
Discussiones Mathematicae
General Algebra and Applications 44 (2024) 277–285
https://doi.org/10.7151/dmgaa.1443

ON THE NUMBER OF GROUP HOMOMORPHISMS

BETWEEN CERTAIN GROUPS

Ali Reza Ashrafi, Bardia Jahangiri

and

Mohammad Moein Yousefian-Arani 1

Department of Pure Mathematics

Faculty of Mathematical Sciences

University of Kashan, Kashan 87317−53153, I.R. Iran

e-mail: ashrafi@kashanu.ac.ir
bardia.jahangiri@yahoo.com
momoeysfn@gmail.com

Abstract

Let H be a finite abelian group and Dih(H) = 〈H, b | b2 = 1 & bhb−1 =
h−1; ∀h ∈ H〉 be the generalized dihedral group of H . The aim of this
paper is to compute the number of group homomorphisms between two
generalized dihedral groups and a generalized dihedral group and an abelian
group. One of these results generalized an earlier work by J.W. Johnson
published in 2013.
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1. Introduction

Throughout this paper we will make this assumption that all groups are assumed
to be finite. If G and H are such groups then we interest the number of homo-
morphisms from G into H, denoted by γ(H,G) = |Hom(H,G)|. In the case that
H = G, we will use the notation γ(G) as γ(G,G). The problem of computing the
number of homomorphisms between two groups is so difficult in general, and so
some mathematicians presented methods to compute γ(H,G) for certain groups.

With the best of our knowledge, the first published paper in which the number
of homomorphisms between two finite groups is considered into account was the
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joint paper of Gallian and Van Buskirk [3]. In the mentioned paper, the authors
obtained closed formulas for the number of group homomorphisms, and also ring
homomorphisms, from Zn into Zm. If (m,n) denotes the greatest common divisor
of two positive integers m and n, then they proved that:

Theorem 1. γ(Zm,Zn) = (m,n).

Johnson [4], found the number of group homomorphisms from the dihedral
group D2m into the dihedral group D2n. He proved that

Theorem 2.

γ(D2m,D2n) =















n(m,n) + 1 2 ∤ mn
n(m,n) + 2 2 ∤ m & 2 | n
n(m,n) + 4n+ 4 2 | m & 2 | n
n(m,n) + 2n+ 1 2 | m & 2 ∤ n.

The most important works on the problem of counting group homomorphisms
were given by Takegahara and his co-authors. Chigira and Takegahara [2], stud-
ied the number of homomorphisms from a finite group to a general linear group
over a finite field, and the authors of [5, 9, 10] investigated the number of ho-
momorphisms from a finite abelian group to a symmetric or alternating groups.
Liebeck and Shalev [6] have been estimated the number of homomorphisms from
a finite group A to the general linear group GL(n, q), where q is a prime power
coprime to |A|.

Bate [1] provided upper and lower bounds for the number of completely
reducible homomorphisms from a finite group to general linear and unitary groups
over arbitrary finite fields, and to orthogonal and symplectic groups over finite
fields of odd characteristic. Matei and Suciu [7] presented a method for computing
the number of epimorphisms from a finitely presented group to a finite solvable
group, which generalizes a formula of Gaschütz.

An elementary abelian group of order pn, p is prime, is denoted by E(pn).
Suppose G is an abelian group with decomposition G ∼= Zn1 × · · · × Znd

in
which ni+1 |ni, 1 ≤ i ≤ d − 1, and for all j, nj ≥ 2. Then we define S(G) =
{n1, . . . , nd}. Note that this decomposition is unique for each abelian group and
so our definition for S(G) is well-defined. The number of factors of even orders in
this decomposition of H into cyclic groups is denoted by ε(H). If n is a positive
integer, then φ(n) denotes the Euler totient function evaluated at n.

Throughout this paper our notations are standard and we refer to the famous
book of Robinson [8] for concepts and notations not presented here. Our results
are checked by the computer algebra package Gap [11].
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2. Preliminaries

Suppose H is an abelian group. The generalized dihedral group Dih(H) can be
presented by Dih(H) = 〈H, bH | b2H = 1 & bHhb−1

H = h−1; ∀h ∈ H〉. It is well-
known that this group is the semidirect product of H by the cyclic group of order
2. In an exact phrase, Dih(H) = H ⋊α Z2 in which α(0) is the identity element
of Aut(H) and α(1) = f in which f(x) = x−1, for arbitrary element x ∈ H.
Note that for each subgroup M of H, M = {(m, 0) | m ∈ M} is a subgroup of
Dih(H) isomorphic to M . On the other hand, the set of all elements in the form
of (h, 0), h ∈ H, constitutes a subgroup of index 2 in Dih(H) isomorphic to H.

The first main result of this paper is as follows.

Theorem 3. Let H and G be two finite abelian groups. The number of homo-

morphisms from Dih(H) into Dih(G) can be computed by the following formula:

γ(Dih(H),Dih(G)) = |G|γ(H,G) +
|G|

2ε(G)

(

2(1+ε(H))(1+ε(G)) − 2(1+ε(H))ε(G)
)

− |G|2ε(H)ε(G) + 2(1+ε(H))ε(G).

In particular, γ(Dih(H)) = |H||End(H)| + |H|
2εH

(

2(ε(H))2 − 2(ε(H)+1)ε(H)
)

−

|H|2ε(H)2 + 2(1+ε(H))ε(H).

We now apply this theorem to present a simple proof for Theorem 2 which
is the main result of [4].

New Proof for Theorem 2. Since for each natural number r, Dih(Zr) is
a dihedral group of order 2r, it is enough to apply Theorem 3. By Theorem 1,
γ(Zm,Zn) = (m,n) and it is easy to see that for each cyclic group A, ε(A) ∈ {0, 1}
and ε(A) = 0 if and only if A has odd order. Therefore,

γ(D2m,D2n) =















n(m,n) + (2− 1)n− n+ 1 2 ∤ mn
n(m,n) + (22 − 21)n2 − n+ 21 2 ∤ m & 2 | n
n(m,n) + (24 − 22)n2 − 2n+ 22 2 | m & 2 | n
n(m,n) + (22 − 1)n − n+ 1 2 | m & 2 ∤ n

=















n(m,n) + 1 2 ∤ mn
n(m,n) + 2 2 ∤ m & 2 | n
n(m,n) + 4n+ 4 2 | m & 2 | n
n(m,n) + 2n+ 1 2 | m & 2 ∤ n.

We are now ready to state our second main result which can be proved in a
similar way as the proof of Theorem 3.
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Theorem 4. Let H and G be finite abelian groups. Then the following hold.

1. γ(Dih(H), G) = 2(ε(H)+1)ε(G);

2. γ(H,Dih(G)) = γ(H,G) + |G|

2ε(G) (2
ε(H)(1+ε(G)) + 2ε(H)ε(G)).

3. Main results

Suppose S is a minimal generating set for H, then Dih(H) = 〈S, bH〉. If G is
an abelian group of even order, then we use the notation E(G) to denote the set
of all involutions together with the identity element of G. It is easy to see that
E(G) is the largest elementary abelian 2-subgroup of G.

Suppose G,H and K are three finite groups. It is well-known that γ(G,H ×
K) = γ(G,H)γ(G,K), see [7, p. 168]. Also, if A and B are abelian groups then
it is well-known that γ(A,B) = γ(B,A). The following lemma is an immediate
consequence of these known results.

Lemma 5. Let G1, . . . , Gn and H1, . . . ,Hm be abelian groups. Then

γ(G1 × · · · ×Gn,H1 × · · · ×Hm) =

n
∏

i=1

m
∏

j=1

γ(Gi,Hj).

Corollary 6. Let G and H be finite abelian groups. Then

γ(H,G) =
∏

i∈S(G)

∏

j∈S(H)

(i, j).

Suppose Un denotes the unit group of the ring Zn of integers modulo n. If
n = 2αp1

n1 · · · pr
nr , where pi’s are different odd primes, then by the Chinese

remainder theorem Un
∼= U2α × Up

n1
1

× · · · × Up
nr
r
. Moreover, U2 is trivial group,

U4
∼= Z2, U2n

∼= Z2 × Z2n−2 , n > 2 is an integer, and for each odd prime p and
positive integer m, Upm

∼= Zpm−pm−1 .

Corollary 7. Let n > 2 and m > 2 be two positive integers with prime factor-

izations n = 2αp1
n1 · · · pr

nr and m = 2βq1
l1 · · · qs

ls, where pi, 1 ≤ i ≤ r, as well

as qj, 1 ≤ j ≤ s are different odd primes. Moreover, α, β, r, s, ni, 1 ≤ i ≤ r,
and mj , 1 ≤ j ≤ s are non-negative integers. Without loss of generality we can

assume that β ≤ α. Then the following hold:

1. if α, β ∈ {0, 1}, then γ(Un, Um) =
∏r

i=1

∏s
j=1(φ(pi), φ(qj));

2. if α = 2 and β ∈ {0, 1}, then γ(Un, Um) = 2s
∏r

i=1

∏s
j=1(φ(pi), φ(qj));

3. if α = β = 2 then γ(Un, Um) = 2r+s+1
∏r

i=1

∏s
j=1(φ(pi), φ(qj));
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4. if α > 2 and β ∈ {0, 1}, then

γ(Un, Um) = 2s
r
∏

i=1

s
∏

j=1

(φ(pi), φ(qj))

s
∏

j=1

(2α−2, φ(qj)).

In particular, if α = 3, then γ(Un, Um) = 22s
∏r

i=1

∏s

j=1
(φ(pi), φ(qj));

5. if α > 2 and β = 2, then

γ(Un, Um) = 2r+s+2
r
∏

i=1

s
∏

j=1

(φ(pi), φ(qj))

s
∏

j=1

(2α−2, φ(qj)).

In particular, if α = 3, then γ(Un, Um) = 2r+2s+2
∏r

i=1

∏s

j=1
(φ(pi), φ(qj));

6. if α > 2 and β > 2, then γ(Un, Um) = 2r+s+β+1
∏r

i=1

∏s
j=1

(φ(pi), φ(qj))
∏s

j=1

(2α−2, φ(qj)) ×
∏r

i=1
(2β−2, φ(pi)). In the special case that α = β = 3 we will

have γ(Un, Um) = 22r+2s+4
∏r

i=1

∏s
j=1(φ(pi), φ(qj)) and if α > 3 and β = 3

then γ(Un, Um) = 22r+s+4
∏r

i=1

∏s
j=1(φ(pi), φ(qj))

∏s
j=1(2

α−2, φ(qi)).

Corollary 8. Let G and H be abelian groups. Then

γ(G,H) =
∏

i∈S(G)

∏

i∈S(H)

(i, j).

In particular, γ(H,Z2) = 2ε(H).

Proof. By our definition S(Z2) = {2} and so γ(H,Z2) =
∏

i∈S(H)(i, 2) = 2ε(H),
proving the result.

Suppose G is a finite group. It is clear that there is a one to one corre-
spondence between the set of all subgroups of index 2 in G and non-zero homo-
morphisms from G into the cyclic group Z2. This proves that there is exactly
γ(G,Z2)−1 subgroups of index 2 in G. We now apply this simple result to prove
the following lemma.

Lemma 9. Let H be an abelian group. Then γ(Dih(H),Z2) = 2ε(H)+1.

Proof. To prove the lemma, it is enough to count the number of subgroup of
index 2 in Dih(H). By definition of the generalized dihedral group, H is a
subgroup of index 2 in Dih(H). Choose a subgroup H ′ of index 2 in H, x ∈
Dih(H) \ H and y ∈ Dih(H) \ (Dih(H ′) ∪ H). It can be easily seen that H,
〈H ′, x〉 and 〈H ′, y〉 are the only proper subgroups of Dih(H) containing H ′ and
the last two subgroups are isomorphic to Dih(H ′). Therefore, γ(Dih(H),Z2) =
2|{K ≤ H | |H : K| = 2}| + 2 = 2(γ(H,Z2)− 1) + 2 = 2γ(H,Z2). By Corollary
8, γ(H,Z2) = 2ε(H) and so γ(Dih(H),Z2) = 2ε(H)+1, proving the lemma.
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Corollary 10. γ(Dih(H),Zn
2 ) = 2n(ε(H)+1).

Proof. By Lemma 9, γ(Dih(H),Z2) = 2ε(H)+1 and by Lemma 5, γ(Dih(H),Zn
2 )

= 2n(ε(H)+1).

We are now ready to present the proof of our first main result.

Proof of Theorem 3. To calculate the number of homomorphisms h : Dih(H)
−→ Dih(G), we consider four cases that in which the order of G or H are odd
or even.

(i) Both of G and H have odd orders. Note that if we have the image of h
under bH and each element of S, then the homomorphism h will be completely
determined. It is clear that all elements bGg ∈ Dih(G) are involutions. Since
G has odd order, these are all elements of even order in Dih(G) which shows
that h(bH) = eG or h(bH) = bGg, for some g ∈ G. If h(bH) = eG, then h is
the zero homomorphism, and so we can assume that there exists g ∈ G such
that h(bH) = bGg. Furthermore, h(H) ⊆ G and so h induces a homomorphism
from H into G. On the other hand, we assume that h1 : H −→ G is a group
homomorphism. We extend h1 to the homomorphism h1 : Dih(H) −→ Dih(G)
by h1(bHx) = bGyh1(x), where y ∈ H is arbitrary. Therefore, we will have |G|
different choices for defining h(bH) and γ(H,G) different choices for the group
homomorphism h1. This proves that there are |G|γ(H,G) + 1 homomorphisms
from Dih(H) into Dih(G).

(ii) |G| is even and |H| is odd. Since |H| is odd, all elements h(s), s ∈ S,
has odd orders. It is clear that h(bH) ∈ E(G) ∪ (Dih(G) \ G). If h(bH) ∈
Dih(G)\G, then a similar argument as (i) shows that we have exactly |G|γ(H,G)
homomorphisms. We now assume that h(bH) ∈ E(G). Suppose there exists s ∈ S
such that h(s) /∈ E(G). Since h(bHs) = h(bH)h(s) ∈ G and O(bHs) = 2, bHs ∈
E(G) which leads to a contradiction. Therefore, elements of S map to elements
of E(G). Note that O(h(s))|O(s) and O(s) is odd which shows that O(s) 6= 2.
This proves that h(S) = {eG}. This creates |E(G)| new homomorphisms and so
γ(Dih(H),Dih(G)) = |G|γ(H,G) + |2ε(G)|.

(iii) |G| is odd and |H| is even. In this case, G does not have an element
of even order. Since O(h(bH)) = 1, 2, bH can be mapped to eG or an element
in the form of bGg, g ∈ G. Suppose there are two elements s1, s2 ∈ S such
that h(s1) = bGg1 and h(s2) = g2, where g1, g2 ∈ G and g2 6= eG. Since H is
abelian, bGg1g2 = h(s1)h(s2) = h(s2)h(s1) = g2bGg1 = bGg

−1
2 g1 which implies

that g22 = eG. But G has odd order and so g2 = eG. This proves that if for
an element s1 ∈ S, h(s1) = bGg1 then the image of all elements of S under the
homomorphism h will be identity element of G or an element in the form of bGg,
where g ∈ G. Hence, we have one of the following cases.
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1. h(S) ⊆ G. In this subcase, if h(bH) = eG, then h will be the zero
homomorphism. Moreover, all mappings for which every element of S mapped
to an element of G and bH mapped to an element in the form of bGg, g ∈ G, can
be extended to a unique homomorphism from Dih(H) into Dih(G) and similar
to (i) there are |G|γ(H,G) of such homomorphisms.

2. There exists s1 ∈ S such that h(s1) = bGg1, for some g1 ∈ G. For each
s ∈ S, O(h(s)) = 1, 2 and also O(h(bH )) = 1, 2. This shows that h(H) is an ele-
mentary abelian 2-subgroup ofDih(G) and since 4 ∤ |Dih(G)|, h(H) is a subgroup
of order 2 in Dih(G). There are γ(Dih(H),Z2) − 1 non-trivial homomorphisms
from Dih(H) into Z2 and since we have |G| involutions in Dih(G), we will have
|G|[γ(Dih(H),Z2) − 1] homomorphisms. But there are |G| homomorphisms for
which h(S) = {eG} and bH mapped to an element in the form of bGg, g ∈ G.
Therefore, the total number of homomorphisms from Dih(H) into Dih(G) is
|G|γ(H,G) + |G|[γ(Dih(H),Z2)− 1]− |G| + 1.

We now apply Lemma 9 to complete the proof of (iii).

(iv) Both of G and H have even orders. Since |H| and |G| are both even
and O(h(bH))|2, there exists g ∈ G such that bH = bGg or h(bH) ∈ E(G). Our
proof will consider two cases that h(S) ⊆ G or there exists s1 ∈ S such that
h(s1) = bGg1.

1. h(S) ⊆ G. We first assume that h(bH) = bGg. By an argument sim-
ilar to Part (i) of the proof of Theorem 3, we will have |G|γ(H,G) homomor-
phisms. Suppose that h(bH) ∈ E(G). Similar to Part (ii) of the proof of The-
orem 3, we assume that there exists s ∈ S such that x = h(s) ∈ G \ E(G)
and so O(h(s)) = O(x) 6= 1, 2. Since h(bH) ∈ E(G) and x = h(s) ∈ G,
h(bHs) = h(bH)h(s) ∈ G, and since O(h(bHs))|2, h(bHs) ∈ E(G). On the other
hand, h(bHs) = h(bH)h(s) = h(bH)x and x /∈ E(G) which is impossible. This
contradiction shows that h(S) ⊆ E(G) which show that h(Dih(H)) ⊆ E(G).
Therefore, we have to counted the number of homomorphisms from Dih(H) into
E(G).

2. There exists s1 ∈ S such that h(s1) = bGg1. Similar to what we have
done in (iii), we assume that for another element s2 ∈ S, h(s2) = g2 in which
g2 ∈ G. Since H is abelian, g22 = eG. This proves that the image of each element
of S has the form of bGg or is an element of E(G). In each case, it can be easily
seen that O(h(s))|2, s ∈ S. Also, O(h(bH))|2 and hence h(Dih(H)) is a trivial
subgroup or an elementary abelian 2-group. Thus, h(Dih(H)) is isomorphic to a

subgroup of Dih(E(G)) ∼= Z2 × E(G) and we have |G|
|E(G)| subgroups isomorphic

to Dih(E(G)). In the last case, we have to reduce this case by the number of
homomorphisms with this condition that h(S) ⊆ G. Therefore,

γ(Dih(H),Dih(G)) = |G|γ(H,G) +
|G|

|E(G)|
(γ(Dih(H), E(G) × Z2)
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− γ(Dih(H), E(G))) − |G|γ(H,E(G)) + γ(Dih(H), E(G)).

We now apply Lemmas 5, 9 and Corollary 10 to get the result.

This completes the proof of (iv).

Proof of Theorem 4. Suppose G and H are abelian groups. Our proof will
consider two separate cases as follows.

1. A similar argument as Part (iv)(b) of the proof of Theorem 3 shows that
h(S) ⊆ E(G) and so γ(Dih(H), G) = γ(Dih(H), E(G)). Now by Corollary 10,
γ(Dih(H), G) = 2(ε(H)+1)ε(G), as desired.

2. If h(S) ⊆ E(G), then there are γ(H,G) homomorphisms. Thus, we can
assume that there exists s1 ∈ S such that h(s1) = bGg1, for some g1 ∈ G. Now
a similar argument as Part (ii) of the proof of Theorem 3 shows that h(s) ∈
(Dih(G) \ G) ∪ E(G). Hence the image of Dih(H) is isomorphic to a subgroup

of Dih(E(G)) ∼= E(G) × Z2 and we have |G|
|E(G)| such subgroups. Since h(s1) =

bGg1, Dih(H) 6⊆ G. Therefore, γ(H,Dih(G)) = γ(H,G) + |G|
|E(G)|(2

(ε(H)+1)ε(G) −

2ε(H)ε(G)).

4. Concluding remarks

In this paper, the number of homomorphisms between two generalized dihedral
groups were calculated. This gives a generalization of a result by Johnson [4].
We also compute the number of homomorphisms between an abelian group and
a generalized dihedral groups, and the number of homomorphisms between the
unite rings of integers modulo n and m, respectively. The next step in this
program is to calculate the number of homomorphisms between two generalized
dicyclic groups, an abelian group and a generalized dicyclic group, and a gen-
eralized dihedral group and a generalized dicyclic group. We checked all results
of this paper by gap programs. These programs are accessible from the authors
upon request.
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