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Abstract

In this article we extend the results on reverse derivation in rings to
semirings. First we dispose of reverse derivations in prime semirings analo-
gous to Herstein’s result [7]. Then, we prove that reverse derivation is just
an ordinary derivation in semiprime semirings if and only if it is a central
derivation. We also define generalized reverse derivations and obtain some
commutativity results which extend the results in [11]. The primary tech-
nique we use in these results is the use of derivations and reverse derivations
in ring of differences R∆ corresponding to the semiring R and the fact that
R is embedded in R∆. This fact allows us to travel back and forth between
R and R∆ and serve as a key tool in obtaining the desired results.
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1. Introduction

Herstein introduced the concept of reverse derivations in rings [7]. In the same
paper, he proved that in prime rings reverse derivation is just an ordinary deriva-
tion. This made the researchers turn their focus to semiprime rings wherein the
concept of reverse derivation and derivation are not the one and the same as shown
by Samman and Alyamani in [9] (Example 2.3). Hence, from thereon several re-
searchers extended the idea of reverse derivations in many ways. In one direction
Sugantha Meena and Chandramouleeswaran [10] introduced reverse derivations
in semirings and presented some of its basic properties. In our paper, we prove
that in an additively cancellative semiprime semirings, a reverse derivation is
just an ordinary derivation if and only if it is a central derivation, analogous to
the one in rings. In the other direction Aboubakr and González [1] introduced
the concept of generalized reverse derivations in semiprime rings. These gener-
alizations served as motivation for several authors and plenty of research papers
were produced in the last decade. Recently Ahmed and Dudek [2] introduced
generalized reverse derivations in semirings and presented conditions that lead
to the commutativity of additively inverse semirings. For more information on
derivation in semirings one can refer to the survey paper by Dimitrov [3]. In-
spired by these, we present some commutativity results in additively cancellative
semiprime semirings using the concept of generalized reverse derivation.

2. Definitions and examples

In this section we define the concept of reverse derivation and generalized reverse
derivation in semirings. We refer to Golan [6] for the basic definitions presented
below in semiring theory and we refer to Ganesh and Selvan [4] for the definition
of the derivation d∆ in ring of differences (R∆) of a semiring (R) corresponding
to the derivation d in R. This serves as a platform to travel between R and R∆

and help immensely to use the results in rings and to be able to extend it to
semirings.

Definition 2.1 [6]. Let R be a semiring and a, b, c ∈ R. R is called additively
cancellative if and only if a+ b = a+ c implies b = c.

Definition 2.2 [6]. Let R be a semiring and a, b ∈ R. R is called a yoked
semiring if there exists a r ∈ R such that either a = b+ r or b = a+ r.

Definition 2.3 [6]. Let R be an additively cancellative semiring and then the
corresponding ring of differences, denoted by R∆ is defined as follows:

R∆ = {a− b : a, b ∈ R}.
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In R∆, we have a − b = c − d if and only if there exists r, r′ ∈ R such that
a + r = c + r′ and b + r = d + r′. The zero element and multiplicative identity
of R∆ are r − r and 1 − 0 respectively. For a − b, c − d ∈ R∆, addition and
multiplication is given by

(a− b) + (c− d) = (a+ c)− (b+ d)

(a− b)(c− d) = (ac+ bd)− (ad+ bc).

We also note that the embedding of R to the ring of differences R∆ is due to the
map r 7→ r − 0, for each r ∈ R.

Remark 2.4. In the next two sections, we refer the semiring R to be additively
cancellative (unless stated otherwise) so that the correspondingR∆ can be defined
as above.

Definition 2.5 [6]. A function d of R into R is called a derivation of a semiring
R if it satisfies the following conditions.

(i) d(r + s) = d(r) + d(s), ∀ r, s ∈ R and

(ii) d(rs) = d(r)s + rd(s), ∀ r, s ∈ R.

Definition 2.6 [4]. Let R be a semiring with derivation d. Let R∆ be the ring of
differences of the semiring R. Then, d∆ is a function in R∆ induced by d, defined
as follows.

d∆ : R∆ → R∆

d∆(a− b) = d(a)− d(b), ∀ a, b ∈ R.

We refer the reader to [4] to see that d∆ is indeed a derivation in R∆, if d. is a
derivation in R.

Definition 2.7 [6]. Let R be a semiring and I be an ideal of R. We call I a
k-ideal if r ∈ I and r+ s ∈ I implies s ∈ I, for r, s ∈ R. k-ideals are also referred
as subtractive ideals.

Definition 2.8. Let R be a semiring and f be a mapping of R to itself. We
call f a central map if f(r) ∈ Z(R) for all r ∈ R, where Z(R) is the centre of
R. Further, we call f a central derivation (central reverse derivation) if f is a
derivation of R (if f is a reverse derivation of R).

The following definitions in semirings is analogous to the one in rings [1, 7].

Definition 2.9 [7]. Let R be a semiring and let ∂ be an additive mapping of R
into R such that ∂(rs) = ∂(s)r+ s∂(r), for all r, s ∈ R. We call this map ∂ to be
a reverse derivation of R.
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We present some examples below to motivate the study of reverse derivations
in semirings.

Example 2.10. Let R be a semiring and S =











0 a b

0 0 c

0 0 0



 : a, b, c ∈ R







.

Then, it is easy to see that S is a semiring. Let us define a map ∂ : S → S by

∂





0 a b

0 0 c

0 0 0



 =





0 0 c

0 0 0
0 0 0



. Clearly, ∂(AB) = ∂(B)A+B∂(A) for all A,B ∈ S,

proving that ∂ is a reverse derivation. In addition, one can easily verify that ∂ is
also a derivation.

Example 2.11. Let R be a semiring and S =

{(

a b

0 0

)

: a, b, c ∈ R

}

. Then, we

can clearly see that S is a semiring. Let d be a map from S to S given by

d

(

a b

0 0

)

=

(

0 a+ b

0 0

)

. It is easy to check that d(AB) = d(A)B + Ad(B) for

all A,B ∈ S, but d(B)A +Bd(A) 6= d(AB). Hence, d is not a reverse derivation
but an ordinary derivation.

Example 2.12. Let R be a semiring and S =

{(

a b

0 c

)

: a, b, c ∈ R

}

.

It is clear that S is a semiring. Let d be a map from S to S given by

d

(

a b

0 c

)

=

(

0 b

0 0

)

. If we set A =

(

a b

0 c

)

and B =

(

d e

0 f

)

, then it is easy to

verify that d(AB) =

(

0 ae+ bf

0 0

)

= d(A)B + Ad(B) for all A,B ∈ S. Thus, d

is a derivation. On the other hand, we see that

d(B)A+Bd(A) =

(

0 ec+ db

0 0

)

6= d(AB). Hence, d is not a reverse derivation.

The examples presented above shows that the set of derivations and the set of
reverse derivations are not the same. In addition, the following example illustrate
the fact that there exists reverse derivations that are not derivations.

Example 2.13 [10]. Let R be a semiring and let S = R⊕R. If we define addition
and multiplication componentwise, then S becomes a semiring. Let S1 and S2 be
semirings defined in the same way as S and let ∂1 and ∂2 be the reverse derivations
respectively. Let us define a map ∂ : S1 → S2 by ∂(r1, r2) = (∂2(r1), ∂1(r2)).
Then ∂ is indeed a reverse derivation but not a derivation.

Remark 2.14. Based on the above Definition 2.9, one can define the correspond-
ing map ∂∆ in ring of differences R∆ of a semiring R, as an additive map such
that ∂∆(a− b) = ∂(a)− ∂(b), where a, b ∈ R. We prove that this ∂∆ is indeed a
reverse derivation in R∆ in Lemma 3.6.
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Definition 2.15 [1]. Let R be a semiring and ∂ be a reverse derivation. We define
l-generalized reverse derivation (r-generalized reverse derivation) as an additive
map F : R → R such that it satistifes F (rs) = F (s)r + s∂(r) for all r, s ∈ R

(resp. F (rs) = ∂(s)r + sF (r)).

Remark 2.16. Based on the above Definition 2.15, one can define the corre-
sponding map F∆ in ring of differences R∆ of a semiring R, as an additive map
such that F∆(a − b) = F (a) − F (b), where a, b ∈ R. We prove that this F∆ is
indeed a l-generalized reverse derivation in R∆ in Lemma 4.1 (resp. r-generalized
reverse derivation in Remark 4.2).

Example 2.17. Let R be a semiring and S =











0 a b

0 0 c

0 0 0



 : a, b, c ∈ R







. Then,

it is easy to see that S is a semiring. Let us define the mappings F : S → S and
∂ : S → S as follows:

F





0 a b

0 0 c

0 0 0



 =





0 0 a

0 0 0
0 0 0



; ∂





0 a b

0 0 c

0 0 0



 =





0 0 c

0 0 0
0 0 0



.

From Example 2.10 we know that ∂ is a reverse derivation. For A,B ∈ S it is easy
to verify that F (AB) = F (B)A+B∂(A) and F (AB) = ∂(B)A+BF (A). Hence,
F is both l-generalized reverse derivation and r-generalized reverse derivation.

3. Reverse derivations in rings and semirings

After Herstein bid adieu to reverse derivation in prime rings, it is natural for
the researchers to turn their attention to reverse derivations in semiprime rings.
Samman and Alyamani [9] proved that in a semiprime rings, a reverse derivation
is just an ordinary derivation if and only if it is a central derivation. This served
as a motivation for the author to investigate the same in the context of semiprime
semirings. We present two different proofs of the main result. In the first proof
(Theorem 3.8) we prove it directly in semirings, whereas in the second proof
(Theorem 3.11) we travel to R∆ and come back to R to prove the result. We also
present a shorter proof of Herstein’s Theorem 2.1 in [7]. First, we shall state the
following results from [8].

Lemma 3.1 [8]. Let R be an ring and for any r ∈ R, let T (r) = {a ∈ R :
a(rx− xr) = 0,∀x ∈ R}. Then T (r) is an ideal of R.

Lemma 3.2 [8]. Let R be a prime ring and for r 6= 0 such that r(ax− xa) = 0,
for all x ∈ R, then a ∈ Z(R), where Z(R) is the centre of R.
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Now, we are ready to give a shorter proof of a weaker version of Theorem 2.1
in [7].

Theorem 3.3. If R is prime ring and ∂ is a non-zero reverse derivation of R,
then ∂ is just an ordinary derivation of R.

Proof. Since ∂ is non-zero, there exists y ∈ R such that ∂(y) 6= 0. So, we have

∂(xy2) = ∂((xy)y), ∀x ∈ R

∂(y2)x+ y2∂(x) = ∂(y)xy + y∂(xy), ∀x ∈ R

∂(y)yx+ y∂(y)x+ y2∂(x) = ∂(y)xy + y∂(y)x+ y2∂(x), ∀x ∈ R

∂(y)yx = ∂(y)xy, ∀x ∈ R

∂(y)(yx− xy) = 0, ∀x ∈ R.

Then, by Lemma 3.2, we have y ∈ Z(R) so that ∂(xy) = ∂(yx) = ∂(x)y + x∂(y).
Thus, ∂ is just an ordinary derivation.

Motivated by Lemma 3.1, we investigate the analogue in semiring and it
turns out that T (r) is infact a k-ideal.

Lemma 3.4. Let R be an additively cancellative semiring and for any r ∈ R, let
T (r) = {a ∈ R : arx = axr,∀x ∈ R}. Then T (r) is a k-ideal of R.

Proof. It is easy to see that T (r) is a left ideal of R. Now let us prove that it
is also a right ideal. That is, for u ∈ T (r) and x ∈ R, then we need to prove
ux ∈ R. Note that if x ∈ R, then xy ∈ R for y ∈ R and since u ∈ T (r) we
get urxy = uxyr. Thus, urxy + uxry = uxyr + uxry. Since u ∈ T (r) and R is
additively cancellative, uxry = uxyr for all x ∈ R so that ux ∈ T (r). Thus, T (r)
is a two-sided ideal of R.

If a ∈ T (r) and a+ b ∈ T (r) then

(a+ b)rx = (a+ b)xr

arx+ brx = axr + bxr

arx+ brx = arx+ bxr (since a ∈ T (r))

brx = bxr (since R is additivelly cancellative).

Thus b ∈ T (r) and hence T (r) is a k-ideal of R.

Lemma 3.5. Let R be a semiring, r be an element of R and Z(R) be the center
of R. If r(uv) = r(vu),∀u, v ∈ R, then r ∈ Z(R).
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Proof. Let R∆ be the corresponding ring of differences of R. Let x, y ∈ R∆ and
x = a− b, y = c− d where a, b, c, d ∈ R. Then for any r ∈ R, we have

r(xy) = r((a− b)(c− d))

= r((ac+ bd)− (ad+ bc))

= rac+ rbd− rad− rbc

= rca+ rdb− rda− rcb (by hypothesis)

= r((ca+ db)− (cb+ da))

= r((c− d)(a − b))

= r(yx).

Thus, r ∈ Z(R∆) and hence we have r ∈ Z(r).

Lemma 3.6. Let R be a semiring and ∂ be a reverse derivation of R, then the
mapping ∂∆ (as given in Remark 2.14) corresponding to ∂ is a reverse derivation
of R∆.

Proof. Let x, y ∈ R∆ and let x = a − b, y = c − d for a, b, c, d ∈ R. Then, we
have

∂∆(xy) = ∂∆((a− b)(c− d))

= ∂∆((ac+ bd)− (ad+ bc))

= ∂(ac+ bd)− ∂(ad + bc)

= ∂(ac) + ∂(bd) − ∂(ad)− ∂(bc)

= ∂(c)a+ c∂(a) + ∂(d)b+ d∂(b) − ∂(d)a − d∂(a) − ∂(c)b− c∂(b)

= ∂(c)a− ∂(c)b − ∂(d)a+ ∂(d)b + c∂(a) − c∂(b) − d∂(a) + d∂(b)

= (∂(c)− ∂(d))(a − b) + (c− d)(∂(a) − ∂(b))

= (∂∆(c− d))(a − b) + (c− d)(∂∆(a− b))

= ∂∆(y)x+ y∂∆(x).

Thus, ∂∆ is a reverse derivation in R∆.

Theorem 3.7. Let R be a prime semiring and ∂ be a non-zero reverse derivation
of R. If R∆ is the corresponding ring of differences of R and ∂∆ the corresponding
mapping induced by ∂, then R is a commutative semi-integral domain (a semiring
in which product of any two non-zero element is again a non-zero element) and
∂ is just an ordinary derivation.

Proof. We know that of R is prime, then R∆ is prime [by Lemma 2.6 in [4]). If
∂ is a non-zero derivation of R, then by Lemma 3.6, the corresponding map ∂∆
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is a non-zero reverse derivation in R∆. Now apply Theorem 2.1 in [7] to see that
R∆ is a commutative integral domain and ∂∆ is just an ordinary derivation. The
result follows immediately since R is embedded in R∆ and the restriction of ∂∆

to R is just ∂.

The above theorem disposes of reverse derivation in prime semirings. Now,
we turn our focus to semiprime semirings.

Theorem 3.8. If R is an additively cancellative semiprime semiring then ∂

is a non-zero reverse derivation of R if and only if it is a central derivation.
Furthermore, ∂ is just an ordinary derivation of R.

Proof. Note that if ∂ is a central derivation then it is obviously a reverse deriva-
tion. We now prove that ∂ is just a central derivation. If ∂ is a reverse derivation,
then for r, s ∈ R, we have the following.

∂(rs2) = ∂((rs)s)

∂(s2)r + s2∂(r) = ∂(s)rs+ s∂(rs)

∂(s)sr + s∂(s)r + s2∂(r) = ∂(s)rs+ s∂(s)r + s2∂(r)

∂(s)sr = ∂(s)rs,

where the last equation is due to the fact that R is additively cancellative. Then,
by Lemma 3.5, we have ∂(s) ∈ Z(R), for all s ∈ R; so that ∂ is central. Also
note that, ∂(rs) = ∂(s)r + s∂(r) = ∂(r)s + r∂(s). Thus, ∂ is just an ordinary
derivation.

Lemma 3.9. Let R be a semiring and ∂ be a reverse derivation of R. Let
R∆ be the corresponding ring of differences of R and ∂∆ be the corresponding
reverse derivation in R∆ induced by ∂. If ∂(r) ∈ Z(R),∀r ∈ R, then ∂∆(x) ∈
Z(R∆),∀x ∈ R∆, where Z(R) is the centre of R and Z(R∆) is the centre of R∆.

Proof. Let x = a− b and y = c− d, where a, b, c, d ∈ R. Then,

∂∆(x)y = (∂∆(a− b))(c − d)

= (∂(a) − ∂(b))(c − d)

= ∂(a)c − ∂(a)d − ∂(b)c + ∂(b)d

= c∂(a) − d∂(a) − c∂(b) + d∂(b), (since ∂ is a central map)

= (c− d)∂(a) − (c− d)∂(b)

= (c− d)(∂(a) − ∂(b))

= (c− d)∂∆(a− b)

= y∂∆(x).

Thus, ∂∆ is a central map in R∆.
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Remark 3.10. The converse of the above lemma is also true.

Theorem 3.11. Let R be an additively cancellative semiprime semiring and R∆

be its corresponding ring of differences. Let ∂ be a reverse derivation of R, then
∂ is just an ordinary derivation if and only if ∂(r) ∈ Z(R) for all r ∈ R, where
Z(R) is the centre of R.

Proof. If ∂ is a central derivation in R, then it is clearly an ordinary derivation
of R. Now we prove that if ∂ is a reverse derivation, then it is indeed a central
derivation.

Note that if R is semiprime, then so is R∆ (by Lemma 3.6 in [5]). Also if ∂ is
a reverse derivation, then the map ∂∆ corresponding to ∂ is a reverse derivation
of R∆ by Lemma 3.6. Now if we apply Proposition 3.1 in [9], we note that ∂∆ is
a central derivation of R∆. The result then follows if we apply Remark 3.10.

Lemma 3.12. Let R be a semiprime semiring and a, b ∈ R. If ∂ is reverse
derivation from R to R defined ∂(r) = ar + rb, then ∂ = 0.

Proof. Let R∆ be the corresponding ring of differences of the semiring R. We
define the induced map ∂∆ : R∆ → R∆ defined by ∂∆(u) = au+ ub for u ∈ R∆

and a, b ∈ R. First we prove that ∂∆ is a reverse derivation in R∆.
Let u, v ∈ R∆ such that u = x− y, v = z − w for x, y, z, w ∈ R.

∂∆(uv) = ∂∆((x− y)(z − w))

= ∂∆((xz + yw)− (xw + yz))

= ∂(xz) + ∂(yw) − ∂(xw)− ∂(yz)

= ∂(z)x+ z∂(x) + ∂(w)y + w∂(y)

− ∂(w)x− w∂(x) − ∂(z)y − z∂(y)

= (az + zb)x+ z(ax+ xb) + (aw + wb)y + w(ay + yb)

− (aw + wb)x− w(ax+ xb)− (az + zb)y − z(ay + yb)

= azx+ zbx+ zax+ zxb+ awy + wby + way + wyb

− awx−wbx− wax− wxb− azy − zby − zay − zyb

= azx− azy − awx+ awy + zbx− zby − wbx+ wby

+ zax− zay + zxb− zyb− wax+ way − wxb+ wyb

= (az − aw + zb− wb)(x− y) + (z − w)(ax− ay − xb− yb)

= [a(z − w) + (z −w)b](x − y) + (z − w)[a(x − y) + (x− y)b]

= ∂∆(z − w)(x− y) + (z − w)∂∆(x− y)

= ∂∆(v)u+ v∂∆(u).

Thus, ∂∆ is a reverse derivation in R∆. Now, applying Proposition 3.4 in [9]
yields ∂∆ = 0 which implies ∂ = 0 since ∂ is the restriction of ∂∆ to R.
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4. Generalized reverse derivations and commutativity of

semiprime semirings

Aboubakr and González in [1] introduced the concept of generalized reverse
derivations in semiprime rings. In an attempt to generalize this concept to semir-
ings, Ahmad and Dudek [2] introduced the generalised reverse derivations in
semirings and established some commutativity results in the class of prime MA-
semirings. For example, whenever generalized reverse derivation vanishes on a
commutator, then the semiring is commutative. They also established commuta-
tivity conditions on semiprime MA-semirings.

In this section, we generalize the results in [1] to additively cancellative
semiprime semirings. We prove that the generalized reverse derivation is just
an ordinary derivation if and only if it is contained in the centralizer of a non
zero ideal. We also investigate and extend the commutativity results obtained in
[11] to additively cancellative semiprime semirings using the concept of general-
ized reverse derivations.

Lemma 4.1. Let R be a semiprime semiring and F be a l-generalized reverse
derivation associated with a reverse derivation ∂. If R∆ is the corresponding
ring of differences of the semiring R and ∂∆ is the induced reverse derivation
in R∆, then F∆ (as defined in Remark 2.16) is an induced l-generalized reverse
derivation of R∆ corresponding to F , associated with ∂∆.

Proof. Let x = a− b, y = c− d ∈ R∆, where a, b, c, d ∈ R. We need to prove the
following.

(1) F∆(xy) = F∆(y)x+ y∂∆(x)

Consider the LHS of (1). We have

F∆(xy) = F∆((a− b)(c− d))

= F∆((ac+ bd)− (ad+ bc))

= F (ac+ bd)− F (ad+ bc)

= F (c)a+ c∂(a) + F (d)b+ d∂(b)− F (d)a − d∂(a)− F (c)b − c∂(b)

= F (c)a− F (c)b − F (d)a + F (d)b+ c∂(a) − c∂(b) − d∂(a) + d∂(b)

= ((F (c) − F (d))(a − b) + (c− d)(∂(a) − ∂(b))

= (F∆(c− d))(a − b) + (c− d)(∂∆(a− b))

= F∆(y)x+ y∂∆(x).

Thus, equation (1) holds and hence the lemma is true.

Remark 4.2. We can prove the above result for r-generalized reverse derivation
in the same way.



Reverse derivations and generalized reverse derivations in ... 227

Theorem 4.3. Let R be a semiring, I be a nonzero ideal of R and ∂ : I → R be a
non-zero reverse derivation. Then there exists an l-generalized reverse derivation
F : I → R corresponding to ∂ if and only if ∂(I), F (I) ⊆ CR(I). Furthermore,
if ∂(I) ⊆ CR(I) then, ∂ is a derivation on I and if F (I) ⊆ CR(I), then F is an
r-generalized derivation corresponding to ∂ on I.

Proof. Let R be a semiring and ∂ be a reverse derivation in I. Let R∆ be the
corresponding ring of differences of R and ∂∆ be the reverse derivation in R∆

induced by ∂. Let F be a l-generalized reverse derivation of I, then by Lemma
4.1 we have F∆ be the corresponding l-generalized reverse derivation of R∆. Let
I∆ be the corresponding ideal of I in R∆. Hence by Theorem 3.1 in [1] we have
∂∆(I∆), F∆(I∆) ⊆ CR∆(I∆). Now we prove that CR∆(I∆) ∩R = CR(I).

CR∆(I∆)∩R ⊆ CR(I) is clear. On the other hand, let x ∈ CR(I) and y ∈ I∆

and let y = a− b for a, b ∈ I. Then we have, xy = x(a− b) = xa−xb = ax− bx =
(a − b)x = yx which implies that x ∈ CR∆(I∆) proving CR∆(I∆) ∩ R ⊇ CR(I).
Now we note that since R is embedded in R∆ the restriction of ∂∆ and F∆ to R

is just ∂ and F respectively and hence we are done.

Theorem 4.4. Let R be a semiring, I be a nonzero ideal of R and ∂ : I → R be a
non-zero reverse derivation. Then there exists an r-generalized reverse derivation
F : I → R corresponding to ∂ if and only if ∂(I), F (I) ⊆ CR(I). Furthermore,
if ∂(I) ⊆ CR(I) then, ∂ is a derivation on I and if F (I) ⊆ CR(I), then F is an
l-generalized derivation corresponding to ∂ on I.

Proof. Similar to Theorem 4.3.

Motivated by the commutativity results obtained in [11], we study the fol-
lowing situations in the context of semirings. One should note that the results in
[11] holds true for a multiplicative (generalized) reverse derivation in semiprime
rings. For a ring R, it is defined as a map F from R to R associated with any
map g (not necessarily a reverse derivation) such that F (rs) = F (s)r + sg(r).
We define F to be a multiplicative (generalized) reverse derivation in semirings
analogously. In the remainder of this section the notation a◦b denotes the Jordan
product given by ab+ ba for a, b ∈ R and similarly x ◦ y = xy+ yx for x, y ∈ R∆.

Lemma 4.5. Let R be a semiprime semiring and F be a multiplicative (gen-
eralized) reverse derivation and g be any map from R to R. Let R∆ be the
corresponding ring of differences of R and F∆ be the multiplicative (generalized)
reverse derivation corresponding to F and g∆ be the map corresponding to g. Let
I be an ideal of R and I∆ be the corresponding ideal in R∆. For r, s ∈ I, we have
the following.

(i) If F (r)F (s) + rs = 0, then F∆(x)F∆(y) + xy = 0 for all x, y ∈ I∆;

(ii) If F (r)F (s) = rs, then F∆(x)F∆(y) = xy for all x, y ∈ I∆;
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(iii) If F (r)F (s) + sr = 0, then F∆(x)F∆(y) + yx = 0 for all x, y ∈ I∆;

(iv) If F (r)F (s) = sr, then F∆(x)F∆(y) = yx for all x, y ∈ I∆;

(v) If F (r)F (s) + g(s)F (r) = 0, then F∆(x)F∆(y) + g∆(y)F∆(x) = 0 for all
x, y ∈ I∆;

(vi) If F (r)F (s) = g(s)F (r), then F∆(x)F∆(y) = g∆(y)F∆(x) for all x, y
∈ I∆;

(vii) If F (rs) + r ◦ s = 0, then F∆(xy) + x ◦ y = 0 for all x, y ∈ I∆;

(viii) If F (rs) = r ◦ s, then F∆(xy) = x ◦ y for all x, y ∈ I∆;

(ix) If F (rs) + rs = sr, then F∆(xy) + xy = yx for all x, y ∈ I∆;

(x) If F (rs) + sr = rs, then F∆(xy) + yx = xy for all x, y ∈ I∆;

(xi) If F (r)g(s) + sr = g(s)F (r), then F∆(x)g∆(y) + yx = g∆(y)F∆(x) for
all x, y ∈ I∆;

(xii) If F (r)g(s) = sr + g(s)F (r), then F∆(x)g∆(y) = yx + g∆(y)F∆(x) for
all x, y ∈ I∆;

(xiii) If F (r)g(s) + rs = g(s)F (r), then F∆(x)g∆(y) + xy = g∆(y)F∆(x) for
all x, y ∈ I∆;

(xiv) If F (r)g(s) = rs + g(s)F (r), then F∆(x)g∆(y) = xy + g∆(y)F∆(x) for
all x, y ∈ I∆;

(xv) If F (r)g(s)+rs = g(s)F (r)+sr, then F∆(x)g∆(y)+xy = g∆(y)F∆(x)+
yx for all x, y ∈ I∆;

(xvi) If F (r)g(s)+sr = g(s)F (r)+rs, then F∆(x)g∆(y)+yx = g∆(y)F∆(x)+
xy for all x, y ∈ I∆;

(xvii) If F (rs) = F (r)F (s), then F∆(xy) = F∆(x)F∆(y) for all x, y ∈ I∆;

(xviii) If F (rs) = F (s)F (r), then F∆(xy) = F∆(y)F∆(x) for all x, y ∈ I∆.

Proof. (i) Let x, y ∈ I∆ where x = a − b, y = c − d for a, b, c, d ∈ I. Then, we
have

F∆(x)F∆(y) + xy = F∆(a− b)F∆(c− d) + (a− b)(c− d)

= (F (a) − F (b))(F (c) − F (d)) + ac+ bd− ad− bc

= F (a)F (c) − F (a)F (d) − F (b)F (c) + F (b)F (d)

+ ac+ bd− ad− bc

= (F (a)F (c) + ac)− (F (a)F (d) + ad)

− (F (b)F (c) + bc) + (F (b)F (d) + bd)

= 0
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since each term in the penultimate step is zero by hypothesis.
Proof of the results (ii) to (xviii) are fairly straightforward if we follow along

the lines of proof of result (i).

In the following theorems we denote R be a semiprime semiring and R∆ be
the corresponding ring of differences (semirpime ring); and F be a multiplicative
(generalized) reverse derivation of R associated with reverse derivation ∂ and F∆

be the corresponding multiplicative (generalized) reverse derivation associated
with reverse derivation ∂∆; g be any map in R and g∆ be the corresponding map
in R∆; and I be an ideal of R and I∆ be the corresponding ideal of R∆. We use
these corresponding mappings and ideals in R∆ to prove the results in a ring and
then we use the fact that F∆ and g∆ restricted to R is just F and g respectively.

Theorem 4.6. For r, s ∈ I, if F (r)F (s) + rs = 0, then R is commutative.

Proof. Apply above Lemma 4.5(4.5) and Theorem 2.1 in [11], then the result is
immediate.

Theorem 4.7. For r, s ∈ I, if F (r)F (s) = rs, then R is commutative.

Proof. Apply above Lemma 4.5(4.5) and Theorem 2.1 in [11], then the result
follows.

Theorem 4.8. For r, s ∈ I, if F (r)F (s) + sr = 0, then R is commutative.

Proof. Apply above Lemma 4.5(4.5) and Theorem 2.2 in [11], then the result is
immediate.

Theorem 4.9. For r, s ∈ I, if F (r)F (s) = sr, then R is commutative.

Proof. Apply above Lemma 4.5(4.5) and Theorem 2.2 in [11], then the result
follows.

Theorem 4.10. For r, s ∈ I, if F (r)F (s)+g(s)F (r) = 0, then R is commutative.

Proof. Apply above Lemma 4.5(4.5) and Theorem 2.3 in [11] and Corollary 2.4
in [11], then the result holds.

Theorem 4.11. For r, s ∈ I, if F (r)F (s) = g(s)F (r), then R is commutative.

Proof. Apply above Lemma 4.5(4.5) and Theorem 2.3 in [11] and Corollary 2.4
in [11], then the result holds.

Theorem 4.12. For r, s ∈ I, if F (rs) + r ◦ s = 0, then R is commutative.

Proof. Apply above Lemma 4.5(4.5) and Theorem 2.8 in [11], then the result
follows.
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Theorem 4.13. For r, s ∈ I, if F (rs) = r ◦ s, then R is commutative.

Proof. Apply above Lemma 4.5(4.5) and Theorem 2.8 in [11], then the result
follows.

Theorem 4.14. For r, s ∈ I, if F (rs) + rs = sr, then R is commutative.

Proof. Apply above Lemma 4.5(4.5) and Theorem 2.9 in [11], then the result is
immediate.

Theorem 4.15. For r, s ∈ I, if F (rs) + sr = rs, then R is commutative.

Proof. Apply above Lemma 4.5(4.5) and Theorem 2.9 in [11], then the result is
immediate.

Theorem 4.16. For r, s ∈ I, if F (r)g(s) + sr = g(s)F (r), then g is commuting.

Proof. Apply above Lemma 4.5(4.5) and Theorem 2.10 in [11], then the result
holds true.

Theorem 4.17. For r, s ∈ I, if F (r)g(s) = sr+ g(s)F (r), then g is commuting.

Proof. Apply above Lemma 4.5(4.5) and Theorem 2.10 in [11], then the result
holds true.

Theorem 4.18. For r, s ∈ I, if F (r)g(s) + rs = g(s)F (r), then g is commuting.

Proof. Apply above Lemma 4.5(4.5) and Theorem 2.11 in [11], then the result
follows.

Theorem 4.19. For r, s ∈ I, if F (r)g(s) = rs+ g(s)F (r), then g is commuting.

Proof. Apply above Lemma 4.5(4.5) and Theorem 2.11 in [11], then the result
follows.

Theorem 4.20. For r, s ∈ I, if F (r)g(s) + rs = g(s)F (r) + sr, then g is com-
muting.

Proof. Apply above Lemma 4.5(4.5) and Theorem 2.12 in [11], then the result
is immediate.

Theorem 4.21. For r, s ∈ I, if F (r)g(s) + sr = g(s)F (r) + rs, then g is com-
muting.

Proof. Apply above Lemma 4.5(4.5) and Theorem 2.12 in [11], then the result
is immediate.
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Theorem 4.22. For r, s ∈ I, if one of the following condition holds, then g is
commuting.

(i) F (rs) = F (r)F (s);

(ii) F (rs) = F (s)F (r).

Proof. Apply above Lemma 4.5(4.5),(4.5) and Theorem 2.13 in [11], then the
result is true.
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