of A and the fact that
θ is an automorphism of A , the above equation implies that, either Ψ = 0 or
[J ,J ] = (0). In view of Lemma 10, [J ,J ] = (0) infers that J ⊆ Z (A ) (A
is commutative). With this our proof is completed.

Theorem 15. If ([l1, l2])
∆ = 0, ∀ l1, l2 ∈ L , then either L ⊆ Z (A ) or D = 0,

and Ψ = 0.

Proof. By the given hypothesis, we have ([l1, l2])
∆ = 0, ∀ l1, l2 ∈ L . If

possible, let L * Z (A ). Then, by Lemma 6, there exists a nonzero ideal
J = 2A [L ,L ]A ⊆ L . Therefore, we have

([l1, l2])
∆ = 0,∀ l1, l2 ∈ J .
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By Theorem 14, either J ⊆ Z (A ), or D = 0 and Ψ = 0. Now, consider
the case J ⊆ Z (A ), that is 2p[l1, l2]r ∈ Z (A ), ∀ l1, l2 ∈ L , p, r ∈ A . By
replacing r by rl, we have 2p[l1, l2]rl ∈ Z (A ), ∀ l1, l2, l ∈ L , p, r ∈ A . By
Lemma 11, either 2p[l1, l2]r = 0 or L ⊆ Z (A ). Now, consider 2p[l1, l2]r = 0, ∀
l1, l2 ∈ L , p, r ∈ A . As char(A ) 6= 2 and A is a prime ring, so the last relation
implies that [L ,L ] = (0). By applying Lemma 5, L ⊆ Z (A ). Thus, in each
case, we have L ⊆ Z (A ), which is absurd. Hence, L ⊆ Z (A ) and this finishes
the proof.

The following theorem is an extension of [22, Theorem 3.7].

Theorem 16. If D is nonzero and (x1y1)
∆ ∈ Z (A ), ∀ x1, y1 ∈ L , then L ⊆

Z (A ).

Proof. Suppose that D is nonzero and

(3.7)
[

(x1y1)
∆,A

]

= (0)

∀ x1, y1 ∈ L , where ∆ is a trace of Ψ. If possible, let L * Z (A ). Now,
replacing y1 by y1 + z1 in (3.7) and using this, we obtain 2[(x1y1, x1z1)

Ψ, r] = 0,
∀ x1, y1, z1 ∈ L , r ∈ A . As char(A ) 6= 2, so the last relation leads to

(3.8)
[

(x1y1, x1z1)
Ψ, r

]

= 0.

Consider 2y1j instead of y1 in equation (3.8) and using the fact that char(A ) 6= 2,
we get (x1y1, x1z1)

Ψ[(j)θ, r]+[(x1y1)
η(j, x1z1)

D , r] = 0, ∀ x1, y1, z1, j ∈ L , r ∈ A .
By replacing r by r(j)θ, the above equation implies that

A
[

(x1y1)
η(j, x1z1)

D , (j)θ
]

= (0).

This implies that [(x1y1)
η(j, x1z1)

D , (j)θ ]A [(x1y1)
η(j, x1z1)

D , (j)θ ] = (0) and by
using the primeness of A it is obtained that

(3.9)
[

(x1y1)
η(j, x1z1)

D , (j)θ
]

= 0

∀ j, x1, y1, z1 ∈ L . Thus, (x1y1)
η[(j, x1z1)

D , (j)θ ] + [(x1y1)
η, (j)θ ](j, x1z1)

D = 0
and putting y1 = 2x1y1, we conclude that

[

(x1)
η, (j)θ

]

(x1)
η(y1)

η(j, x1z1)
D = 0

∀ j, x1, y1, z1 ∈ L , as char(A ) 6= 2. Taking 2z1i in place of z1 in the above
equation, we get [(x1)

η , (j)θ](x1)
η(y1)

η(x1)
η(z1)

η(j, i)D = 0, ∀ i, j, x1, y1, z1 ∈ L .
Then by using Lemma 7 in the preceding equation, we obtain for each j ∈ L ,
either [(x1)

η , (j)θ](x1)
η(y1)

η(x1)
η = 0, ∀ x1, y1 ∈ L or (j,L )D = (0). Applying

Brauer’s trick, we have either [(x1)
η , (L )θ](x1)

η(y1)
η(x1)

η = (0), ∀ x1, y1 ∈ L
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or (L ,L )D = (0). If [(x1)
η, (j)θ ](x1)

η(y1)
η(x1)

η = (0), ∀ j, x1, y1 ∈ L , then by
Lemma 7, we get that for each x1 ∈ L , either (x1)

η = 0 or [(x1)
η, (j)θ ](x1)

η = 0,
∀ j ∈ L . In any case it follows that

(3.10)
[

(x1)
η , (j)θ

]

(x1)
η = 0.

Then by taking j = 2jz1 in (3.10) and using the fact that char(A ) 6= 2, we get

(3.11)
[

(x1)
η , (j)θ

]

(z1)
θ(x1)

η = 0

∀ j, x1, z1 ∈ L . On multiplying (3.10) from the right hand side by (z1)
θ, we find

(3.12)
[

(x1)
η, (j)θ

]

(x1)
η(z1)

θ = 0.

Subtracting (3.11) from (3.12), we have [(x1)
η, (j)θ ][(x1)

η, (z1)
θ] = 0, ∀ j, x1, z1 ∈

L and by replacing z1 by 2z1j, it gives [(x1)
η , (j)θ](z1)

θ[(x1)
η, (j)θ ] = 0, ∀

j, x1, z1 ∈ L . Again by Lemma 7, [(L )η , (L )θ] = (0) and by Lemma 12,
L ⊆ Z (A ), a contradiction.

On other hand, if we consider (L ,L )D = (0). Then, by Lemma 4, we have
L ⊆ Z (A ), a contradiction. Both of these cases lead to a contradiction. Hence,
L ⊆ Z (A ).

Corollary 17. If D is nonzero and (l1)
∆ ∈ Z (A ), ∀ l1 ∈ L , then L ⊆ Z (A ).

Theorem 18. Let ([l1, l2])
∆ = (l1)

θ◦(l2)
∆, ∀ l1, l2 ∈ L . Then either L ⊆ Z (A )

or D = 0, and Ψ = 0.

Proof. The hypothesis gives that

(3.13) ([l1, l2])
∆ = (l1)

θ ◦ (l2)
∆

∀ l1, l2 ∈ L . Putting l1+ r1 instead of l1 in (3.13), we get ([l1, l2])
∆+([r1, l2])

∆+
2([l1, l2], [r1, l2])

Ψ = (l1)
θ ◦ (l2)

∆ + (r1)
θ ◦ (l2)

∆, ∀ l1, l2, r1 ∈ L . By using (3.13),
the last expression infers that

2([l1, l2], [r1, l2])
Ψ = 0.

As char(A ) 6= 2, so the above equation implies ([l1, l2], [r1, l2])
Ψ = 0. In partic-

ular, for r1 = l1, we obtain 0 = ([l1, l2], [l1, l2])
Ψ. This implies ([L ,L ])∆ = (0).

Therefore, by Theorem 15, either L ⊆ Z (A ) or D = 0, and Ψ = 0.

By using a similar technique with the necessary variations, one can easily prove
the following result.

Theorem 19. If (l1 ◦ l2)
∆ = [(l1)

θ, (l2)
∆], ∀ l1, l2 ∈ L , then either L ∈ Z (A )

or D = 0, and Ψ = 0.
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Theorem 20. If any one of the following holds true:

(i) [(l1)
∆(l2)

∆ + (l1)
η(l2)

θ,A ] = (0),

(ii) [(l1)
∆(l2)

∆ − (l1)
η(l2)

θ,A ] = (0), ∀ l1, l2 ∈ L , then L ⊆ Z (A ).

Proof. (i) By the given hypothesis, we have

(3.14)
[

(l1)
∆(l2)

∆ + (l1)
η(l2)

θ,A
]

= (0)

∀ l1, l2 ∈ L . Suppose that L * Z (A ). Replacing l2 by l2 + i in (3.14), we get
2[(l1)

∆(l2, i)
Ψ,A ] = (0), ∀ l1, l2, i ∈ L . Since char(A ) 6= 2, so the last relation

infers that
[

(l1)
∆(l2, i)

Ψ,A
]

= (0).

Replacing i by l2 in the above equation, we get

[

(l1)
∆(l2)

∆,A
]

= (0)

∀ l1, l2 ∈ L . On combining (3.14) and the above equation, we have [(l1)
η(l2)

θ,A ]
= (0), ∀ l1, l2 ∈ L . This implies that

(3.15) (l1)
η
[

(l2)
θ, r

]

+ [(l1)
η , r](l2)

θ = 0.

Taking l1 = 2l1r1 in (3.15) and using the fact that char(A ) 6= 2, we obtain
[(l1)

η, r](r1)
η(l2)

θ = 0, ∀ l1, l2, r1 ∈ L , r ∈ A . By applying Lemma 7, we get
[(l1)

η, r] = 0. On replacing r with (l2)
η, last expression infers that [(L )η, (L )η] =

(0). Thus, by Corollary 9, L ⊆ Z (A ). This is a contradiction to our supposition.
Hence, L ⊆ Z (A ).

After applying the similar technique with necessary modifications, we can
prove (ii).

Consequently, we have

Corollary 21. If any one of the following holds true:

(i)
[

(l1)
∆(l2)

∆ + (l1)
η(l2)

θ,A
]

= (0),

(ii)
[

(l1)
∆(l2)

∆ − (l1)
η(l2)

θ,A
]

= (0),

∀ l1, l2 ∈ A , then A is commutative.

Note that Qmr stands for the right Utumi quotient ring (also called the
maximal right ring of quotients) of A . Then the center of Qmr is called the
extended centroid of A and is denoted by C.

The next result extends [22, Theorem 3.15].

Theorem 22. If 0 6= a1 ∈ A such that a1((l1)
∆(l2)

∆+(l1l2)
θ) = 0, ∀ l1, l2 ∈ L ,

then L ⊆ Z (A ) or there exists λ ∈ C such that (x1)
∆ = λ(x1)

θ, ∀ x1 ∈ A and
λ2 = −1.
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Proof. By the given hypothesis,

(3.16) a1
(

(l1)
∆(l2)

∆ + (l1l2)
θ
)

= 0

∀ l1, l2 ∈ L . Let us assume that L * Z (A ). Then, replacing l2 by l2 + z1 in
equation (3.16), we get 2a1(l1)

∆(l2, z1)
Ψ = 0, ∀ l1, l2, z1 ∈ L . As char(A ) 6= 2,

so

(3.17) a1(l1)
∆(l2, z1)

Ψ = 0.

Taking 2z1i instead of z1 in (3.17) and by char(A ) 6= 2, we get

a1(l1)
∆(z1)

η(l2, i)
D = 0

∀ i, l1, l2, z1 ∈ L . By Lemma 7, either a1(L )∆ = (0) or (L ,L )D = (0). If
a1(L )∆ = (0), with this equation (3.16) implies that a1(l1)

θ(l2)
θ = 0, ∀ l1, l2 ∈

L . By Lemma 7, a1 = 0, which is not possible. Thus, (L ,L )D = (0) and by
Lemma 4, either D = 0 or L ⊆ Z (A ) and this concludes that D = 0, as we have
assumed that L * Z (A ). Hence D = 0. By replacing l2 by 2rs[l2, r1] in (3.17)
for r, s ∈ A and using D = 0, we find a1(l1)

∆(r, z1)
ΨA [(l2)

θ, (r1)
θ] = (0). The

primeness of A infers that, either a1(L )∆(A ,L )Ψ = (0) or [(L )θ, (L )θ] = (0).
As we have assumed that L * Z (A ), so by Corollary 9, we observe that the
latter case is not possible. Therefore, a1(l1)

∆(r, z1)
Ψ = 0 and by taking l1 =

l1 + l2, this gives

(3.18) a1(l1, l2)
Ψ(r, z1)

Ψ = 0

∀ l1, l2, z1 ∈ L , r ∈ A . On putting 2l2r1 in place of l2 in (3.18) and using D = 0,
we obtain

(3.19) a1(l1, l2)
Ψ(r1)

θ(r, z1)
Ψ = 0

∀ l1, l2, z1, r1 ∈ L , r ∈ r. After multiplying (3.18) by (r1)
θ from right hand side,

we have

(3.20) a1(l1, l2)
Ψ(r, z1)

Ψ(r1)
θ = 0.

On subtracting equation (3.19) from (3.20), we conclude that

a1(l1, l2)
Ψ
[

(r, z1)
Ψ, (r1)

θ
]

= 0

and by putting r1 = 2r1z1, we are left with a1(l1, l2)
Ψ(r1)

θ[(r, z1)
Ψ, (z1)

θ] = 0, ∀
l1, l2, r1, z1 ∈ L , r ∈ A . By Lemma 7, either a1(L ,L )Ψ = (0) or [(A , z1)

Ψ, (z1)
θ]

= (0), ∀ z1 ∈ L . If a1(L ,L )Ψ = (0), then a1(l1)
∆ = 0, by using this in given
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hypothesis, we have a1(l1)
θ(l2)

θ = 0, ∀ l1, l2 ∈ L and by Lemma 7, a1 = 0, which
is a contradiction. Therefore,

(3.21)
[

(r, z1)
Ψ, (z1)

θ
]

= 0

∀ z1 ∈ L , r ∈ A . Replacing z1 by z1 + x1 in (3.21), we obtain [(r, z1)
Ψ, (x1)

θ] +
[(r, x1)

Ψ, (z1)
θ] = 0, ∀ x1, z1 ∈ L , r ∈ A . Putting z1 = 2z1y1 and using D = 0,

we have

(3.22) (r, z1)
Ψ
[

(y1)
θ, (x1)

θ
]

+ (z1)
θ
[

(r, x1)
Ψ, (y1)

θ
]

= 0

∀ x1, y1, z1 ∈ L , r ∈ A . Replacing z1 by 2sp[z1, x1] in (3.22) and using D = 0,
we get 0 = 2(r, s)Ψ(p[z1, x1])

θ[(y1)
θ, (x1)

θ] + (s)θ(2p[z1, x1])
θ[(r, x1)

Ψ, θ(y1)] = 0,
∀ x1, y1, z1 ∈ L , p, r, s ∈ A . As 2p[z1, x1] ∈ L , so by using (3.22), (2p[z1, x1])

θ

[(r, x1)
Ψ, (y1)

θ] = −(r, 2p[z1, x1])
Ψ[(y1)

θ, (x1)
θ] and using this in last equation, we

conclude that

0 = ((r, s)Ψ(p[z1, x1])
θ − (s)θ(r, p[z1, x1])

Ψ)
[

(y1)
θ, (x1)

θ
]

= ((r, s)Ψ(p)θ − (s)θ(r, p)Ψ)
[

(z1)
θ, (x1)

θ
][

(y1)
θ, (x1)

θ
]

∀ x1, y1, z1 ∈ L , p, r, s ∈ A , as D = 0. By taking mp instead of p and using
D = 0, this concludes that

(

(r, s)Ψ(m)θ − (s)θ(r,m)Ψ
)

A
[

(z1)
θ, (x1)

θ
][

(y1)
θ, (x1)

θ
]

= (0)

∀ x1, y1, z1 ∈ L ,m, r, s ∈ A . As A is prime, so the last equation infers that either
(r, s)Ψ(m)θ − (s)θ(r,m)Ψ = 0, ∀ m, r, s ∈ A or [(z1)

θ, (x1)
θ][(y1)

θ, (x1)
θ] = 0, ∀

x1, y1, z1 ∈ L . If
[

(z1)
θ, (x1)

θ
][

(y1)
θ, (x1)

θ
]

= 0

then by replacing z1 by 2y1z1, we find

[

(y1)
θ, (x1)

θ
]

(L )θ
[

(y1)
θ, (x1)

θ
]

= (0)

∀ x1, y1 ∈ L and by using Lemma 7 and Corollary 9, L ⊆ Z (A ), a contradic-
tion. Thus,

(r, s)Ψ(m)θ − (s)θ(r,m)Ψ = 0

∀ m, r, s ∈ A . Further, for each r ∈ A , we define a function fr : A → A by
(x1)

fr = (x1, r)
Ψ = (r, x1)

Ψ. Then the previous equation implies that for each
r ∈ A

(3.23) (s)fr(m)θ = (s)θ(m)fr
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∀ s,m ∈ A . On replacing s by st in (3.23) and using D = 0, we have (s)fr(t)θ(m)θ

= (s)θ(t)θ(m)fr , ∀ s, t,m ∈ A . As θ is an automorphism, so last equation infers
that

(s)frp(m)θ = (s)θp(m)fr

∀ m, p, s ∈ A . In view of [8, Lemma], there exists some λ ∈ C such that
(s)fr = (s, r)Ψ = λ(s)θ, ∀ s ∈ A . In this way we find (s, r)Ψ = λ(s)θ, ∀ s, r ∈ A .
In particular for s = r, we have

(3.24) (r, r)Ψ = (r)∆ = λ(r)θ

∀ r ∈ A . Then from the initial hypothesis, we get a1(λ
2 + 1)(l1l2)

θ = 0, ∀
l1, l2 ∈ L . This infers that λ2 = −1.

In similar way, one can prove the following result:

Theorem 23. If 0 6= a1 ∈ A such that a1((l1)
∆(l2)

∆− (l1l2)
θ) = 0, ∀ l1, l2 ∈ L ,

then L ⊆ Z (A ) or there exists λ ∈ C such that (x1)
∆ = λ(x1)

θ, ∀ x1 ∈ A and
λ2 = 1.

4. Symmetric generalized left (θ, η)-biderivations

In this section, the behaviour of generalized left (θ, η)-biderivations on Lie ide-
als of rings is examined and we also extend some well known results of [18] in
the framework of generalized left (θ, η)-biderivations. We now proceed with the
following result which is an extension of ( [18, Lemma 2]).

In this section, Ψ represents a symmetric generalized left (θ, η)-biderivation
of A associated with a symmetric left (θ, η)-biderivation D and ∆ is a trace of
Ψ, ω is a trace of D .

Proposition 24. If (L )ω = (0), then L ⊆ Z (A ) or D = 0.

Proof. Let L * Z (A ) and the given hypothesis (l1)
ω = 0, ∀ l1 ∈ L . Now,

replacing l1 by l1 + l2 and using the fact char(A ) 6= 2, we obtain

(4.1) (l1, l2)
D = 0.

∀ l1, l2 ∈ L . Putting l1 = 2r[i, j], we get

(4.2) ([i, j])η(r, l2)
D = 0

∀ i, j, l2 ∈ L , r ∈ A . Putting 2r[x1, j]s instead of r, the above equation infers
that ([i, j])η(r)θ(2[x1, j]s, l2)

D + 2([i, j])η([x1, j])
η(s)η(r, l2)

D = 0, ∀ i, j, l2, x1 ∈
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L , r, s ∈ A . Since 2[x1, j]s ∈ L , so by using (4.1) and char(A ) 6= 2, the previous
equation implies that

(4.3) ([i, j])η([x1, j])
ηA (r, l2)

D = (0).

As A is prime, so equation (4.3) concludes that either ([i, j])η([x1, j])
η = 0, ∀

i, j, x1 ∈ L or (A , l2)
D = (0), ∀ l2 ∈ L .

The former case implies ([i, j])η([x1, j])
η = 0, then by taking 2x1i instead of i

and using char(A ) 6= 2, we have

[(x1)
η , (j)η ])(i)η([(x1)

η , (j)η ]) = 0

∀ i, j, x1 ∈ L . By Lemma 7 and Corollary 9, the preceding equation forces
L ⊆ Z (A ), which is not possible. In latter case, we have

(4.4) (r, l2)
D = 0

∀ l2 ∈ L , r ∈ A . Further, replacing l2 by 2[l1, l2]ps, we have

2[(l1)
θ, (l2)

θ](p)θ(r, s)D + (s)η(r, 2[l1, l2]s)
D = 0

∀ l1, l2 ∈ L , p, r, s ∈ A . As 2[l1, l2]s ∈ L , therefore by using (4.4) the last
relation yields [(l1)

θ, (l2)
θ]A (r, s)D = (0), ∀ l1, l2 ∈ L , r, s ∈ A and the primeness

of A implies either [(L )θ, (L )θ] = (0) or D = 0. In view of Corollary 9, the
former gives that L ⊆ Z (A ), a contradiction. Hence D = 0.

Corollary 25. If (A ,L )D = (0), then L ⊆ Z (A ) or D = 0.

Theorem 26. If D is nonzero and any one of the following holds true:

(i) (l1)
∆(l2)

θ + (l1)
θ(l2)

∆ = 0,

(ii) (l1)
∆(l2)

θ − (l1)
θ(l2)

∆ = 0 ∀ l1, l2 ∈ L , then L ⊆ Z (A ).

Proof. (i) Suppose that

(4.5) (l1)
∆(l2)

θ + (l1)
θ(l2)

∆ = 0

∀ l1, l2 ∈ L . On replacing l1 by l1 + r1 in (4.5) and using char(A ) 6= 2, we find
(l1, r1)

Ψ(l2)
θ = 0, ∀ l1, l2, r1 ∈ L . Taking 2r[l2, x1] instead of l2, the previous

expression gives 2(l1, r1)
Ψ(r)θ([l2, x1])

θ = 0, ∀ l1, l2, r1, x1 ∈ L , r ∈ A . Since
char(A ) 6= 2, so (l1, r1)

ΨA ([l2, x1])
θ = (0). The primeness of A yields this

either (L ,L )Ψ = (0) or [(L )θ, (L )θ] = (0). By Corollary 9, the latter case
infers that L ⊆ Z (A ). From the former case we have

(4.6) (l1, r1)
Ψ = 0
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∀ l1, r1 ∈ L . Replacing l1 by 2r[l1, i]s, we get

(r)θ(2[l1, i]s, r1)
Ψ + 2([l1, i])

η(s)η(r, r1)
D = 0

∀ l1, i, r1 ∈ L , r, s ∈ A . As 2[l1, i]s ∈ L , so by using (4.6), the preceding
equation gives ([l1, i])

ηA (r, r1)
D = (0), ∀ l1, i, r1 ∈ L , r ∈ A . The primeness of

A implies that either [(L )η, (L )η] = (0) or (A ,L )D = (0). If [(L )η, (L )η ] =
(0), then by Corollary 9, L ⊆ Z (A ). Now, consider the case (A ,L )D = (0).
Then, by the previous corollary, (A ,L )D = (0) infers that L ⊆ Z (A ), since D
is nonzero.

On applying the similar technique with necessary modifications, we obtain
the same conclusion for (ii). This completes the proof.

Immediately, we obtain the next result which gives the commutativity of A .

Corollary 27. If D is nonzero and any one of the following holds true:

(i) (l1)
∆(l2)

θ + (l1)
θ(l2)

∆ = 0,

(ii) (l1)
∆(l2)

θ − (l1)
θ(l2)

∆ = 0 ∀ l1, l2 ∈ A , then A is commutative.

Proposition 28. If D is nonzero and (l1)
∆ ∈ Z (A ), ∀ l1 ∈ L , then L ⊆

Z (A ).

Proof. If possible, assume that L * Z (A ). By the given hypothesis, D is
nonzero and [(l1)

∆,A ] = (0), ∀ l1 ∈ L . Taking l1 + l2 instead of l1, we obtain

(4.7)
[

(l1, l2)
Ψ, r

]

= 0

∀ l1, l2 ∈ L , r ∈ A . Taking l2 = 2r1l2 in (4.7), we get
[

(r1)
θ, r

]

(l1, l2)
Ψ +

[

(l2)
η(l1, r1)

D , r
]

= 0

∀ l1, l2, r1 ∈ L , r ∈ A . By taking (r1)
θr in place of r, the above equation yields

[(l2)
η(l1, r1)

D , (r1)
θ]A = (0). Since A is prime, therefore

(4.8) 0 =
[

(l2)
η(l1, r1)

D , (r1)
θ
]

= (l2)
η
[

(l1, r1)
D , (r1)

θ
]

+
[

(l2)
η , (r1)

θ
]

(l1, r1)
D

∀ l1, l2, r1 ∈ L . Putting 2x1l2 in place of l2 in (4.8) and using char(A ) 6= 2, we
find

[

(x1)
η , (r1)

θ
]

(l2)
η(l1, r1)

D = 0

∀ l1, l2, r1, x1 ∈ L . By using Lemma 7, we get that for each r1 ∈ L , either
[(L )η, (r1)

θ] = (0) or (L , r1)
D = (0). Therefore, L is a union of the subgroups

A = {r1 ∈ L : [(L )η, (r1)
θ] = (0)} and B = {r1 ∈ L : (L , r1)

D = (0)}.

Since a group cannot be the union of its proper subgroups, so we are forced
to conclude that either L = A or L = B. If L = A, then [(L )η, (L )θ] = (0)
and by Lemma 12, L ⊆ Z (A ), a contradiction to our assumption. Therefore,
we are left with L = B, i.e. (L ,L )D = (0). By Proposition 24, we get that
L ⊆ Z (A ), a contradiction. Hence, L ⊆ Z (A ).
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The following theorem is a generalization of [18, Theorem 7].

Theorem 29. Let D be nonzero and ([l1, l2])
∆+[(l1)

∆, l2] ∈ Z (A ), ∀ l1, l2 ∈ L .
Then L ⊆ Z (A ).

Proof. By the given hypothesis, we get

(4.9)
[

([l1, l2])
∆ + [(l1)

∆, l2], r
]

= 0

∀ l1, l2 ∈ L , r ∈ A . On replacing l2 by l2 + r1, the last equation gives that
[([l1, l2], [l1, r1])

Ψ, r] = 0, ∀ l1, l2, r1 ∈ L , r ∈ A . In particular r1 = l2, we have
[([l1, l2])

∆, r] = 0, ∀ l1, l2 ∈ L , r ∈ A . With this, (4.9) implies that

(4.10)
[[

(l1)
∆, l2

]

, r
]

= 0

∀ l1, l2 ∈ L , r ∈ A . Putting 2l2r1 instead of l2 in (4.10), we find that [(l1)
∆, l2]

[r1, r] + [l2, r][(l1)
∆, r1] = 0, ∀ l1, l2, r1 ∈ L , r ∈ A . On taking r = r1r and using

(4.10), the previous equation implies that

[l2, r1]A
[

(l1)
∆, r1

]

= (0)

∀ l1, l2, r1 ∈ L . By the primeness of A , the above expression infers that for
each r1 ∈ L , either [L , r1] = (0) or [(L )∆, r1] = (0). This implies that either
[L ,L ] = (0) or [(L )∆,L ] = (0). In view of Lemma 5, the former case gives
L ⊆ Z (A ) and by the latter case, we have [(l1)

∆, l2] = 0, ∀ l1, l2 ∈ L . Further,
putting 2rs[l2, r1] in place of l2, we conclude that

(4.11)
[

(l1)
∆, r

]

s[l2, r1] = 0

∀ l1, l2, r1 ∈ L r, s ∈ A . Since A is prime, so (4.11) implies that, either (l1)
∆ ∈

Z (A ), ∀ l1 ∈ L or [L ,L ] = (0). If (l1)
∆ ∈ Z (A ), ∀ l1 ∈ L , then by

Proposition 28, L ⊆ Z (A ). On the other hand, if [L ,L ] = (0), then by
Lemma 5, L ⊆ Z (A ). Therefore, L ⊆ Z (A ).

Corollary 30. If D is nonzero and ([l1, l2])
∆ + [(l1)

∆, l2] ∈ Z (A ), ∀ l1, l2 ∈ A ,
then A is commutative.

Theorem 31. If one of the following conditions hold:

(i) (l1l2)
∆ + (l1)

θ(l2)
∆ + (l1l2)

θ ∈ Z (A )

(ii) (l1l2)
∆ − (l1)

θ(l2)
∆ + (l1l2)

θ ∈ Z (A )

∀ l1, l2 ∈ L , then L ⊆ Z (A ) or D = 0.
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Proof. (i) In case L ⊆ Z (A ), then we are done. Assume that L * Z (A )
and by hypothesis, we have [(l1l2)

∆ + (l1)
θ(l2)

∆ + (l1l2)
θ,A ] = (0), ∀ l1, l2 ∈ L .

Now, replacing l1 by l1 + z1 and using the fact that char(A ) 6= 2, we obtain that

(4.12)
[

(l1l2, z1l2)
Ψ, r

]

= 0

∀ l1, l2, z1 ∈ L , r ∈ A . Taking 2jl1 in place of l1 in (4.12) and again using
char(A ) 6= 2, we get

[

(j)θ, r
]

(l1l2, z1l2)
Ψ +

[

(l1l2)
η(j, z1l2)

D , r
]

= 0

∀ l1, l2, z, j ∈ L , r ∈ A . On putting r = (j)θr in the last equation, we find
[(l1l2)

η(j, z1l2)
D , (j)θ ]r = 0. This implies that

(4.13)
[

(l1l2)
η(j, z1l2)

D , (j)θ
]

A
[

(l1l2)
η(j, z1l2)

D , (j)θ
]

= (0)

∀ l1, l2, z1, j ∈ L , r ∈ A . Further the primeness of A implies that 0 = [(l1l2)
η

(j, z1l2)
D , (j)θ ] = [(l1l2)

η, (j)θ ](j, z1l2)
D + (l1l2)

η [(j, z1l2)
D , (j)θ ]. Replacing l1 by

2l1k and using char(A ) 6= 2, in the resulting equation, we have

[

(l1)
η, (j)θ

]

(k)η(l2)
η(j, z1l2)

D = 0

∀ l1, l2, z1, j, k ∈ L . Therefore, by Lemma 7, the previous equation infers that
for each j ∈ L , either [(L )η , (j)θ] = (0) or (l2)

η(j, z1l2)
D = 0, ∀ l2, z1 ∈ L .

This implies that [(L )η , (L )θ] = (0) or (l2)
η(j, z1l2)

D = 0, ∀ j, l2, z1 ∈ L . By
Lemma 12, the former case infers that L ⊆ Z (A ), which is contradiction to our
assumption. Thus, we have (l2)

η(j, z1l2)
D = 0, ∀ j, l2, z1 ∈ L . Taking l2 + l1 in

place of l2, we get

(4.14) (l2)
η(j, z1l1)

D + (l1)
η(j, z1l2)

D = 0

∀ j, l1, l2, z1 ∈ L . Replacing l2 by 2l2k we have

(l2)
η(k)η(j, z1l1)

D + (l1)
η(z1l2)

θ(j, k)D + (l1)
η(k)η(j, z1l2)

D = 0

∀ j, k, l1, l2, z1 ∈ L . By (4.14),

(k)η(j, z1l2)
D = −(l2)

η(j, z1k)
D , (k)η(j, z1l1)

D = −(l1)
η(j, z1k)

D

and using these in last relation, we have

−((l1)
η ◦ (l2)

η)(j, z1k)
D + (l1)

η(z1)
θ(l2)

θ(j, k)D = 0.

By putting 2jl1 in place of l1, we have

[(j)η , (l2)
η](l1)

η(j, z1k)
D = 0
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∀ j, k, l1, l2, z1 ∈ L . Further, by Lemma 7, we obtain that for each j ∈ L , either
[(j)η , (L )η] = (0) or (j, z1k)

D = (0), ∀ k, z1 ∈ L . This concludes that either
[(L )η, (L )η] = (0) or (j, z1k)

D = 0, ∀ j, k, z1 ∈ L . By Corollary 9, the former
case implies L ⊆ Z (A ), a contradiction. Therefore, we have (j, z1k)

D = 0, ∀
j, k, z1 ∈ L and on replacing z1 by 2z1l2, this infers that (l2)

η(k)η(j, z1)
D = 0, ∀

j, k, l2, z1 ∈ L . Since η is an automorphism of A , so by Lemma 7 the running
equation gives (L ,L )D = (0). Moreover, by Proposition 24, D = 0.

By using the same technique with necessary variations, we can obtain the
same conclusion for the case (ii).

Corollary 32. If (l1l2)
∆ ± (l1)

θ(l2)
∆ + (l1l2)

θ ∈ Z (A ), ∀ l1, l2 ∈ A . Then A
is commutative or D = 0.
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