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Abstract

Let R be a commutative ring and S a multiplicatively closed subset of
R. Hamed and Malek [7] defined an ideal P of R disjoint with S to be
an S-prime ideal of R if there exists an s ∈ S such that for all a, b ∈ R if
ab ∈ P , then sa ∈ P or sb ∈ P . In this paper, we introduce the notions
of S-k-prime and S-k-semiprime ideals of semirings, S-k-m-system, and S-
k-p-system. We study some properties and characterizations for S-k-prime
and S-k-semiprime ideals of semirings in terms of S-k-m-system and S-k-
p-system respectively. We also introduce the concepts of S-prime semiring
and S-semiprime semiring and study the characterizations for S-k-prime and
S-k-semiprime ideals in these two semirings.
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1. Introduction

Semiring theory has emerged as an intriguing research topic in recent years.
Semiring theory has numerous applications in computer science, automata theory,
control theory, quantum mechanics, and a variety of other fields. In a similar
manner as ring theory, semiring theory relies heavily on ideals, which aids in the
study of structure theory and other topics.

Golan [6] was the first to develop the terminologies prime ideals and semiprime
ideals of semirings and he has contributed a significant number of results in these
aspects. After Golan, the studies on prime ideals and semiprime ideals of semir-
ings has been continued by Dubey [4], Leskot [10], Atani et al. [2], and many
others. The k-ideal is one of the basic ideals in semiring theory. Sen and Adhikari
[12, 13] studied k-ideal of semiring and its properties. The k-prime(k-semiprime)
ideal is a class of ideals in semiring that are equivalent to prime (semiprime) ide-
als in a ring. A prime (semiprime) ideal becomes a k-prime (k-semiprime) ideal
if it coincides with its k-closure. Kar et al. [11] have done extensive work on the
k-prime ideal and k-semiprime ideal in a semiring.

The concept of the S-prime ideal of a commutative ring has been introduced
by Hamed and Malek in [7] and established many remarkable results. For a
commutative ring R and a multiplicatively closed set S ⊆ R, an ideal P of R is
said to be S-prime ideal if there exists an s ∈ S such that for all a, b ∈ R with
ab ∈ P , then sa ∈ P or sb ∈ P . Later on, Almahdi et al. [1] and Visweswaran
[14] studied weakly S-prime ideals and S-primary ideals of a commutative ring
respectively.

In this paper, we define S-prime ideal and S-semiprime ideal in a semir-
ing. We introduce the concepts of S-m-system and S-p-system, as well as some
analogous results. Furthermore, we introduce the notions of S-k-prime and S-
k-semiprime ideals of semirings and study their properties and characterizations
in terms of S-k-m-system and S-k-p-system respectively. Finally, we also intro-
duce the concepts of S-prime semiring and S-semiprime semiring and study the
characterizations for S-k-prime and S-k-semiprime ideals in these two semirings.

2. Preliminaries

In this section, we recall some basic terminology and preliminary results of semir-
ing theory that will be useful in later sections of the paper.

A non-empty set R with two binary operations ‘+’ and ‘·’ is said to be a
semiring [8] if (i) (R,+) be a commutative semigroup; (ii) (R, ·) be a semigroup
and (iii) x · (y + z) = x · y + x · z and (y + z) · x = y · x+ z · x for all x, y, z ∈ R.

Throughout this paper we consider semiring (R,+, ·) with zero element 0 and
nonzero identity 1.
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Let J be an ideal of a semiring R. Then the k-closure [13] of ideal J is
denoted by J and is given by J = {x ∈ R|x+ y = z for some y, z ∈ J}.

We say a left ideal (respectively right ideal, ideal) J of a semiring R to be
a left k-ideal (respectively right k-ideal, k-ideal) if for any a ∈ R and b ∈ J ,
a+ b ∈ J implies that a ∈ J . For any k-ideal J , we have J = J .

A non-empty subset S of a semiring R is said to be a multiplicatively closed
set if (i) 1 ∈ S and (ii) for a, b ∈ S implies ab ∈ S.

A non-zero element a of semiring R is said to be a zero divisor if there exists
a non-zero element b ∈ R such that ab = 0.

A proper ideal I of a commutative semiring R is said to be a 2-absorbing
ideal [3] if a, b, c ∈ R and abc ∈ I implies that ab ∈ I or bc ∈ I or ac ∈ I.

The following lemma will be useful in the next section.

Lemma 2.1 [8]. Let R be a semiring. Then for any two ideals A,B of R, we

have the following results.

(i) A ⊆ A;

(ii) A ⊆ B ⇒ A ⊆ B;

(iii) A = A;

(iv) AB = A B and

(v) A is a k-ideal of R.

For any other undefined terminologies of semiring theory, we refer to [5, 6, 8].

3. S-k-prime ideals of semirings

In this section, we introduce the notion of S-prime and S-k-prime ideal of a
semiring and study their basic properties. We begin with the following definitions.

Definition 3.1. Let R be a semiring, S a multiplicatively closed subset of R and
P be an ideal of R disjoint with S. We say P is an S-prime ideal of R if there
exists an s ∈ S such that for all A,B two ideals of R, if AB ⊆ P , then sA ⊆ P
or sB ⊆ P .

Definition 3.2. An S-prime ideal P of a semiring R is said to be an S-k-prime
ideal of R if P = P .

Proposition 3.3. Let R be a semiring, S ⊆ R a multiplicatively closed set and

P a k-ideal of R disjoint with S. Then P is an S-k-prime ideal of R if and only

if there exists an s ∈ S for all k-ideals I, J of R, if IJ ⊆ P , then sI ⊆ P or

sJ ⊆ P .
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Proof. Let P be an S-k-prime ideal of R. Then there exists an s ∈ S such that
for all I, J two k-ideals of R with IJ ⊆ P then sI ⊆ P or sJ ⊆ P .

To prove the converse, let I, J be any two k-ideals of R with IJ ⊆ P such

that sI ⊆ P or sJ ⊆ P for some s ∈ S. We have I J ⊆ I J = IJ ⊆ P = P .
Then sI ⊆ P or sJ ⊆ P which implies that sI ⊆ P or sJ ⊆ P . Hence P is an
S-k-prime ideal of R.

Corollary 3.4. Let R be a semiring, S ⊆ R a multiplicatively closed set and P
a k-ideal of R disjoint with S. Then P is an S-k-prime ideal of R if and only if

there exists an s ∈ S such that for all k-ideals Ji of R with J1J2 · · · Jn ⊆ P , then

sJi ⊆ P for some i ∈ {1, 2, . . . , n}.

A characterization theorem for an S-k-prime ideal of a semiring will be in-
troduced here. Golan [6] first established the characterization theorem for a
prime ideal, and subsequently Kar et al. [11] proved it for the k-prime ideal of a
semiring.

Theorem 3.5 [6]. The following statements are equivalent for an ideal P of a

semiring R.

(1) P is a prime ideal of a semiring R.

(2) For any a, b ∈ R, aRb ⊆ P if and only if a ∈ P or b ∈ P .

Theorem 3.6 [11]. The following statements are equivalent for an ideal P of a

semiring R.

(1) P is a k-prime ideal of a semiring R.

(2) For any a, b ∈ R, aRb ⊆ P if and only if a ∈ P or b ∈ P .

Theorem 3.7. Let R be a semiring, S ⊆ R be a multiplicatively closed set and

P an ideal of R disjoint with S. Then the following statements are equivalent.

(1) P is an S-prime ideal of a semiring R.

(2) There exists an s ∈ S such that for all a, b ∈ R, if aRb ⊆ P , then sa ∈ P or

sb ∈ P .

Proof. (1)⇒(2): Let P be an S-prime ideal of R. Consider a, b ∈ R and A =<
a > and B =< b >. Then A and B are ideals of R with aRb ⊆ AB. Also, AB is
contained in any ideal which contains aRb. Thus aRb ⊆ P implies that AB ⊆ P
and hence sA ⊆ P or sB ⊆ P for some s ∈ S. Thus sa ∈ P or sb ∈ P .

(2)⇒(1): Let A and B be ideals of R such that AB ⊆ P . Let us assume that
sA * P and let a ∈ A− P . Then for each b ∈ B we have aRb ⊆ AB ⊆ P which
implies that sb ∈ P and hence sB ⊆ P . So P is an S-prime ideal of R.

Theorem 3.8. Let R be a semiring, S ⊆ R be a multiplicatively closed set and

P an ideal of R disjoint with S. We consider the following conditions.
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(1) P is an S-k-prime ideal of semiring R.

(2) There exists an s ∈ S such that for all a, b ∈ R, if aRb ⊆ P , then sa ∈ P or

sb ∈ P .

(3) P is an S-prime ideal of semiring R.

Then we have the following sequence of implications:

(1) ⇒ (2) ⇒ (3).

Proof. (1)⇒(2): Let P be an S-k-prime ideal of R so P = P . Consider a, b ∈ R
such that aRb ⊆ P . We take A =< a > and B =< b >. Then A and B are ideals
of R with aRb ⊆ AB. Also, AB is contained in any ideal which contains aRb.
Thus aRb ⊆ P implies that AB ⊆ P = P and hence sA ⊆ P or sB ⊆ P for some
s ∈ S. Thus sa ∈ P or sb ∈ P .

(2)⇒(3): Let A and B be ideals of R such that AB ⊆ P . Let us assume that
sA * P and let a ∈ A − P . Then for each b ∈ B we have aRb ⊆ AB ⊆ P ⊆ P
which implies that sb ∈ P and hence sB ⊆ P . So P is an S-prime ideal of R.

Corollary 3.9. Let R be a commutative semiring, S ⊆ R a multiplicatively closed

set and P an ideal of R disjoint with S. If P is an S-k-prime ideal of R then

there exists an s ∈ S such that for all a, b ∈ R, such that ab ∈ P , implies sa ∈ P
or sb ∈ P .

Proof. In a commutative semiring R, we have ab ∈ P if and only if arb ∈ P for
all r ∈ R. The result follows from Theorem 3.8.

Remark 3.10. It is obvious that every prime ideal of a semiring is also an S-
prime ideal of that semiring and every k-prime ideal of a semiring is also an
S-k-prime ideal of that semiring. But the converse of the above may not hold
which can be observed in the following example.

Example 3.11. Let us consider the commutative semiring R = Z+
0 and the

multiplicatively closed set S = {3n|n ∈ Z+} of R. We define, P = < 6 >. Then
P is a k-ideal of R[13]. Then, P ∩ S = ∅. Now, ab ∈ P =< 6 >⇒ ab = 6m, for
some m. Then either a or b must be even. So, there exists s = 3 ∈ S such that
3a ∈ P or 3b ∈ P . Hence, P is an S-k-prime ideal. Moreover, 2.3 ∈< 6 > but
2 /∈< 6 > and 3 /∈< 6 > which implies that P is not a k-prime ideal of R = Z+

0 .

In the next example, we can observe that an S-prime ideal of a semiring may
not be an S-k-prime ideal of that semiring.

Example 3.12. Let us consider the commutative semiring R = Z+
0 and the

multiplicatively closed set S = {3n|n ∈ Z+} of R. We define, P = 2Z+
0 \{2}.

Then P is an S-prime ideal of R but not an S-k-prime ideal of R.
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Now let I be an ideal of a commutative semiring R and s ∈ R.

We define, I : s = { x ∈ R : sx ∈ I}. Then for all s ∈ R, I : s is an ideal of R.

Proposition 3.13. Let R be a commutative semiring, S ⊆ R a multiplicatively

closed set consisting of nonzero divisors and P a k-ideal of R disjoint with S.
Then P is an S-k-prime ideal of R if and only if P : s is a k-prime ideal of R
for some s ∈ S.

Proof. As P is an S-k-prime ideal, there exists an s ∈ S such that for all a, b ∈ R
with ab ∈ P then either sa ∈ P or sb ∈ P . We show P : s is k-prime ideal of
R. Let a, b ∈ R and ab ∈ P : s which implies that sab ∈ P so we get s2a ∈ P or
sb ∈ P . Thus sa ∈ P or sb ∈ P and hence a ∈ P : s or b ∈ P : s. Thus P : s is a
prime ideal of R.

Then, P : s ⊆ P : s. Now let x ∈ P : s which implies that x ∈ R and
x + y ∈ P : s for some y ∈ P : s. Thus x ∈ R and s(x + y) ∈ P for some
sy ∈ P . So x ∈ R and sx+ sy ∈ P for some sy ∈ P . Therefore sx ∈ P and hence
x ∈ P : s. So, P : s = P : s. Thus, P : s is a k-ideal of R and hence P : s is a
k-prime ideal of R.

Conversely, let ab ∈ P then sab ∈ P and so ab ∈ P : s. Since P : s is a
k-prime ideal of R so a ∈ P : s or b ∈ P : s and hence sa ∈ P or sb ∈ P . Thus,
P is an S-prime ideal which implies P is an S-k-prime ideal of R since P is a
k-ideal of R.

Example 3.14. Let us consider the commutative semiring R = Z+
0 and the

multiplicatively closed set S = {3n|n ∈ Z+} of R. We define, P = < 6 >. Then
P is an S-k-prime ideal of R. Now P : 3 = {x ∈ R|3x ∈ P}. We see that P : 3
is the set of all positive even integers. Then P : 3 is a k-ideal. If xy ∈ P : 3 then
either x or y must be a positive even integer. Hence x ∈ P : 3 or y ∈ P : 3. Thus
P : 3 is a k-prime ideal.

Proposition 3.15. Let R be a commutative semiring and S a multiplicatively

closed subset of R disjoint with a k-ideal P of R. If R ⊆ T be an extension of

commutative semirings, P an S-k-prime ideal of T then P ∩ R is an S-k-prime

ideal of R.

Proof. Let P be an S-k-prime ideal of T . For every a, b ∈ T with ab ∈ P implies
that sa ∈ P or sb ∈ P . Now let xy ∈ P ∩ R; x, y ∈ R ⊆ T . Then xy ∈ P which
implies that sx ∈ P or sy ∈ P . So sx ∈ P ∩ R or sy ∈ P ∩ R which implies
that P ∩ R is S-prime ideal of R. We have P ∩R ⊆ P ∩R. Let x ∈ P ∩R then
x ∈ R,x + y ∈ P ∩ R, y ∈ P ∩ R. This implies that x ∈ T, x + y ∈ P, y ∈ P .
Since P is k-ideal of R so x ∈ P and hence x ∈ P ∩R. Therefore P ∩R = P ∩R.
Hence P ∩R is S-k-prime ideal of R.
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Let R be a commutative semiring, S a multiplicatively closed subset of R
and I be an ideal of R disjoint with S. Let s ∈ S, we denote by ŝ the equivalent
class of s in R/I. Let Ŝ = {ŝ|s ∈ S}, then Ŝ is a multiplicatively closed subset
of R/I.

Proposition 3.16. Let R be a commutative semiring, S ⊆ R a multiplicatively

closed set and I a k-ideal of R disjoint with S. Let P be a proper k-ideal of R
containing I such that P/I ∩ Ŝ = ∅. Then P is an S-k-prime ideal of R if and

only if P/I is an Ŝ-k-prime ideal of R/I.

Proof. Let P is an S-k-prime ideal of R. There exists an s ∈ S such that for
all a, b ∈ R, if ab ∈ P then sa ∈ P or sb ∈ P and P = P . Let â, b̂ ∈ R/I
such that âb̂ ∈ P/I, then âb ∈ P/I. Since P is a k-ideal so ab ∈ P and thus
sa ∈ P or sb ∈ P and therefore ŝa ∈ P/I or ŝb ∈ P/I. Since P/I ⊆ P/I so
consider that x̂ ∈ P/I which implies that x̂ ∈ R/I, x̂ + ŷ ∈ P/I, ŷ ∈ P/I. Then
x ∈ R,x + y ∈ P, y ∈ P and so x ∈ P . Thus we get x̂ ∈ P/I. Therefore P/I is
an Ŝ-k-prime ideal of R/I.

Conversely, if P/I ∩ Ŝ = ∅ then P must be disjoint with S. Let P/I be
an Ŝ-k-prime ideal of R/I. There exists ŝ ∈ Ŝ such that for all â, b̂ ∈ R/I, if
âb ∈ P/I, then ŝa ∈ P/I or ŝb ∈ P/I. Let a, b ∈ P with ab ∈ P then âb ∈ P/I.
Thus ŝâ ∈ P/I or ŝb̂ ∈ P/I and hence sa ∈ P or sb ∈ P . Since P ⊆ P , it is
enough to show the other inclusion. Let x ∈ P which implies that x ∈ R and
x+ y ∈ P for some y ∈ P . Then x̂ ∈ R/I and x̂+ y ∈ P/I for some ŷ ∈ P/I and
so x̂ ∈ P/I. Thus we get x ∈ P . Therefore P is an S-k-prime ideal of R.

Now we define S-m-system and S-k-m-system as well as discuss the charac-
terization theorem for the S-prime ideal and S-k-prime ideal of a semiring.

Definition 3.17. Let R be a semiring. A nonempty subset M of R containing
a multiplicative closed set S is called an S-m-system if for any x, y ∈ R, there
exists an s ∈ S and r ∈ R such that sx, sy ∈ M implies that xry ∈ M .

Theorem 3.18. Let R be a semiring and S a multiplicatively closed subset of R.

A proper ideal P of a semiring R is an S-prime ideal of R if and only if P c is

an S-m-system.

Proof. Let P be an S-prime ideal of R if and only if there exists an s ∈ S such
that for all x, y ∈ R if xRy ⊆ P then sx ∈ P or sy ∈ P if and only if sx, sy ∈ P c

then there exists r ∈ R such that xry /∈ P and so xry ∈ P c if and only if P c is
an S-m-system.

Definition 3.19. Let R be a semiring. A nonempty subset M of R containing a
multiplicative closed set S is called an S-k-m-system if (i) for any x, y ∈ R, there
exists an s ∈ S and r ∈ R such that sx, sy ∈ M implies that xry ∈ M and (ii)
x ∈ M implies that x /∈ M c.
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Example 3.20. Let us consider the commutative semiring R = Z+
0 and the

multiplicatively closed set S = {3n|n ∈ Z+} of R. We define P = < 6 >. Then
P c is an S-k-m-system.

Theorem 3.21. Let R be a semiring and S a multiplicatively closed subset of R.

A proper ideal P of a semiring R is an S-k-prime ideal of R if and only if P c is

an S-k-m-system.

Proof. Let P be a proper ideal of R. Suppose P c is an S-k-m-system. Let
x, y ∈ R such that xRy ⊆ P . If possible let sx /∈ P and sy /∈ P for any s ∈ S
which implies that sx, sy ∈ P c for some s ∈ S. But P c is an S-k-m-system
so there exists r ∈ R such that xry ∈ P c and xry /∈ (P c)c = P . Which is a
contradiction. Hence sx ∈ P or sy ∈ P and so P is an S-k-prime ideal of R.

Conversely, suppose P is an S-k-prime ideal of R. So P c is an S-m-system.
Let x ∈ P c which implies that x /∈ P = P and thus x /∈ (P c)c. Hence P c is an
S-k-m-system.

Definition 3.22. Let R be a semiring, S a multiplicatively closed subset of R
not containing 0. The semiring R is said to be an S-prime semiring if and only
if < 0 > is an S-prime ideal of R.

Remark 3.23. The notions of S-prime semiring and S-k-prime semiring are the
same, since < 0 > is an S-k-prime ideal if and only if it is an S-prime ideal.

Theorem 3.24. Let R be a semiring, S a multiplicatively closed subset of R not

containing 0. The semiring R is an S-prime semiring if and only if there exists

s ∈ S for all a, b ∈ R with aRb = 0 implies that sa = 0 or sb = 0.

Proof. Let R be an S-prime semiring. Then < 0 > is an S-prime ideal of R.
Let a, b ∈ R with aRb = 0 ∈< 0 >. This implies that sa ∈< 0 > or sb ∈< 0 >
and it follows that sa = 0 or sb = 0.

Conversely, let for any a, b ∈ R with aRb = 0 implies that sa = 0 or sb = 0.
Let for any a, b ∈ R we have aRb ∈< 0 >. It implies that aRb = 0 and thus
sa = 0 or sb = 0. Hence we get that sa ∈< 0 > or sb ∈< 0 >. Therefore < 0 >
is an S-prime ideal and so R is an S-prime semiring.

Definition 3.25. Let R be a commutative semiring and S be any multiplicatively
closed subset of R. There exists an s ∈ S such that for all a, b ∈ R with ab = 0
implies that sa = 0 or sb = 0 then R is called S-semidomain.

Lemma 3.26. Center of an S-prime semiring is an S-semidomain.

Proof. Let R be an S-prime semiring. Consider C to be the center of R. For any
a, b ∈ C with aRb = 0. Then aRb ∈< 0 > which implies ab ∈< 0 >. Therefore,
we have ab = 0. Since R is an S-prime semiring, so by Theorem 3.18, there exists
an s ∈ S such that sa = 0 or sb = 0. Hence C is an S-semidomain.
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Remark 3.27. It is easier to see that S-semidomain is an S-prime semiring.
For commutative semiring, the notions of S-prime semiring and S-semidomain
coincide.

Proposition 3.28. Let R be a commutative semiring, S ⊆ R be a multiplicatively

closed set of R and P be a k-ideal of R disjoint with S. Then P is an S-k-prime

ideal of R if and only if R/P is an Ŝ-semidomain.

Proof. Let P is an S-k-prime ideal of R. Consider â, b̂ ∈ R/P such that âb̂ = 0̂
which implies that âb = 0̂ = P . Since P is a k-ideal so we get ab ∈ P . There
exists s ∈ S such that sa ∈ P or sb ∈ P . Therefore ŝa = P or ŝb = P and thus
ŝâ = 0̂ or ŝb̂ = 0̂. Hence R/P is an Ŝ-semidomain.

Conversely, let R/P be an Ŝ-semidomain. Consider ab ∈ P which gives
âb = âb̂ = 0̂ = P . There exists ŝ ∈ Ŝ such that ŝâ = P or ŝb̂ = P which implies
ŝa = P or ŝb = P . Consequently sa ∈ P or sb ∈ P . Since P is a k-ideal therefore
P is an S-k-prime ideal of R.

Let R be a commutative semiring and S ⊆ R be a multiplicatively closed set.
Now we consider Mn(R) to be the set of all n × n matrices with entries over R
and Md

n(S) to be the set of all n× n diagonal matrices with entries over S.

Lemma 3.29. Let R be a commutative semiring. A nonempty subset S of R is a

multiplicatively closed set if and only if Md
n(S) is a multiplicatively closed subset

of Mn(R).

Proof. Let S be a multiplicatively closed subset of R. Then 1 ∈ S and for
x, y ∈ S implies that xy ∈ S. It follows that I ∈ Md

n(S) and let A,B ∈ Md
n(S).

Then A = diag(a1, a2, . . . , an) and B = diag(b1, b2, . . . , bn) where ai, bi ∈ S. So,
AB = diag(a1b1, a2b2, . . . , anbn). Which shows that AB ∈ Md

n(S). Thus Md
n(S)

is a multiplicatively closed set.

Conversely, let Md
n(S) is a multiplicatively closed subset of Mn(R). Then

for any A,B ∈ Md
n(S) we have AB ∈ Md

n(S). We have to show that for any
x, y ∈ S implies that xy ∈ S. We construct A = diag(x, x, . . . , x) and B =
diag(y, y, . . . , y). This implies that diag(xy, xy, . . . , xy) ∈ Md

n(S) and thus xy ∈
S. Hence S is a multiplicatively closed subset of R.

In the following, we establish a relationship between the S-k-prime ideal of
a semiring and S-k-prime ideal of its corresponding matrix semiring.

For that, we mention the following Lemma proved in [11].

Lemma 3.30 [11]. If A and B are two ideals of a semiring R then (i) Mn(AB) =
Mn(A)Mn(B) and (ii) A ⊆ B if and only if Mn(A) ⊆ Mn(B).
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Proposition 3.31. Let R be a semiring with identity and S a multiplicatively

closed subset of R. A proper k-ideal J of R is an S-k-prime ideal of R if and

only if Mn(J) is an Md
n(S)-k-prime ideal of Mn(R).

Proof. Let J be an S-k-prime ideal of R. We know that the ideals of Mn(R) are
of the form M(J) for every ideal I of R. Suppose Mn(A),Mn(B) be two ideals
of Mn(R) such that Mn(A)Mn(B) ⊆ Mn(J). By the above Lemma 3.30 we have
Mn(A)Mn(B) = Mn(AB) ⊆ Mn(J). This implies that AB ⊆ J . Since J is an
S-prime ideal of R so there exists an s ∈ S such that sA ⊆ J or sB ⊆ J . It
follows that Mn(sA) ⊆ Mn(J) or Mn(sB) ⊆ Mn(J). Thus there exists a scalar
matrix sI ∈ Md

n(S) such that sIMn(A) ⊆ Mn(J) or sIMn(B) ⊆ Mn(J). Hence
Mn(J) is an Md

n(S)-prime ideal of Mn(R). Now Mn(J) ⊆ Mn(J). Consider that
A = [aij ], B = [bij ] ∈ Mn(R) such that A ∈ Mn(J) which implies that A ∈ Mn(R)
and A + B ∈ Mn(J) for some B ∈ Mn(J). So aij ∈ R, aij + bij ∈ J for some
bij ∈ J . Since J is a k-ideal so aij ∈ J and hence A ∈ Mn(J). Thus Mn(J) is an
Md

n(S)-k-prime ideal of M(R).

Conversely, let Mn(J) is be Md
n(S)-prime ideal of Mn(R). Suppose A,B are

two ideals of R such that AB ⊆ J . This implies that Mn(A),Mn(B) are ide-
als of Mn(R) and by above Lemma 3.30 we have Mn(AB) ⊆ Mn(J). It fol-
lows that Mn(A)Mn(B) ⊆ Mn(J). Since Mn(J) is an Md

n(S)-prime ideal of
Mn(R) so there exists sI ∈ Md

n(S) such that sIMn(A) = Mn(sA) ⊆ Mn(J) or
sIMn(B) = Mn(sB) ⊆ Mn(J) and hence sA ⊆ J or sB ⊆ J . Thus J is an
S-prime ideal of R. As J is a k-ideal so J is an S-k-prime ideal.

4. S-k-semiprime ideals of semiring

In this section, we introduce the notion of S-semiprime and S-k-semiprime ideal
of a semiring and discuss their basic properties. We begin with the following
definitions.

Definition 4.1. Let R be a semiring, S a multiplicatively closed set of R and I
be an ideal of R disjoint with S. We say I is an S-semiprime ideal of R if there
exists an s ∈ S such that for any ideal A of R with A2 ⊆ I implies that sA ⊆ I.

Definition 4.2. An S-semiprime ideal I of a semiring R is said to be an S-k-
semiprime ideal of R if I = I.

Proposition 4.3. Let R be a semiring and S ⊆ R be a multiplicatively closed

set. A proper k-ideal I of a semiring R is an S-k-semiprime ideal of R if and

only if for any k-ideal J of R with J2 ⊆ I implies that sJ ⊆ I.
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Proof. Let I be an S-k-semiprime ideal of R. Let J be any k-ideal of R such
that J2 ⊆ I which implies that sJ ⊆ I.

To prove the converse, let J be a k-ideal such that J2 ⊆ I with sJ ⊆ I.

We have J
2
⊆ J J = J2 ⊆ I ⊆ I. Then sJ ⊆ I which implies that sJ ⊆ I.

Hence I is S-k-semiprime ideal of R.

We are going to introduce a characterization theorem for an S-k-semiprime
ideal of a semiring. Initially, the characterization theorem for a semiprime ideal
was given by Golan[6] and later by S. Kar et. al. [11] in case of k-semiprime ideal
of a semiring. The proofs are similar to Theorem 3.7 and Theorem 3.8.

Theorem 4.4. Let R be a semiring and S a multiplicatively closed subset of R.

Then the following statements are equivalent for an ideal I of a semiring R.

1. I is an S-semiprime ideal of a semiring R.

2. There exists an s ∈ S for all a ∈ R, if aRa ⊆ I, then sa ∈ I.

Theorem 4.5. Let R be a semiring and S a multiplicatively closed subset of R.

Then we consider the following conditions for an ideal I of a semiring R.

(a) I is an S-k-semiprime ideal of a semiring R.

(b) There exists an s ∈ S for any a ∈ R, if aRa ⊆ I, then sa ∈ I.

(c) I is an S-semiprime ideal of a semiring R.

Then we have the following sequence of implications:

(1) ⇒ (2) ⇒ (3).

Corollary 4.6. Let R be a commutative semiring, S ⊆ R a multiplicatively closed

set and I be an ideal of R disjoint with S. If I is an S-k-semiprime ideal of R
then there exists an s ∈ S such that for any a ∈ R with a2 ∈ I implies that

sa ∈ I.

Example 4.7. Let us consider the commutative semiringR = {

(
a 0
0 0

)
|a ∈ Z+

12}

and S = {

(
1 0
0 0

)
,

(
4 0
0 0

)
} be the multiplicative subset of R. We consider the

ideal I = {

(
0 0
0 0

)
,

(
9 0
0 0

)
}. Then I ∩ S = ∅ and I is a k-ideal.

Now

(
3 0
0 0

)(
3 0
0 0

)
∈ I but

(
3 0
0 0

)
/∈ I. So I is not a k-semiprime ideal.

But there exists s =

(
4 0
0 0

)
∈ S such that s

(
3 0
0 0

)
∈ I. Hence I is an S-k-

semiprime ideal of R.



312 S. Bhowmick, J. Goswami and S. Kar

Proposition 4.8. Let R be a commutative semiring, S ⊆ R a multiplicatively

closed set and I a 2-absorbing k-ideal of R disjoint with S. Then I is an S-
k-semiprime ideal of R if and only if I : s is k-semiprime ideal of R for some

s ∈ S.

Proof. Let I be an S-k-semiprime ideal of R there exists an s ∈ S such that for
any a ∈ R with a2 ∈ I implies that sa ∈ I. We show, I : s is a k-semiprime ideal
of R.

Let a ∈ R and a2 ∈ I : s which implies that saa ∈ I. Since I is a 2-absorbing
so it follows that sa ∈ I or a2 ∈ I and thus sa ∈ I. So a ∈ I : s. Thus, I : s is
a semiprime ideal of R. Then I : s ⊆ I : s. Now, let x ∈ I : s imply that x ∈ R
and x+ y ∈ I : s for some y ∈ I : s. This implies that x ∈ R and s(x+ y) ∈ I for
some sy ∈ I. It follows that sx ∈ I and thus x ∈ I : s. So, I : s = I : s. Thus,
I : s is a k-ideal of R and hence I : s is a k-semiprime ideal of R.

Conversely, let I : s be a k-semiprime ideal. We show, I is an S-k-semiprime
ideal. Let a2 ∈ I which implies that sa2 ∈ I and it follows that a2 ∈ I : s. We
get a ∈ I : s and hence sa ∈ I. Thus, I is an S-semiprime ideal which implies I
is an S-k-semiprime ideal of R since I is a k-ideal of R.

Proposition 4.9. Let R be a commutative semiring and S a multiplicatively

closed subset of R disjoint with a k-ideal I of R. If R ⊆ T be an extension

of commutative semirings, I be an S-k-semiprime ideal of T then I ∩ R is an

S-k-semiprime ideal of R.

Proof. Let I be an S-k-semiprime ideal of T . For every a ∈ T with a2 ∈ I
implies that sa ∈ I. Now let x2 ∈ I ∩ R for x ∈ R ⊆ T . Then x2 ∈ I which
implies that sx ∈ I.

So sx ∈ I ∩R which implies that I ∩R is an S-semiprime ideal of R.

We have I ∩ R ⊆ I ∩R. Let x ∈ I ∩R then x ∈ R and x + y ∈ I ∩ R for
some y ∈ I ∩ R. This implies that x ∈ T and x+ y ∈ I for some y ∈ I. Since I
is a k-ideal of R so x ∈ I and hence x ∈ I ∩R.

Therefore I ∩R = I ∩R. Hence I ∩R is an S-k-semiprime ideal of R.

Proposition 4.10. Let R be a commutative semiring, S ⊆ R a multiplicatively

closed set and J a k-ideal of R disjoint with S. Let I be a proper k-ideal of R
containing J such that I/J ∩ Ŝ = ∅. Then I is an S-k-semiprime ideal of R if

and only if I/J is an Ŝ-k-semiprime ideal of R/J .

Proof. Let I be an S-k-semiprime ideal of R, then there exists an s ∈ S such
that for all a ∈ R with a2 ∈ I implies sa ∈ I and I = I. Let â ∈ R/J such that

â2 ∈ I/J , then â2 ∈ I/J . Since I is a k-ideal so a2 ∈ I and thus sa ∈ I and
therefore ŝa ∈ I/J . Since I/J ⊆ I/J so consider that x̂ ∈ I/J which implies that
x̂ ∈ R/J and x̂+ ŷ ∈ I/J for some ŷ ∈ I/J . Then x ∈ R and x+ y ∈ I for some
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y ∈ I and so x ∈ I. Thus we get x̂ ∈ I/J . Therefore I/J is an Ŝ-k-semiprime
ideal of R/J .

Conversely, if I/J ∩ Ŝ = ∅ then I must be disjoint with S. Let I/J be an Ŝ-
k-semiprime ideal of R/J , then there exists ŝ ∈ Ŝ such that for all â ∈ R/J with

â2 ∈ I/J implies ŝa ∈ I/J . Let a ∈ I with a2 ∈ I then we have â2 ∈ I/J . Thus
ŝâ ∈ I/J and hence sa ∈ I. Since I ⊆ I so consider that x ∈ I which implies that
x ∈ R and x + y ∈ I for some y ∈ I. Then x̂ ∈ R/J and ˆx+ y ∈ I/J for some
ŷ ∈ I/J and so x̂ ∈ I/J . Thus we get x ∈ I. Therefore I is an S-k-semiprime
ideal of R.

Now similar to definitions of S-m-system and S-k-m-system we can define S-
p-system and S-k-p-system respectively and further discuss the characterization
theorem for S-semiprime ideal and S-k-semiprime ideal of a semiring.

Definition 4.11. Let R be a semiring. A nonempty subset N of R containing a
multiplicative closed set S is called an S-p-system if for any x ∈ R, there exists
an s ∈ S and r ∈ R such that sx ∈ N implies that xrx ∈ N .

Theorem 4.12. Let R be a semiring and S a multiplicatively closed subset of R.

A proper ideal I of a semiring R is an S-semiprime ideal of R if and only if Ic

is an S-p-system.

Proof. Let I be an S-semiprime ideal of R if and only if for any x ∈ R if xRx ⊆ I
then there exists an s ∈ S such that sx ∈ I if and only if sx ∈ Ic then there exists
r ∈ R such that xrx /∈ I and so xrx ∈ Ic if and only if Ic is an S-p-system.

Definition 4.13. Let R be a semiring. A nonempty subset N of R containing
a multiplicative closed set S is called an S-k-p-system if (i )for any x ∈ R, there
exists an s ∈ S and r ∈ R such that sx ∈ N implies that xrx ∈ N and (ii) x ∈ N
implies that x /∈ N c.

Example 4.14. Let us consider the commutative semiring R = {

(
a 0
0 0

)
|a ∈

Z+
12} and S = {

(
1 0
0 0

)
,

(
4 0
0 0

)
} be the multiplicatively closed subset of R. We

consider the ideal I = {

(
0 0
0 0

)
,

(
9 0
0 0

)
}. Then Ic is an S-k-p-system.

Theorem 4.15. Let R be a semiring and S a multiplicatively closed subset of R.

A proper ideal I of a semiring R is an S-k-semiprime ideal of R if and only if Ic

is an S-k-p-system.

Proof. Let I be a proper ideal of R. Suppose Ic is an S-k-p-system. Let x ∈ R
such that xRx ⊆ I. If possible let sx /∈ I for any s ∈ S which implies that
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sx ∈ Ic for some s ∈ S. But Ic is S-k-p-system so there exists r ∈ R such that
xrx ∈ Ic and xrx /∈ (Ic)c = I. Which is a contradiction. Hence sx ∈ I and so I
is S-k-semiprime ideal of R.

Conversely, suppose I is an S-k-semiprime ideal of R. So Ic is S-p-system.
Let x ∈ Ic which implies that x /∈ I = I and thus x /∈ (Ic)c. Hence Ic is
S-k-p-system.

Definition 4.16. Let R be a semiring, S a multiplicatively closed subset of R
not containing 0. The semiring R is said to be an S-semiprime semiring if and
only if < 0 > is an S-semiprime ideal of R.

Theorem 4.17. Let R be a semiring, S a multiplicatively closed subset of R not

containing 0. The semiring R is an S-semiprime semiring if and only if there

exists s ∈ S such that for all a ∈ R, if aRa = 0 then that sa = 0.

Proof. Suppose R be as S-semiprime semiring. Then < 0 > is an S-semiprime
ideal of R. Let a ∈ R with aRa = 0 ∈< 0 >. This implies that sa ∈< 0 > and it
follows that sa = 0.

Conversely, let there exists s ∈ S for all a ∈ R with aRb = 0 implies that
sa = 0. Let x ∈ R, we have xRx ∈< 0 >. It implies that xRx = 0 and thus
sx = 0. Hence we get that sx ∈< 0 >. Therefore < 0 > is S-semiprime ideal and
so R is an S-semiprime semiring.

Now we give an analogous result to Proposition 3.31. The proof is similar.

Proposition 4.18. Let R be a semiring with identity and S a multiplicatively

closed subset of R. A proper k-ideal J of R is an S-k-semiprime ideal of R if

and only if Mn(J) is an Md
n(S)-k-semiprime ideal of Mn(R).

We now present an analogous result to one of the most exciting ring theory
results. An ideal of a ring is a semiprime ideal if and only if it is the intersection
of some prime ideals of that ring. T.Y.Lam showed this in [9, Theorem 10.11 ]
in the case of a noncommutative ring. Kar et al. [11] has given a similar result
for the case of k-semiprime ideal. Here we attempt to discuss the case of the
S-semiprime ideal and S-k-semiprime ideal of a semiring.

Proposition 4.19. Let R be a semiring and S a multiplicatively closed subset of

R. Let M be an S-m-system of a semiring R and P be a maximal ideal, maximal

with respect to the condition that M is disjoint with P . Then P is an S-prime

ideal of R.

Proof. Suppose sx, sy /∈ P for all s ∈ S but < x >< y >⊆ P . Since P is
maximal with respect to M ∩P = ∅ so we can write there exists m,m′ ∈ M ⊆ R
such that m ∈ P+ < x >,m′ ∈ P+ < y >. There exists s′ ∈ S and r ∈ R such
that s′m, s′m′ ∈ M implies that mrm′ ∈ M because M is an S-m-system.
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Moreover, mrm′ ∈ (P+ < x >)R(P+ < y >) ⊆ P+ < x >< y >⊆ P .
Which is a contradiction. Hence P is an S-prime ideal.

Definition 4.20. Let R be a semiring and S be any multiplicatively closed
subset of R. For any ideal I of R, we define Γ(I) = {r ∈ R | M ∩ I 6= ∅ for any
S-m-system M containing r}.

Proposition 4.21. Let R be a semiring and S be a multiplicatively closed subset

of R. For any ideal I of R, Γ(I) =
⋂

I ⊆ P, P is an S-prime idealP.

Proof. Let x ∈ Γ(I). Let P be an S-prime ideal of R such that I ⊆ P . Let us
consider that x /∈ P then x ∈ P c. By Theorem 3.18 we have P c is an S-m-system.
So P c ∩ I 6= ∅. This is a contradiction as I ⊆ P . Hence x ∈ P for all S-prime
ideals P such that I ⊆ P . Hence x ∈

⋂
I ⊆ P, P is an S-prime idealP.

Conversely, let x ∈
⋂

I ⊆ P, P is an S-prime idealP. Let us assume that x /∈ Γ(I).
So by definition, there exists an S-m-system M such that x ∈ M and M ∩ I = ∅.
By Zorn’s lemma there exists a maximal ideal J of R such that M ∩ J = ∅. By
Proposition 4.19, J is an S-prime ideal. Since x ∈ M so x /∈ J and thus x /∈ I.
Therefore x /∈

⋂
I ⊆ P, P is an S-prime idealP. Which is a contradiction. Therefore

x ∈ Γ(I).

Now we propose the equivalent result of Proposition 4.21 in the S-k-prime
ideal version with the following definition.

Definition 4.22. Let R be a semiring and S be any multiplicatively closed
subset of R. For any ideal I of R, we define Γ(I) = {r ∈ R | M ∩ I 6= ∅ for any
S-k-m-system containing r}.

Proposition 4.23. Let R be a semiring and S be a multiplicatively closed subset

of R. For any ideal I of R, Γ(I) =
⋂

I ⊆ P, P is an S-k-prime idealP.

Proof. Let x ∈ Γ(I). Let P be an S-k-prime ideal of R such that I ⊆ P . Let
us consider that x /∈ P then x ∈ P c. By Theorem 3.21 we have P c is an S-k-m-
system. So P c ∩ I 6= ∅. This is a contradiction as I ⊆ P . Hence x ∈ P for all
S-k-prime ideals P such that I ⊆ P . Hence x ∈

⋂
I ⊆ P, P is an S-k-prime idealP.

Conversely, let x ∈
⋂

I ⊆ P, P is an S-k-prime idealP. Let us assume that x /∈ Γ(I).
So by definition, there exists an S-k-m-system M such that x ∈ M andM∩I = ∅.
By Zorn’s lemma there exists a maximal ideal J of R such that M ∩ J = ∅. By
Proposition 4.19, J is an S-k-prime ideal. Since x ∈ M so x /∈ J and thus x /∈ I.
Therefore x /∈

⋂
I ⊆ P, P is an S-k-prime idealP. Which is a contradiction. Therefore

x ∈ Γ(I).

Proposition 4.24. Let R be a semiring and S a multiplicatively closed subset

of R. If I and J be two ideals of R such that I ⊆ J then Γ(I) ⊆ Γ(J) and

Γ(I) ⊆ Γ(J).
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Proof. Let r ∈ Γ(I) then for any S-m-system M containing r we have M∩I 6= ∅.
This implies that for any S-m-system M containing r we have M ∩ J 6= ∅. Thus
r ∈ Γ(J) and hence Γ(I) ⊆ Γ(J).

Also, Let r ∈ Γ(I) then for any S-k-m-system M containing r we have
M ∩ I 6= ∅. This implies that for any S-k-m-system M containing r we have
M ∩ J 6= ∅. Thus r ∈ Γ(J) and hence Γ(I) ⊆ Γ(J).
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atică 29 (2021) 173–186.
https://doi.org/10.2478/auom-2021-0024

[2] R.E. Atani and S.E. Atani, Ideal theory in commutative semirings , Buletinul
Academiei De Stiinte A Republicii Moldova Matematica 57 (2008) 14–23.
https://www.math.md/files/basm/y2008-n2/y2008-n2-(pp14-23).pdf

[3] J.N. Chaudhari, 2-absorbing ideals in semirings , Int. J. Algebra 6 (2012) 265–270.
http://www.m-hikari.com/ija/ija-2012/ija-5-8-2012/chaudhariIJA5-8-2012-1.pdf

[4] M.K. Dubey, Prime and weakly prime ideals in semirings , Quasigroups And Related
Systems 20 (2012) 197–202.
https://www.math.md/files/qrs/v20-n2/v20-n2-(pp197-202).pdf

[5] J.S. Golan, Semirings and Affine Equations over Them: Theory and Applications
(Springer Dordrecht, 2003).
https://doi.org/10.1007/978-94-017-0383-3

[6] J.S. Golan, Semirings and their Applications (Kluwer Academic Publishers, Dor-
drecht, 1999).
https://doi.org/10.1007/978-94-015-9333-5

[7] A. Hamed and A. Malek, S-prime ideals of a commutative ring, Beiträge Zur Algebra
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