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Abstract

The concept of σ-filters is introduced in distributive lattices and studied
some properties of these classes of filters. Two sets of equivalent conditions
are derived one for every µ-filter to become a σ-filter and the other for every
filter to become a σ-filter of a distributive lattice. A one-to-one correspon-
dence is established between the set of all prime σ-filters of a distributive
lattice and the set of all prime σ-filters of its quotient lattice with respect
to a congruence.
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Introduction

In 1970, the theory of relative annihilators was introduced in lattices by Mark
Mandelker [14] and he characterized distributive lattices in terms of their rel-
ative annihilators. Later many authors introduced the concept of annihilators
in the structures of rings as well as lattices and characterized several algebraic
structures in terms of annihilators. Speed [13] and Cornish [4] made an exten-
sive study of annihilators in distributive lattices. The class of annulets played a
vital role in characterizing many a algebraic structures like normal lattices [3],
quasi-complemented lattices [4]. In [7], Pawar and Thakare introduced the class
of pm-lattices and characterized the pm-latices in topological terms. In [11], the
author investigated thoroughly the properties co-annihilator filters and µ-filters
of distributive lattices. An extensive investigation of co-annihilators was made in
residuated lattices by Rasouli in [8]. In [5], the authors studied certain properties
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co-annihilator filters of residuated lattice in the name of α-filters. In [10], the au-
thor studied the properties of O-filters of distributive lattices and characterized
the O-filters with the help of minimal prime filters. The main aim of this paper
is to study some further properties of co-annihilators in the form of σ-filters of
distributive lattices.

In this note, the concept of σ-filters is introduced in distributive lattices and
their properties are studied with the help of prime filters, co-annihilator filters,
µ-filters, and O-filters. It is observed that every σ-filter of a distributive lattice
is a µ-filter but the converse is not true in general. However, some equivalent
conditions are derived for every µ-filter of a distributive lattice to become a σ-
filter. It is also observed that every O-filter of a distributive lattice is a σ-filter
but not the converse in general. Some necessary and sufficient conditions are
derived for every σ-filter of a distributive lattice to become an O-filter. Some
equivalent conditions are derived to prove that the class of all filters of the form
σ(F ) of a distributive lattice to become a sublattice to the lattice of all filters of
the distributive lattice. A set of equivalent conditions is derived for every filter of
a distributive lattice to become a σ-filter. For any ideal I of a distributive lattice
L, a one-to-one correspondence is obtained between the set of all prime σ-filters
of a distributive lattice L and the set of all prime σ-filters of the quotient lattice
L/ψI

where ψI is an ideal congruence.

1. Preliminaries

The reader is referred to [1, 2, 9, 10] and [11] for the elementary notions and
notations of distributive lattices. However some of the preliminary definitions
and results are presented for the ready reference of the reader.

Definition 1 [1]. A lattice (L,∧,∨) is called distributive if for all x, y, z ∈ L, it
satisfies either of the following properties:

(1) x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z),

(2) x ∨ (y ∧ z) = (x ∨ y) ∧ (x ∨ z).

A non-empty subset A of a lattice L is called an ideal(filter) of L if a ∨ b ∈
A(a ∧ b ∈ A) and a ∧ x ∈ A(a ∨ x ∈ A) whenever a, b ∈ A and x ∈ L. The set
(a] = {x ∈ L | x ≤ a} (resp. [a) = {x ∈ L | a ≤ x}) is called a principal ideal
(resp. principal filter) generated by a. The set I(L) of all ideals of a distributive
lattice L with 0 forms a complete distributive lattice. The set F(L) of all filters
of a distributive lattice L with 1 forms a complete distributive lattice. A proper
ideal P of a lattice L is called prime if for any x, y ∈ L, x∧ y ∈ P implies x ∈ P
or y ∈ P . A proper idealM of a lattice is called maximal if there exists no proper
ideal N such that M ⊂ N . Two prime filters P and Q of a lattice L are called
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co-maximal if P ∨Q = L. The annihilator [13] of a non-empty set A of a lattice
is the set A∗ = {x ∈ L | a ∧ x = 0 for all a ∈ A}. The pseudo-complement [6] b∗

of an element b of a lattice L is the element satisfying

a ∧ b = 0 if and only if a ≤ b∗

where ≤ is the induced order in L. A lattice in which every element has a
pseudo-complement is called a pseudo-complemented lattice. The annihilator of
the principal ideal is given by (x]∗ = (x∗] where ∗ is the pseudo-complementation
on the lattice L.

A bounded distributive lattice L is called a pm-lattice if every prime ideal
of L is contained in a unique maximal ideal of L. Pawar and Thakare [7] have
proved that if L is a pm-lattice then the space max(L) of all maximal ideals of
the lattice L is a T2-space (and hence it is normal). A proper filter P of L is said
to be prime if for any x, y ∈ L, x ∨ y ∈ P implies x ∈ P or y ∈ P . A prime filter
P of a lattice L is called minimal if it is the minimal element in the class of all
prime filters. The dual pseudo-complement [12] b+ of an element b of a lattice L
is the element satisfying

a ∨ b = 1 if and only if b+ ≤ a

where ≤ is the induced order in L. A lattice in which every element has a dual
pseudo-complement is called a dual pseudo-complemented lattice.

Theorem 2 [9]. A prime filter P of a distributive lattice L with 1 is minimal if

and only if to each x ∈ P there exists y /∈ P such that x ∨ y = 1.

For any non-empty subset A of a distributive lattice L with 1, the co-
annihilator of A is define as the set A+ = {x ∈ L | x ∨ a = 1 for all a ∈ A}. For
any non-empty subset A of L, A+ is a filter of L with A ∩A+ = {1}.

Lemma 3 [11]. Let L be a distributive lattice with 1. For any subsets A and B
of L,

(1) A ⊆ B implies B+ ⊆ A+,

(2) A ⊆ A++,

(3) A+++ = A+,

(4) A+ = L if and only if A = {1}.

From the above lemma, it can be pointed out that the correspondence A 7→
A+ is a Galois connection between the subsets of the lattice L. In case of filters
of lattices, the following properties of co-annihilators hold.

Proposition 1.1 [11]. Let L be a distributive lattice with 1. For any filters F
and G of L, we have
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(1) F+ ∩ F++ = {1},

(2) F ∩G = {1} implies F ⊆ G+,

(3) (F ∨G)+ = F+ ∩G+,

(4) (F ∩G)++ = F++ ∩G++.

It is clear that ([x))+ = {x}+ and is simply denoted by (x)+ which is called
the co-annulet. Then clearly (0)+ = {1}. It is clear that [x)+ = [x+) where + is
the dual pseudo-complementation on the lattice L. An element x of a lattice L
is called co-dense if (x)+ = {1}. The following corollary is a direct consequence
of the above results.

Corollary 4 [11]. Let L be a distributive lattice with 1. For any a, b, c ∈ L,

(1) a ≤ b implies (a)+ ⊆ (b)+,

(2) (a ∧ b)+ = (a)+ ∩ (b)+,

(3) (a ∨ b)++ = (a)++ ∩ (b)++,

(4) (a)+ ∩ (b)+ = {1} if and only if (a)+ ⊆ (b)++,

(5) (a)+ = L if and only if a = 1.

A filter F of a distributive lattice L with 1 is called a co-annihilator filter

[11] if F = F++. A filter F of a distributive lattice L with 1 is called a µ-filter
[11] of L if x ∈ F implies (x)++ ⊆ F for all x ∈ L. Every co-annihilator filter of
a distributive lattice is a µ-filter. A filter F of a distributive lattice L is called
an O-filter [10] if F = O(I) for some ideal I of L, where O(I) = {x ∈ L | x∨ a =
1 for some a ∈ I}. Throughout this note, all lattices are bounded distributive
lattice unless otherwise mentioned.

2. Main results

In this section, the concept of σ-filters is introduced in lattices. A set of equiv-
alent conditions is derived for every filter of a lattice to become a σ-filter. In-
terconnections among σ-filters, µ-filters, O-filters, and minimal prime filters are
investigated.

Definition 5. For any filter F of a lattice L, define the set σ(F ) as follows

σ(F ) = {x ∈ X | (x)+ ∨ F = L}.

Clearly σ(L) = L. For F = {1}, obviously we get σ({1}) = {1}.

Lemma 6. For any filter F of a lattice L, σ(F ) is a filter of L.
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Proof. Clearly 1 ∈ σ(F ). Let x, y ∈ σ(F ). Then (x)+∨F = L and (y)+∨F = L.
Hence

(x ∧ y)+ ∨ F =
{

(x)+ ∩ (y)+
}

∨ F

=
{

(x)+ ∨ F
}

∩
{

(y)+ ∨ F
}

= L ∩ L

= L

which gives that x ∧ y ∈ σ(F ). Let x ∈ σ(F ) and x ≤ y. Then (x)+ ⊆ (y)+ and
thus L = (x)+ ∨ F ⊆ (y)+ ∨ F . Hence y ∈ σ(F ). Thus σ(F ) is a filter of L.

In the following result, some elementary properties of σ(F ) are derived.

Lemma 7. For any two filters F,G of a lattice L, we have

(1) σ(F ) ⊆ F ,

(2) F ⊆ G implies σ(F ) ⊆ σ(G),

(3) σ(F ∩G) = σ(F ) ∩ σ(G).

Proof. (1) Let x ∈ σ(F ). Then (x)+ ∨ F = L. Hence x ∈ (x)+ ∨ F . Thus
x = a ∧ b for some a ∈ (x)+ and b ∈ F . Since a ∈ (x)+, we get a ∨ x = 1. Thus
x = x ∨ x = (a ∧ b) ∨ x = (a ∨ x) ∧ (b ∨ x) = 1 ∧ (b ∨ x) = b ∨ x ∈ F . Therefore
σ(F ) ⊆ F .

(2) Suppose F ⊆ G. Let x ∈ σ(F ). Then L = (x)+∨F ⊆ (x)+∨G. Therefore
x ∈ σ(G).

(3) Clearly σ(F ∩G) ⊆ σ(F )∩ σ(G). Conversely, let x ∈ σ(F )∩ σ(G). Then
(x)+ ∨ F = (x)+ ∨ G = L. Now (x)+ ∨ (F ∩ G) = {(x)+ ∨ F} ∩ {(x)+ ∨ G} =
L ∩ L = L. Hence x ∈ σ(F ∩ G). Thus σ(F ) ∩ σ(G) ⊆ σ(F ∩ G). Therefore
σ(F ∩G) = σ(F ) ∩ σ(G).

Definition 8. A filter F of a lattice L is called a σ-filter if F = σ(F ).

Clearly the improper filters {1} and L are trivial σ-filters of L. It is obvious
that a proper σ-filter of a lattice contains no co-dense elements. In [11], the class
of all µ-filters of a lattice L is characterized in terms of co-annihilators of the
lattice. In the following theorem, it is proved that the class of all µ-filters of a
lattice L contains properly the class of all σ-filters of L.

Proposition 2.1. Every σ-filter of a lattice is a µ-filter.

Proof. Let F be a σ-filter of a lattice L. Then σ(F ) = F . Let x ∈ F . Then
(x)+ ∨ F = L. Now, let t ∈ (x)++. Then (x)+ ⊆ (t)+. Hence L = (x)+ ∨ F ⊆
(t)+ ∨ F . Thus t ∈ σ(F ) = F , which proves that (x)++ ⊆ F . Therefore F is a
µ-filter of L.
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The converse of the above proposition is not true. i.e. every µ-filter of a
lattice need not be a σ-filter. For consider the following example.

Example 9. Consider the distributive lattice L = {0, a, b, c, 1} whose Hasse
diagram is given in the following figure.
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Consider the filter F = {b, 1}. It can be easily observed that (b)++ ⊆ F .
Hence F is a µ-filter of L. Observe that (b)+ ∨ F = {a, b, c, 1} 6= L. Therefore F
is not a σ-filter of L.

However, in the following theorem, some equivalent conditions are given for
every µ-filter of a lattice to become a σ-filter.

Theorem 10. Let L be a lattice. Then the following assertions are equivalent:

(1) every µ-filter is a σ-filter,

(2) every co-annihilator filter is a σ-filter,

(3) for each x ∈ L, (x)++ is a σ-filter,

(4) for each x ∈ L, (x)+ ∨ (x)++ = L.

Proof. (1)⇒(2) Since every co-annihilator filter is a µ-filter, it is clear.

(2)⇒(3) Since each (x)++ is a co-annihilator filter, it is clear.

(3)⇒(4) Assume statement (3). Let x ∈ L. Since (x)++ is a σ-filter of L, we
get (x)++ = σ

(

(x)++
)

. Clearly x ∈ (x)++ = σ
(

(x)++
)

. Hence (x)+∨ (x)++ = L.

(4)⇒(1) Assume that (x)+ ∨ (x)++ = L for each x ∈ L. Let F be a µ-filter
of L. Clearly σ(F ) ⊆ F . Conversely, let x ∈ F . Since F is a µ-filter, we get
(x)++ ⊆ F . Hence L = (x)+ ∨ (x)++ ⊆ (x)+ ∨ F . Thus x ∈ σ(F ). Therefore F
is a σ-filter of L.

In [10], authors studied the properties of O-filters and proved that every O-
filter of a lattice is the intersection of all minimal prime filters containing it. In
the following result, it is proved that the class of all σ-filters is properly contained
in the class of all O-filters.
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Theorem 11. Every σ-filter of a lattice is an O-filter.

Proof. Let F be a σ-filter of a lattice L. Then σ(F ) = F . Consider S = {x ∈
L | (x)++ ∨ F = L}. We first show that S is an ideal of L. Clearly 0 ∈ S.
Let x, y ∈ S. Then (x ∨ y)++ ∨ F =

{

(x)++ ∩ (y)++
}

∨ F =
{

(x)++ ∨ F
}

∩
{

(y)++ ∨ F
}

= L ∩ L = L. Hence x ∨ y ∈ S. Let x ∈ S and y ≤ x. Then
L = (x)++ ∨ F ⊆ (y)++ ∨ F . Hence y ∈ S. Thus S is an ideal of L. We now
show that F = O(S). Let x ∈ O(S). Then x ∨ y = 1 for some y ∈ S. Now

x ∨ y = 1 ⇒ y ∈ (x)+

⇒ (y)++ ⊆ (x)+

⇒ L = (y)++ ∨ F ⊆ (x)+ ∨ F since y ∈ S

⇒ x ∈ σ(F ) = F since F is a σ-filter

which yields that O(S) ⊆ F . Conversely, let x ∈ F = σ(F ). Then (x)+ ∨σ(F ) =
L. Therefore 0 ∈ (x)+ ∨ σ(F ). Hence 0 = a ∧ b for some a ∈ (x)+ and b ∈ σ(F ).
Thus a ∨ x = 1 and (b)+ ∨ F = L. Now

a ∧ b = 0 ⇒ (a ∧ b)+ = (0)+ = {1}

⇒ (a)+ ∩ (b)+ = {1}

⇒ (b)+ ⊆ (a)++

⇒ L = (b)+ ∨ F ⊆ (a)++ ∨ F since b ∈ σ(F )

⇒ a ∈ S and a ∨ x = 1

⇒ x ∈ O(S)

which gives F = σ(F ) ⊆ O(S). Hence F = O(S). Therefore F is an O-filter
of L.

The converse of the above theorem is not true, i.e., every O-filter of a lattice
need not be a σ-filter. For, consider the distributive lattice given in Example 9.
Consider F = {1, b} and I = {0, a, c}. Clearly F is a filter and I is an ideal of L
such that F = O(I). Hence F is an O-filter of L. Now, observe that σ(F ) = {1},
because (b)+ ∨ F = {1, a, b, c} 6= L. Therefore F is not a σ-filter of L.

Proposition 2.2. Each co-annulet of a lattice is an O-filter.

Proof. Let L be a lattice and a ∈ L. Then (a)+ is a co-annulet of L. It is easy
to check that (a)+ = O((a]).

Theorem 12. Let L be a lattice. Then the following assertions are equivalent:

(1) L is a pm-lattice,

(2) every O-filter is a σ-filter,
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(3) for any a, b ∈ L, a ∨ b = 1 implies (a)+ ∨ (b)+ = L,

(4) each co-annulet is a σ-filter,

(5) for any two distinct maximal ideals M,N of L, there exists a /∈M and b /∈ N
such that a ∧ b = 0,

(6) any two distinct minimal prime filters are co-maximal.

Proof. (1)⇒(2) Assume that L is a pm-lattice. Then every prime ideal of L
is contained in a unique maximal ideal of L. Let F be an O-filter of L. Then
there exists an ideal I of L such that F = O(I). Clearly σ(F ) ⊆ F . Conversely,
let x ∈ F = O(I). Then there exists s ∈ I such that x ∨ s = 1. Suppose
(x)+ ∨ F 6= L. Then there exists a prime ideal P such that {(x)+ ∨ F} ∩ P = ∅.
Then P ∨ (x] is an ideal of L such that P ⊆ P ∨ (x]. Suppose s ∈ P ∨ (x]. Then
s = t ∨ x for some t ∈ P . Hence 1 = x ∨ s = x ∨ (t ∨ x) = t ∨ x, which implies
t ∈ (x)+ ⊆ (x)+∨F . Thus t ∈ {(x)+∨F}∩P , which is a contradiction. Therefore
s /∈ P ∨ (x], which means that P ∨ (x] is a proper ideal of L. Then there exists
a maximal ideal M1 such that P ∨ (x] ⊆M1. Again, we have P ∨ (s] is an ideal
such that P ⊆ P ∨ (s]. Suppose x ∈ P ∨ (s]. Then x = t ∨ s for some t ∈ P .
Hence 1 = x ∨ s = (t ∨ s) ∨ s = t ∨ s. Thus t ∈ (s)+ ⊆ (x)+ ∨ O(I) because of
s ∈ I. Hence t ∈ {(x)+ ∨O(I)} ∩ P = {(x)+ ∨ F} ∩ P , which is a contradiction.
Therefore x /∈ P ∨ (s], which means that P ∨ (s] is a proper ideal of L. Then
there exists a maximal ideal M2 such that P ∨ (s] ⊆M2. Since x∨ s = 1, we get
s /∈ M1 and x /∈ M2. Therefore M1 6= M2. Thus the prime ideal P is contained
in two distinct maximal ideals, which is a contradiction to the hypothesis. Hence
(x)+ ∨ F = L. Therefore x ∈ σ(F ), which means σ(F ) = F .

(2)⇒(3) Let a, b ∈ L be such that a ∨ b = 1. By the above proposition, (a)+

is an O-filter of L. Hence b ∈ (a)+ = σ((a)+). Therefore (a)+ ∨ (b)+ = L.

(3)⇒(4) Assume the condition (3). Let (a)+, a ∈ L be a co-annulet in L.
Clearly σ((a)+) ⊆ (a)+. Conversely, let x ∈ (a)+. Then x ∨ a = 1. By (3), we
get (x)+ ∨ (a)+ = L. Hence x ∈ σ((a)+). Thus (a)+ = σ((a)+). Therefore (a)+

is a σ-filter.

(4)⇒(5) Assume condition (4) holds. Let M and N be two distinct maximal
ideals of L. Choose x ∈M−N . Since x /∈ N , we get N∨(x] = L. Hence, a∨x = 1
for some a ∈ N . Thus x ∈ (a)+. By condition (4), we get σ((a)+) = (a)+. Since
x ∈ (a)+ = σ((a)+), we get (x)+ ∨ (a)+ = L. Then 0 ∈ (a)+ ∨ (x)+. Then there
exist two elements s ∈ (a)+ and t ∈ (x)+ such that s ∧ t = 0. If s ∈ N , then
1 = s ∨ a ∈ N , which is a contradiction. If t ∈ M , then 1 = t ∨ x ∈ M , which is
also a contradiction. Therefore there exist t /∈M and s /∈M such that s ∧ t = 0.

(5)⇒(6) Assume condition (5). Let P and Q be two distinct minimal prime
filters of L. Then L − P and L − Q are distinct maximal ideals of L. By (5),
there exist a /∈ L−P and b /∈ L−Q such that a∧ b = 0. Hence a ∈ P and b ∈ Q
such that a ∧ b = 0. Hence 0 = a ∧ b ∈ P ∨Q. Therefore P ∨Q = L.



σ-filters of distributive lattices 269

(6)⇒(1) Assume the condition (6). Let P be a prime ideal of L. Let M1

and M2 be two maximal ideals of L such that P ⊆ M1 and P ⊆ M2. Suppose
M1 6= M2. Then L −M1 and L − M2 are distinct minimal prime filters of L
such that L − M1 ⊆ L − P and L − M2 ⊆ L − P . By condition (6), we get
(L−M1) ∨ (L−M2) = L. Hence L = (L−M1) ∨ (L−M2) ⊆ L− P , which is a
contradiction. Thus P should be contained in a unique maximal ideal. Therefore
L is a pm-lattice.

Definition 13. For any proper filter F of a lattice L, define the set ω(F ) as
ω(F ) = {x ∈ L | (x)+ * F}.

Proposition 2.3. Let L be a lattice and M be a maximal filter of L. Then the

set ω(M) is a filter of L such that ω(M) ⊆M .

Proof. Since M is proper, we get (1)+ * M . Hence 1 ∈ ω(M). Suppose
x, y ∈ ω(M). Then (x)+ * M and (y)+ * M . Hence M ⊂ M ∨ (x)+ and
M ⊂ M ∨ (y)+. Since M is maximal, we get M ∨ (x)+ = L and M ∨ (y)+ = L.
Thus, we get

M ∨ (x ∧ y)+ =M ∨
{

(x)+ ∩ (y)+
}

=
{

M ∨ (x)+
}

∩
{

M ∨ (y)+
}

= L ∩ L = L.

If (x ∧ y)+ ⊆ M , then M = L which is a contradiction. Hence (x ∧ y)+ * M .
Thus x ∧ y ∈ ω(M). Again, let x ∈ ω(M) and x ≤ y. Then (x)+ * M and
x ≤ y. Since x ≤ y, we get (x)+ ⊆ (y)+. Hence (y)+ * M . Hence y ∈ ω(M).
Therefore ω(M) is a filter of L. Now, let x ∈ ω(M). Then (x)+ * M . Hence,
there exists a ∈ (x)+ such that a /∈ M . Since a ∈ (x)+, we get a ∨ x = 1.
Suppose x /∈ M . Then M ∨ [x) = L. Since a /∈ M , we get M ∨ [a) = L. Hence
L = M ∨ {[x) ∩ [a)} = M ∨ [x ∨ a) = M ∨ [1) = M , which is a contradiction.
Hence x ∈M . Therefore ω(M) ⊆M .

Proposition 2.4. Let M be a prime filter of a lattice L. Then we have

(1) σ(M) ⊆ ω(M),

(2) if M is maximal, then σ(M) = ω(M).

Proof. (1) Let x ∈ σ(M). Then (x)+ ∨M = L. Suppose (x)+ ⊆ M . Then
M = L, which is a contradiction. Hence (x)+ * M . Thus x ∈ ω(M). Therefore
σ(M) ⊆ ω(M).

(2) Since M is proper, we get σ(M) ⊆ ω(M). Conversely, let x ∈ ω(M).
Then (x)+ * M . Since M is maximal, we get (x)+ ∨M = L. Thus x ∈ σ(M).
Therefore ω(M) = σ(M).

Let us denote that µ is the set of all maximal filters of a lattice L. For any
filter F of a lattice L, we also denote µ(F ) = {M ∈ µ | F ⊆ M}. Since every
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maximal filter of a lattice is prime, by Proposition 2.12, we conclude that ω(M)
is a filter such that ω(M) ⊆ M for every M ∈ µ. Then we have the following
result.

Theorem 14. For any filter F of a lattice L, σ(F ) =
⋂

M∈µ(F ) ω(M).

Proof. Let x ∈ σ(F ) and F ⊆M whereM ∈ µ. Then L = (x)+∨F ⊆ (x)+∨M .
Suppose (x)+ ⊆ M , then M = L, which is a contradiction. Hence (x)+ * M .
Thus x ∈ ω(M) for allM ∈ µ(F ). Therefore σ(F ) ⊆

⋂

M∈µ(F ) ω(M). Conversely,

let x ∈
⋂

M∈µ(F ) ω(M). Then x ∈ ω(M) for allM ∈ µ(F ). Suppose (x)+∨F 6= L.

Then there exists a maximal filterM0 such that (x)+∨F ⊆M0. Hence (x)
+ ⊆M0

and F ⊆M . Since F ⊆M0, by hypothesis, we get x ∈ ω(M0). Hence (x)
+ *M0,

which is a contradiction. Therefore (x)+ ∨ F = L. Hence x ∈ σ(F ). Therefore
⋂

M∈µ(F ) ω(M) ⊆ σ(F ).

From the above theorem, it can be easily observed that σ(F ) ⊆ ω(M) for
every M ∈ µ(F ). Now, in the following, a set of equivalent conditions is derived
for the class of all filters of the form σ(F ) to become a sublattice to the lattice
F(L) of all filters of L.

Theorem 15. Let L be a lattice. Then the following assertions are equivalent:

(1) for any M ∈ µ, ω(M) is maximal,

(2) for any F,G ∈ F(L), F ∨G = L implies σ(F ) ∨ σ(G) = L,

(3) for any F,G ∈ F(L), σ(F ) ∨ σ(G) = σ(F ∨G),

(4) for any two distinct maximal filters M and N , ω(M) ∨ ω(N) = L,

(5) for any M ∈ µ, M is the unique member of µ such that ω(M) ⊆M .

Proof. (1)⇒(2) Assume condition (1). Then clearly ω(M) = M for all M ∈ µ.
Let F,G ∈ F(L) be such that F ∨G = L. Suppose σ(F )∨σ(G) 6= L. Then there
exists a maximal filter M such that σ(F ) ∨ σ(G) ⊆ M . Hence σ(F ) ⊆ M and
σ(G) ⊆M . Now

σ(F ) ⊆M ⇒
⋂

Mi∈µ(F )

ω(Mi) ⊆M

⇒ ω(Mi) ⊆M for some Mi ∈ µ(F ) (since M is prime)

⇒ Mi ⊆M by condition (1)

⇒ F ⊆M since F ⊆Mi.

Similarly, we can obtain that G ⊆ M . Hence L = F ∨ G ⊆ M , which is a
contradiction to the maximality of M . Therefore σ(F ) ∨ σ(G) = L.

(2)⇒(3) Assume condition (2). Let F,G ∈ F(L). Clearly σ(F ) ∨ σ(G) ⊆
σ(F ∨ G). Conversely, let x ∈ σ(F ∨ G). Then {(x)+ ∨ F} ∨ {(x)+ ∨ G} =
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(x)+∨F ∨G = L. Hence by condition (2), we get σ((x)+∨F )∨σ((x)+∨G) = L.
Thus x ∈ σ((x)+ ∨ F ) ∨ σ((x)+ ∨G). Hence x = r ∧ s for some r ∈ σ((x)+ ∨ F )
and s ∈ σ((x)+ ∨G). Now

r ∈ σ((x)+ ∨ F ) ⇒ (r)+ ∨ {(x)+ ∨ F} = L

⇒ L = {(r)+ ∨ (x)+} ∨ F ⊆ (r ∨ x)+ ∨ F

⇒ (r ∨ x)+ ∨ F = L

⇒ r ∨ x ∈ σ(F ).

Similarly, we can get s ∨ x ∈ σ(G). Now, we have the following consequence

x = x ∨ x

= (r ∧ s) ∨ x

= (r ∨ x) ∧ (s ∨ x)

where r ∨x ∈ σ(F ) and s∨ x ∈ σ(G). Hence x ∈ σ(F )∨ σ(G). Thus σ(F ∨G) ⊆
σ(F ) ∨ σ(G). Therefore σ(F ) ∨ σ(G) = σ(F ∨G).

(3)⇒(4) Assume condition (3). Let M,N be two distinct maximal filters of
L. Choose x ∈M −N and y ∈ N −M . Since x /∈ N , we get N ∨ [x) = L. Since
y /∈M , we get M ∨ [y) = L. Now, we get

L = σ(L)

= σ(L ∨ L)

= σ
({

N ∨ [x)
}

∨
{

M ∨ [y)
})

= σ
({

M ∨ [x)
}

∨
{

N ∨ [y)
})

= σ(M ∨N) since x ∈M and y ∈ N

= σ(M) ∨ σ(N) By condition (3)

⊆ ω(M) ∨ ω(N) By Proposition 2.4(1).

Therefore ω(M) ∨ ω(N) = L.

(4)⇒(5) Assume condition (4). LetM ∈ µ. SupposeN ∈ µ such thatN 6=M
and ω(N) ⊆ M . Since ω(M) ⊆ M , by hypothesis, we get L = ω(M) ∨ ω(N) =
M , which is a contradiction. Hence M is the unique maximal filter such that
ω(M) ⊆M .

(5)⇒(1) Let M ∈ µ. Suppose ω(M) is not maximal. Let M0 be a maximal
filter of L such that ω(M) ⊆ M0. We have always ω(M0) ⊆ M0, which is a
contradiction.

Theorem 16. Following assertions are equivalent in a lattice L:

(1) every filter is a σ-filter,
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(2) every prime filter is a σ-filter,

(3) every prime filter is minimal.

Proof. (1)⇒(2) It is clear.

(2)⇒(3) Assume that every prime filter is a σ-filter. Let P be a prime filter
of L. Since P is proper, there exists c ∈ L such that c /∈ P . In view of condition
(2), P is a σ-filter of L. Hence σ(P ) = P . Let x ∈ P = σ(P ). Then (x)+∨P = L
and thus c ∈ (x)+ ∨ P . Then c = a ∧ b for some a ∈ (x)+ and b ∈ P . Since
a ∈ (x)+, we get x ∨ a = 1. Suppose a ∈ P . Since P is prime and b ∈ P , we get
c = a ∧ b ∈ P which is a contradiction. Thus a /∈ P . This means that x ∨ a = 1
for some a /∈ P . Therefore P is minimal.

(3)⇒(1) Assume that every prime filter is minimal. Let F be a filter of L.
Clearly σ(F ) ⊆ F . Conversely, let x ∈ F . Suppose (x)+ ∨ F 6= L. Then there
exists a prime filter P such that (x)+ ∨ F ⊆ P . Hence (x)+ ⊆ P and F ⊆ P .
By our assumption, P is minimal. Since x ∈ F ⊆ P , by Theorem 2, there exists
y /∈ P such that x ∨ y = 1. Hence y ∈ (x)+ ⊆ P , which is a contradiction. Thus
(x)+ ∨ F = L. Therefore F is a σ-filter of L.

Proposition 2.5. Let I be an ideal of a lattice L. For any x, y ∈ L, define a

binary relation ψI on L by (x, y) ∈ ψI if and only if x∨ a = y∨ a for some a ∈ I.
Then ψI is a congruence on L with I as a congruence class modulo ψI .

For any distributive lattice L, it can be shown that the quotient algebra L/ψI

is also a distributive lattice with respect to the following operations

[x]ψI
∧ [y]ψI

= [x ∧ y]ψI
and [x]ψI

∨ [y]ψI
= [x ∨ y]ψI

where [x]ψI
is the congruence class of x modulo ψI . It can be routinely verified

that the mapping Ψ : L −→ L/ψI
defined by Ψ(x) = [x]ψI

is a homomorphism.
For any x, y ∈ L, it is clear that x ≤ y implies [x]ψI

⊆ [y]ψI
. Hence

(

L/ψI
,∩,∨

)

is a lattice in which [0]ψI
is the smallest element and [1]ψI

is the greatest element.

Definition 17. Let I be an ideal of a lattice L. For any filter F of L, define
F̄ = {[x]ψI

| x ∈ F}.

By the nature of congruences of lattices, it can be easily observed that F̄ is
a filter in L/ψI

whenever F is a filter in L.

Definition 18. Let I be an ideal of a lattice L. For any a ∈ L, define (a)∆ =
{

[x]ψI
∈ L/ψI

| [a]ψI
∨ [x]ψI

= [1]ψI

}

.

Clearly (0)∆ = {1} and (1)∆ = L/ψI
.

Lemma 19. Let I be an ideal of a lattice L. For any a ∈ L,



σ-filters of distributive lattices 273

(1) for each x ∈ L, x ∈ (a)+ implies [x]ψI
∈ (a)∆,

(2) (a)∆ is a filter of L/ψI
.

Proof. Routine verification.

Definition 20. Let I be an ideal of a lattice L. For any filter F of L/ψI
, define

σ(F ) =
{

[x]ψI
| (x)∆ ∨ F = L/ψI

}

.

Lemma 21. Let I be an ideal of a lattice L. For any filter F of L/ψI
,

(1) σ(F ) ⊆ F ,

(2) σ(F ) is a filter of L/ψI
.

Proof. Routine verification.

Proposition 2.6. Let P be a prime filter and I an ideal of a lattice L such that

P ∩ I = ∅. Then the following conditions hold:

(1) x ∈ P if and only if [x]ψI
∈ P̄ ,

(2) P̄ ∩ Ī = ∅,

(3) If P is a prime filter of L, then P̄ is a prime filter of L/ψI
,

(4) If P is a σ-filter of L, then P̄ is a σ-filter of L/ψI
.

Proof. (1) Clearly x ∈ P implies [x]ψI
∈ P̄ . Conversely, let [x]ψI

∈ P̄ . Then
[x]ψI

= [t]ψI
for some t ∈ P . Hence (x, t) ∈ ψI . Thus x ∨ a = t ∨ a ∈ P for some

a ∈ I. Since P ∩ I = ∅, we get a /∈ P . Since x ∨ a ∈ P and a /∈ P , we must have
x ∈ P .

(2) Suppose P̄ ∩ Ī 6= ∅. Choose [x]ψI
∈ P̄ ∩ Ī. By using (1), we get x ∈ P

and [x]ψI
∈ Ī. Hence

[x]ψI
∈ Ī ⇒ [x]ψI

= [y]ψI
for some y ∈ I

⇒ (x, y) ∈ ψI

⇒ x ∨ a = y ∨ a for some a ∈ I

⇒ x ∨ a ∈ I since y ∨ a ∈ I

⇒ x ∨ a ∈ P ∩ I since x ∈ P

which is a contradiction to P ∩ I = ∅. Therefore P̄ ∩ Ī = ∅.

(3) Since P is a filter of L, it is clear that P̄ is a filter of L/ψI
. Since P

is a proper filter of L, by (1), we get that P̄ is a proper filter in L/ψI
. Let

[x]ψI
, [y]ψI

∈ L/ψI
. Then

[x]ψI
∨ [y]ψI

∈ P̄ ⇒ [x ∨ y]ψI
∈ P̄

⇒ x ∨ y ∈ P from (1)

⇒ x ∈ P or y ∈ P

⇒ [x]ψI
∈ P̄ or [y]ψI

∈ P̄ .
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Therefore P̄ is a prime filter in L/ψI
.

(4) Suppose that P is a σ-filter of L. Clearly P̄ is a filter of L/ψI
. Clearly

σ(P̄ ) ⊆ P̄ . Let [x]/ψI
∈ P̄ . Then x ∈ P = σ(P ). Hence (x)+ ∨ P = L. Let

[a]ψI
∈ L/ψI

be arbitrary. For this a ∈ L, we get a = b∧ c for some b ∈ (x)+ and

c ∈ P . Since c ∈ P , we get [c]ψI
∈ P̄ . Since b ∈ (x)+, we get [b]ψI

∈ (x)∆. Hence
[a]ψI

= [b∧ c]ψI
= [b]ψI

∩ [c]ψI
∈ (x)∆ ∨ P̄ . Hence L/ψI

⊆ (x)∆ ∨ P̄ . Therefore P̄
is a σ-filter of L/ψI

.

Corollary 22. Let P and Q be two prime filters of a lattice of L such that

P ∩ I = ∅ and Q ∩ I = ∅. Then P ⊆ Q if and only if P̄ ⊆ Q̄.

Proof. From Proposition 2.6(1), it is clear.

Proposition 2.7. Let I be an ideal of a lattice L. For any prime filter R of

L/ψI
, there exists a prime filter P of L such that P ∩ I = ∅ and P̄ = R.

Proof. Let R be a prime filter of L/ψI
. Consider P = {x ∈ L | [x]ψI

∈ R}. Since
R is a filter of L/ψI

, we get that P is a filter of L. Let x, y ∈ L be such that
x ∨ y ∈ P . Then [x]ψI

∨ [y]ψI
= [x ∨ y]ψI

∈ R. Since R is prime, we get either
[x]ψI

∈ R or [y]ψI
∈ R. Hence either x ∈ P or y ∈ P . Therefore P is a prime

filter of L. Clearly P = R. Suppose P ∩I 6= ∅. Choose a ∈ P ∩I. Then [a]ψI
∈ R

and a ∈ I. Let [y]ψI
∈ L/ψI

be an arbitrary element. Now for any a ∈ I and
y ∈ L, we have

a ∨ y = a ∨ y ∨ a ⇒ (y, y ∨ a) ∈ ψI

⇒ [y]ψI
= [y ∨ a]ψI

⇒ [y]ψI
= [y]ψI

∨ [a]ψI
∈ R since R is a filter

⇒ [y]ψI
∈ R.

Hence L/ψI
⊆ R, which is a contradiction. Therefore P ∩ I = ∅.

Theorem 23. Let I an ideal of a lattice L. Every prime filter of L is a σ-filter
if and only if every prime filter of L/ψI

is a σ-filter.

Proof. Assume that every prime filter of L is a σ-filter. By Theorem 16, every
prime filter of L is minimal. Let R be a prime filter of L/ψI

. By Proposition
2.7, there exists a prime filter P of L such that P ∩ I = ∅ and P̄ = R. By
the assumption, P is minimal. Let [x]ψI

∈ P̄ = R. Then x ∈ P . Since P is
minimal, there exists y /∈ P such that x ∨ y = 1. Hence [y]ψI

/∈ P̄ = R and
[x]ψI

∨ [y]ψI
= [x ∨ y]ψI

= [1]ψI
. Thus R is minimal in L/ψI

. Therefore, by
Theorem 16, R is a σ-filter in L/ψI

.
Conversely, assume that every prime filter of L/ψI

is a σ-filter. By Theorem
16, every prime filter of L/ψI

is minimal. Let P be a prime filter of L. Take
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I = L− P . Then clearly P is a prime filter of L such that P ∩ I = ∅. Then by
Theorem 2.6, P̄ is a prime filter of L/ψI

. By our assumption, P̄ is minimal in
L/ψI

. Suppose P is not minimal in L. Then there exists a prime filter Q of L
such that Q ⊆ P . Since P ∩ I = ∅, we get Q ∩ I = ∅. Hence Q̄ is a prime filter
of L/ψI

. Since Q ⊆ P . By Corollary 22, we get Q̄ ⊆ P̄ . This contradicts the
minimality of P̄ in L/ψI

. Hence P is minimal prime filter of L. By Theorem 16,
P is a σ-filter in L.
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