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1. Introduction

Non-classical logic has become a formal and useful tool for computer science to
deal with uncertain information and fuzzy information. The algebraic counter-
parts of some non-classical logics satisfy residuation and those logics can be con-
sidered in a frame of residuated lattices. Hoops are naturally ordered commuta-
tive residuated integral monoids were originally introduced by Bosbach in [11,12]
under the name of complementary semigroups. Hoops have been studied by Blok
and Ferreirim [5]. The algebraic structures corresponding to Hájek’s proposi-
tional (fuzzy) basic logic, BL-algebras, are particular cases of hoops. In recent
years, many mathematicians have studied various concepts on hoop, for example
filters theory plays an important role in studying logical algebras. From logical
point of view, filters correspond to sets of provable formula. The concept of fil-
ter, quotient algebra and homomorphism are all closely related to each other.
In [4], Alavi and et al. introduced different kinds of filters on pseudo-hoop and
investigate the relation between them and the quotient structure that is made by
them. In [2], Aaly Kologani and et al. introduced the notion of co-annihilators
on hoop and investigated some properties of it and in [8] studied the relation
between hoops and other logical algebras. To read more about hoops, we suggest
to reader the articles [1–4,7–10,16,17,22].

In mathematics, the adjective Noetherian is used to describe objects that sat-
isfy an ascending or descending chain condition on certain kinds of subobjects,
meaning that certain ascending or descending sequences of subobjects must have
finite length. Noetherian objects are named after Emmy Noether, who was the
first to study the ascending and descending chain conditions for rings. The as-
cending chain condition (ACC) and descending chain condition (DCC) are finite-
ness properties satisfied by some algebraic structures, most importantly ideals in
certain commutative rings [11, 12]. These conditions played an important role
in the development of the structure theory of commutative rings in the works
of Hilbert, Noether, and Artin. The conditions themselves can be stated in an
abstract form, so that they make sense for any partially ordered set.

The aim of this paper is defining the concepts of Noetherian and Artinian
hoops by using the filter of hoop in the partial order set of all the filters of hoops
and inclusion relation and find some equivalent definitions for this notion. We
translate some important results from theory of rings to the case of hoop and their
characterizations are established. The relation between short exact sequence on
Noetherian and Artinian hoop studied and by using short exact sequence we prove
that the Cartesian product of two hoops is Noetherian (Artinian) if and only if
each one is a Noetherian (Artinian). By using the notion of filter in hoops, we
define the notion of composition series and prove any ∨-hoop is Noetherian and
Artinian if and only if it has composition series. Finally, Chinese Remainder the-
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orem in hoop and the relation between maximal filter and Noetherian (Artinian)
hoop are investigated.

2. Preliminaries

In this section, we recollect some definitions and results which will be used in this
paper.

By a hoop we mean an algebraic structure (H,→,⊙, 1) of type (2, 2, 0) in
which (H,⊙, 1) is a commutative monoid and, for any x, y, z ∈ H, the following
assertions are valid.

(H1) x→ x = 1,

(H2) x⊙ (x→ y) = y ⊙ (y → x),

(H3) x→ (y → z) = (x⊙ y) → z.

On hoop H we define x ≤ y if and only if x → y = 1. Obviously (H,≤) is
a poset. A bounded hoop is a hoop with the least element, it means that there
exists 0 ∈ H such that 0 ≤ x, for any x ∈ H. Let x0 = 1, xn = xn−1 ⊙ x, for
any n ∈ N. If H is a bounded hoop, then we define a negation ” ′ ” on H by,
x′ = x→ 0, for all x ∈ H. By a sub-hoop of a hoop H we mean a subset S of H
which, for any x, y ∈ S, x→ y ∈ S and x⊙ y ∈ S (see [8]).

Note. From now on, we let (H,⊙,→, 1) be a hoop and denote it by H, for short.

Proposition 1 [8]. The following conditions hold for all x, y, z ∈ H.

(i) (H,≤) is a ∧ – semilattice with x ∧ y = x⊙ (x→ y),

(ii) x⊙ y ≤ x, y and x ≤ y → x,

(iii) x→ y ≤ (y → z) → (x→ z),

(iv) x ≤ y implies z → x ≤ z → y, y → z ≤ x→ z and x⊙ z ≤ y ⊙ z,

(v) x⊙ y ≤ z if and only if x ≤ y → z,

(vi) x→ (
∧

i∈I yi) =
∧

i∈I(x→ yi).

Proposition 2 [8]. Define the operation ∨ on H as follows,

x ∨ y = ((x→ y) → y) ∧ ((y → x) → x).

Then for any x, y ∈ H the following conditions are equivalent.

(i) ∨ is associative,

(ii) x ≤ y implies x ∨ z ≤ y ∨ z for any z ∈ H,

(iii) ∨ is the join operation on H.
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Definition [8]. A hoopH is called a ∨-hoop, if it satisfies in the one of equivalent
conditions of Proposition 2.

Proposition 3 [8]. Let H be a ∨-hoop. Then the following conditions hold for
any x, y, z ∈ H and n ∈ N:

(i) (x ∨ y) → z = (x→ z) ∧ (y → z).

(ii) (x ∨ y)n → z =
∧

{(x1 ⊙ x2 ⊙ · · · ⊙ xn) → z |xi ∈ {x, y}}.

(iii) x⊙ (
∨

i∈I yi) =
∨

i∈I(x⊙ yi).

Definition [7]. A non-empty subset F of H is called a filter of H if for any
x, y ∈ F , x⊙ y ∈ F and, for any y ∈ H and x ∈ F , we have x ≤ y implies y ∈ F .
The set of all filters of H is denoted by F(H).

Proposition 4 [7]. Consider ∅ 6= F ⊆ H. Then F ∈ F(H) if and only if 1 ∈ F
and if x ∈ F and x→ y ∈ F , then y ∈ F.

Definition [2]. (i) F ∈ F(H) is called proper if F 6= H.

(ii) A proper filter P of H is called a prime filter of H if for all x, y ∈ H,
x → y ∈ P or y → x ∈ P . The set of all prime filters of H is denoted by
Spec(H).

(iii) A proper filter M of H is called a maximal filter of H if it is not contained
in any other proper filter. The set of all maximal filters of H is denoted by
Max(H).

Definition [7]. Let ∅ 6= X ⊆ H. The intersection of all filters of H containing
X is denoted by 〈X〉 and characterized by

〈X〉 =
{

a ∈ H | x1 ⊙ x2 ⊙ · · · ⊙ xn ≤ a for some n ∈ N and x1, . . . , xn ∈ X
}

.

Let F ∈ F(H) and x ∈ H \F . Then the generated filter of F ∪{x} is denoted
by F 〈x〉 and we define it as follows

F 〈x〉 =
{

a ∈ H | ∃ n ∈ N such that xn → a ∈ F
}

.

Lemma 5 [2]. (i) Let (H,→,⊙, 1) be a ∨-hoop. Then for any x, y ∈ H we
have 〈x ∨ y〉 = 〈x〉 ∩ 〈y〉.

(ii) Let (H,→,⊙, 1) be a ∨-hoop and F ∈ F(H). Then

〈F ∪ {x}〉 ∩ 〈F ∪ {y}〉 = 〈F ∪ {x ∨ y}〉.

Proposition 6 [3]. The algebraic structure (F(H),∧,∨) is a lattice, where for
any F,G ∈ F(H), F ∧G = F ∩G and F ∨G = 〈F ∪G〉.
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Proposition 7 [10]. Let F ∈ F(H). Then for any x, y ∈ H the relation x ∼F y
if and only if x → y, y → x ∈ F is a congruence relation on H. The set of all
congruence relations on H is denoted by Con(H).

Proposition 8 [10]. Let H
F

= {[x]|x ∈ H}, where [x] = {y ∈ H | x ∼F y}.
Define the operation ⊗ and  on H

F
as follows

[x]⊗ [y] = [x⊙ y] and [x] [y] = [x→ y].

Then (H
F
,⊗, , F, H

F
) is a bounded hoop.

Definition [10]. Let H1 and H2 be two hoops. Then a map φ : H1 → H2 is
called a hoop homomorphism if, for any x, y ∈ H1

φ(x→ y) = φ(x) → φ(y) and φ(x⊙ y) = φ(x)⊙ φ(y).

3. Noetherian (Artinian) hoops

In this section, we define the notion of Noetherian and Artinian hoop and give
some equivalent conditions for these notions. Then we define a short exact se-
quence of hoop and by using it we identify Noetherian and Artinian hoops. Fi-
nally, we define composition series in hoop and investigate the relation between
them and Noetherian and Artinian hoops.

Definition. A hoop H is called Noetherian (Artinian) if for every increasing
(decreasing) chain of its filters like F1 ⊆ F2 ⊆ · · · ⊆ Fn ⊆ · · · (F1 ⊇ F2 ⊇ · · · ⊇
Fn ⊇ · · · ), there exists n ∈ N such that Fi = Fn, for all i ≥ n

Example 9. (i) Every finite hoop is Noetherian (Artinian).

(ii) Let H = [0, 1] such that for any x, y ∈ H, x ⊙ y = min{x, y} and
x → y = 1 if x ≤ y and x → y = y if x > y. Then (H,⊙,→, 0, 1) is a
bounded hoop. Let Fn = [ 1

n
, 1] with n ≥ 1. Then Fn are filters of H and

F1 ⊆ F2 ⊆ · · · ⊆ Fn ⊆ · · · does not stop. Then H is not a Noetherian hoop.

(iii) Define the operations ⊙, → and negation on [0, 1] as follows

x⊙ y = min{x, y}, x′ = 1− x, x→ y = min{1, 1 − x+ y},

then H = ([0, 1],⊙,→, 0, 1) is a hoop. Now, we prove ([0, 1],⊙,→, 0, 1) has only
trivial filters. If I ⊆ [0, 1] is a filter of H and I \ {1} 6= ∅, then we prove
I = [0, 1]. Let I = [u, 1] for some u ≤ 1. Suppose x ∈ [u, 1). If x + u ≥ 1, then
u → (x + u − 1) = 1 − u + (x + u − 1) = x ∈ I. Thus u + (x − 1) ∈ I and
this is a contradiction. Hence, for any x ∈ [u, 1), x + u<1 and so u = 0. Hence
([0, 1],⊙,→, 0, 1) is an Artinian and Noetherian hoop.
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(iv) Let H = [0, 1]. Define the operations ⊙ and → on H as follows

x→ y =

{

1 if x ≤ y
y
x

o.w.

Then ([0, 1],⊙,→, 0, 1) is an Artinian and Noetherian hoop.

Theorem 10. Let A be a non-empty set of filters of H. Then H is a Noetherian
(Artinian) hoop if and only if A has a maximal (minimal) element.

Proof. Let H be a Noetherian hoop and S = {Fi : Fi ∈ F(H)} be a non-empty
set of filters of H which does not have a maximal element. Since S is a non-
empty set, there exists F1 ∈ S. In addition, from S does not have a maximal
element, there exists F2 ∈ S such that F1 ⊆ F2. Continuing this method, we
have F1 ⊆ F2 ⊂ · · · ⊂ Fn ⊆ · · · is an increasing chain of filters of H that there
does not exist n ∈ N such that Fi = Fn, for all i ≥ n, which is a contradiction.
Hence, S has a maximal element.

Conversely, let F1 ⊆ F2 ⊂ · · · ⊂ Fn ⊆ · · · be an increasing chain of filters
of H. Then define S = {Fi : Fi ∈ F(H)}. Since S is a non-empty set, by as-
sumption, S has a maximal element such as Fn. Then for all i ≥ n, Fi = Fn.
Therefore, H is a Noetherian hoop. The proof of other case is similar.

Theorem 11. Any hoop H is Noetherian if and only if every filter of H is finitely
generated.

Proof. Let H be a Noetherian hoop and F ∈ F(H) which is not finitely gener-
ated. Suppose

S = {G ∈ F(H) |G is a finitely generated filter of H and G ⊆ F} .

Since 〈1〉 = {1} ∈ S, we get S 6= ∅. Then by Theorem 10, S has a maximal
element such as F1. Thus F1 ⊆ F and F1 = 〈x1, . . . , xn〉, for some x1, . . . , xn ∈ H.
Since F is not finitely generated, we have F1 $ F , and there exists x ∈ F \ F1

such that F1 $ 〈x1, . . . , xn, x〉 ⊂ F . Since 〈x1, . . . , xn, x〉 is finitely generated
and F1 $ 〈x1, . . . , xn, x〉, we get 〈x1, . . . , xn, x〉 ∈ S, which is a contradiction.
Therefore, F is a finitely generated filter of H.

Conversely, suppose every filter of H is finitely generated and F1 ⊆ F2 · · · ⊂
Fn ⊆ · · · is an increasing chain of filters of H. Let F = F1 ∪ F2 ∪ F3 ∪ · · · .
Obviously, F ∈ F(H) and by assumption, F is a finitely generated filter of H.
Suppose F = 〈x1, . . . , xn〉, for some x1, . . . , xn ∈ H. Since F =

⋃

i∈I Fi and
x1, . . . , xn ∈ F , we get that there exist i1, . . . , in ∈ N such that xj ∈ Fij . Now,
by property of chain, there exists m ∈ N, 1 ≤ m ≤ n such that x1, . . . , xn ∈ Fim .
Thus F = 〈x1, . . . , xn〉 ⊆ Fim ⊆ F . Hence, Fim = F for all t ≥ im. Therefore, H
is a Noetherian hoop.
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Theorem 12. Suppose every increasing chain of finitely generated filters of H
stops. Then H is a Noetherian hoop.

Proof. Assume H is not a Noetherian hoop. Then by Theorem 11, there exists
F ∈ F(H) which is not finitely generated. Thus F 6= 〈1〉 = {1} and there exists
x1 ∈ F \ {1} such that 〈x1〉 $ F and since F is not finitely generated F 6= 〈x1〉.
Thus there exists x2 ∈ F \ 〈x1〉 where 〈x1, x2〉 ( F . By continuing this method,
we have 〈x1〉 $ 〈x1, x2〉 $ · · · which is a proper increasing chain of finitely
generated filters of H that does not stop, which is a contradiction. Therefore, H
is a Noetherian hoop.

Lemma 13. Let F,G ∈ F(H) such that F ⊆ G. Then x
F

∈ G
F

if and only if
x ∈ G. In addition, G

F
∈ F

(

H
F

)

.

Proof. Let x
F
∈ G

F
. Then there exists a ∈ G such that x

F
= a

F
and so x→ a, a→

x ∈ F ⊆ G. Since a ∈ G and G ∈ F(H), we get x ∈ G. By the similar way, the
proof of other side is clear. Since F ⊆ G, we have 1

F
∈ G

F
. Let x, y ∈ H such that

x
F
, x
F

→ y
F

∈ G
F
. Then x, x → y ∈ G. Since G ∈ F(H), we get y ∈ G. Hence,

y
F
∈ G.

Theorem 14. Let F ∈ F(H). Then H
F

is a Noetherian (Artinian) hoop if and
only if H is a Noetherian (Artinian) hoop.

Proof. Let H be a Noetherian (Artinian) hoop and F1

F
⊆ F2

F
⊆ · · · Fn

F
⊆ · · · be

an increasing chain of filters of H
F
. Then F ⊆ F1 ⊆ F2 ⊆ · · · ⊆ Fn ⊆ · · · is an

increasing chain of filters of H. Since H is a Noetherian hoop, there exists n ∈ N
such that for all i ≥ n, Fi = Fn. Then for all i ≥ n, Fi

F
= Fn

F
. Therefore, H

F
is a

Noetherian hoop.

Conversely, let F1 ⊆ F2 ⊆ · · · ⊆ Fn ⊆ · · · be an increasing chain of filters
of H. If F1 = {1}, since Fi

{1}
∼= Fi then the proof is clear. Let F1 6= {1}. Since

F1 ⊆ Fi for any 2 ≤ i ≤ n, by Lemma 13, F1

F1
⊆ F2

F1
⊆ · · · ⊆ Fn

F1
· · · is an increasing

chain of filters of H
F1
. Since H

F1
is a Noetherian hoop, there exists n ∈ N such that

for i ≥ n, Fi

F1
= Fn

F1
. Hence for any x ∈ Fi,

x
F1

∈ Fi

F1
= Fn

Fi
we have x ∈ Fn

Fi
by

Lemma 13, x ∈ Fn so Fi ⊆ Fn by the similar way Fn ⊆ Fi thus for all i ≥ n,
Fi = Fn. Therefore, H is a Noetherian hoop.

The proof of other case is similar.

Proposition 15. Let S be a sub-hoop of H. Then the set of all filters of S is
F(S) = {F ∩ S |F ∈ F(H)}.

Proof. Let S be a sub-hoop of H and K be a filter of S. Clearly K ⊆ 〈K〉 ∩ S.
Let x ∈ 〈K〉 ∩ S. Since x ∈ 〈K〉, by Definition 2, there exist x1, x2, . . . , xn ∈ K
and n ∈ N such that x1 ⊙ x2 ⊙ · · · ⊙ xn ≤ x. Since K is a filter of S, we get
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x1⊙x2⊙· · ·⊙xn ∈ K and so x ∈ K. Thus x ∈ K ∩S = K. Hence K = 〈K〉∩S.
Therefore, F(S) = {F ∩ S|F ∈ F(H)}.

Corollary 16. Any sub-hoop of Noetherian (Artinian) hoop H is Noetherian
(Artinian).

Definition. Let H1,H2 and H3 be hoops. A sequence 1 −→ H1
φ

−→ H2
ψ

−→
H3 −→ 1 is called a short exact sequence of hoops if φ is one-to-one, ψ is onto
and ker(ψ) = Im(φ).

Example 17. Let H1 = {0, a, b, c, d, 1} and H2 = {0, 1} be two sets such that
0 ≤ a ≤ c ≤ 1, 0 ≤ b ≤ d ≤ 1 and 0 ≤ b ≤ c ≤ 1. Then the Cayley tables are as
follows

→H1
0 a b c d 1

0 1 1 1 1 1 1
a d 1 d 1 d 1
b a a 1 1 1 1
c 0 a d 1 d 1
d a a c c 1 1
1 0 a b c d 1

⊙H1
0 a b c d 1

0 0 0 0 0 0 0
a 0 a 0 a 0 a
b 0 0 b b b b
c 0 a b c b c
d 0 0 b b d d
1 0 a b c d 1

→H2
0 1

0 1 1
1 0 1

⊙H2
0 1

0 0 0
1 0 1

Then (H1,→H1
,⊙H1

, 1H1
) and (H2,→H2

,⊙H2
, 1H2

) are hoops. By routine cal-
culations, we get F = {a, c, 1} is a filter of H1. Define a map ψ : H1 → H2 by
ψ(0) = ψ(b) = ψ(d) = 0 and ψ(1) = ψ(c) = ψ(a) = 1. Easily we can check ψ is a

hoop homomorphism. Thus a sequence 1 −→ F
φ

−→ H1
ψ

−→ H2 −→ 1 is a short
exact sequence of hoops, where φ is an identity map.

Proposition 18. Let φ : H1 → H2 be a hoop homomorphism such that F ∈
F(H1) and G ∈ F(H2). Then the following statements hold.

(i) If φ is a surjective hoop homomorphism such that ker(φ) ⊆ F , then φ(F ) ∈
F(H2).

(ii) φ−1(G) ∈ F(H1).

(iii) ker(φ) = {x ∈ H1|φ(x) = 1} ∈ F(H1).

Proof. (i) Obviously, 1 = φ(1) ∈ φ(F ). Let x, y ∈ φ(F ). Then there exist
a, b ∈ F such that φ(a) = x and φ(b) = y. Since F ∈ F(H1), clearly a⊙ b ∈ F ,
and so x ⊙ y = φ(a) ⊙ φ(b) = φ(a ⊙ b) ∈ φ(F ). Let x, y ∈ H2 such that x ≤ y
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and x ∈ φ(F ). Thus there is a ∈ F such that φ(a) = x and since φ is surjective,
there exists b ∈ H1 such that φ(b) = y. Since x ≤ y, we have φ(a) ≤ φ(b) and so
φ(a → b) = φ(a) → φ(b) = 1. Thus a → b ∈ kerφ ⊆ F . From F ∈ F(H1) and
a ∈ F , we get b ∈ F and so y = φ(b) ∈ φ(F ). Therefore, φ(F ) ∈ F(H2).

(ii) Obviously, 1 ∈ φ−1(G). Let x, x → y ∈ φ−1(G). Then φ(x), φ(x) →
φ(y) ∈ G. Since G ∈ F(H2) and φ(x) ∈ G, we have φ(y) ∈ G, and so y ∈ φ−1(G).
Therefore, φ−1(G) ∈ F(H1).

(iii) Clearly φ(1) = 1, thus 1 ∈ ker(φ). Let x, x → y ∈ ker(φ). Then
φ(x) = 1 and φ(x → y) = φ(x) → φ(y) = 1. Thus φ(x) ≤ φ(y) and φ(x) = 1.
Hence φ(y) = 1 and y ∈ ker(φ). Therefore, ker(φ) ∈ F(H1).

Theorem 19. Let 1 −→ H1
φ

−→ H2
ψ

−→ H3 −→ 1 be a short exact sequence of
hoops. Then H1 and H3 are Noetherian hoops if and only if H2 is a Noetherian
hoop.

Proof. (⇒) Let F1 ⊆ F2 ⊆ · · · ⊆ Fn ⊆ · · · be an increasing chain of filters
of H2. Since ψ is a surjective hoop homomorphism and ker φ ⊆ Imψ, we have
ψ(F1) ⊆ ψ(F2) ⊆ · · · ⊆ ψ(Fn) ⊆ · · · is an increasing chain of filters of H3 and
φ−1(F1) ⊆ φ−1(F2) ⊆ · · · ⊆ φ−1(Fn) ⊆ · · · is an increasing chain of filters of H1.
Since H1 and H3 are Noetherian hoops, there exist m,k ∈ N such that ψ(Fi) =
ψ(Fm) and φ−1(Fj) = φ−1(Fk) for all i ≥ m and j ≥ k. Let l = max{m,k}.
Clearly, for all i ≥ l, we have Fl ⊆ Fi. It is enough to prove Fi ⊆ Fl for all i ≥ l.
Let x ∈ Fi for i ≥ l. Then ψ(x) ∈ ψ(Fi) = ψ(Fl), thus there exists a ∈ Fl such
that ψ(x) = ψ(a). It follows that ψ(a→ x) = ψ(a) → ψ(x) = 1, that is a→ x ∈
ker(ψ) = Im(φ). Hence there exists b ∈ H1 such that a → x = φ(b). Moreover,
since Fi is a filter of H2, x ∈ Fi and x ≤ a → x, we get a → x ∈ Fi. Then
φ(b) ∈ Fi implies b ∈ φ−1(Fi) = φ−1(Fl) and so φ(b) ∈ Fl. Hence, a → x ∈ Fl.
Now, since a ∈ Fl and Fl is a filter of H2, we get x ∈ Fl. Then Fi ⊆ Fl, and so
Fi = Fl for all i ≥ l. Therefore, H2 is Noetherian.

(⇐) Let H2 be a Noetherian hoop. Then by first isomorphism theorem, we
have H2

ker(ψ)
∼= H3. Thus by Theorem 14, H3 is a Noetherian hoop. Since φ is a

hoop homomorphism, H1
∼= φ(H1) and φ(H1) is a subalgebra of H2, by Corollary

16, we get H1 is a Noetherian hoop.

Corollary 20. Let F ∈ F(H) and S be a sub-hoop of H such that F ⊆ S. Then
F and S

F
are Noetherian (Artinian) if and only if S is Noetherian (Artinian)

hoop.

Proof. Since 1 −→ F
i

−→ S
ψ

−→ S
F
−→ 1 is a short exact sequence of sub-hoops

where i is identity and ψ is a natural homomorphism, by Theorem 19 the proof
is clear.
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Proposition 21. Let H be a Noetherian hoop and π : H → H be an onto
homomorphism. Then π is one-to-one homomorphism.

Proof. Let x ∈ ker(π). Since ker(π) ∈ F(H), and the composition of homomor-
phism is a homomorphism we can see that ker(πn) is filter. Let x ∈ ker(πi) for
any 1 ≤ i ≤ n. Then πi(x) = 1 and so π(πi(x)) = 1. Thus x ∈ ker(πi+1). Hence,
ker(πi) ⊆ ker(πi+1). Suppose ker(π) ⊆ ker(π2) ⊆ · · · ⊆ ker(πn) · · · be an in-
creasing chain of filters of H. Since H is Noetherian and ker(πi) ∈ F(H), there
exists n ∈ N such that ker(πi) = ker(πn), for all i ≥ n. Let x ∈ ker(π). Since
πn is onto, there exists y ∈ H such that x = πn(y). Then π(x) = πn+1(y) = 1
and so y ∈ ker(πn+1) = ker(πn). Hence x = πn(y) = 1. Therefore, ker(π) = {1}
and π is a one-to-one hoop homomorphism.

Proposition 22. Let φ : H1 → H2 be a surjective homomorphism. If H1 is
Noetherian (Artinian), then H2 is, too.

Proof. Let G ∈ F(H2). Then by Theorem 11, it is enough to show that G
is a finitely generated filter of H2. By Proposition 18, F = φ−1(G) ∈ F(H1).
Since H1 is a Noetherian hoop, we get F is finitely generated. Suppose that
there exist x1, x2, . . . , xn ∈ H1 such that F = 〈x1, x2, . . . , xn〉. Now, we prove
G = 〈φ(x1), φ(x2), . . . , φ(xn)〉. For this, let

B={y ∈ H2| There exist x1, . . . , xn ∈ F such that φ(x1)⊙φ(x2), · · ·⊙φ(xn) ≤ y},

and y ∈ B. Then φ(x1) ⊙ φ(x2), · · · ⊙ φ(xn) ≤ y. Since x1, x2, . . . , xn ∈ F and
F ∈ F(H1), we get x1 ⊙ x2, · · · ⊙ xn ∈ F . Then φ(x1 ⊙ x2, · · · ⊙ xn) ∈ G. Since
φ is a hoop homomorphism, we have

φ(x1 ⊙ x2 ⊙ · · · ⊙ xn) = φ(x1)⊙ φ(x2)⊙ · · · ⊙ φ(xn) ≤ y.

Moreover, from G ∈ F(H2), we get y ∈ G and so B ⊆ G.
Conversely, let a ∈ G. Since preimage of any filter of H2 is a filter of H1, we

have φ−1(a) ∈ F . Moreover, since F ∈ F(H1) and F is finitely generated, there
exist x1, x2, . . . , xn ∈ F such that x1 ⊙ x2 ⊙ · · · ⊙ xn ≤ φ−1(a). Thus

φ(x1 ⊙ x2 ⊙ · · · ⊙ xn) ≤ a , φ(x1)⊙ φ(x2)⊙ · · · ⊙ φ(xn) ≤ a

Hence a ∈ B, and so

G = {y ∈ H2 |φ(x1)⊙ φ(x2)⊙ · · · ⊙ φ(xn) ≤ y}.

Therefore, G is finitely generated.

Theorem 23. Let F,G ∈ F(H1) and φ : H1 → H2 be a hoop homomorphism
such that ker(φ) ⊆ G. If 〈φ(F )〉 = 〈φ(G)〉, then F = G.



A note on Noetherian and Artinian hoops 187

Proof. Suppose F,G ∈ F(H1) and 〈φ(F )〉 = 〈φ(G)〉. If x ∈ F , then φ(x) ∈
〈φ(F )〉 = 〈φ(G)〉. By Definition 2, there exist n ∈ N and x1, . . . , xn ∈ G such that
φ(x1)⊙φ(x2)⊙· · ·⊙φ(xn) ≤ φ(x). Then (φ(x1)⊙φ(x2)⊙· · ·⊙φ(xn)) → φ(x) = 1.
Since φ is a hoop homomorphism, we have φ((x1 ⊙ x2 ⊙ · · · ⊙ xn) → x) = 1, and
so

(x1 ⊙ x2 ⊙ · · · ⊙ xn) → x ∈ ker(φ).

Since ker(φ) ⊆ G, we get (x1 ⊙ x2 ⊙ · · · ⊙ xn) → x ∈ G. In addition, since for
n ∈ N, we have x1, . . . , xn ∈ G and G ∈ F(H1), then x ∈ G and so F ⊆ G. By
the similar way, we can prove G ⊆ F . Therefore, F = G.

Definition. If (H1,⊙H1
,→H1

, 1) and (H2,⊙H2
,→H2

, 1) are hoops, then (H1 ×
H2,⊗, , 1H1×H2

) is called a Cartesian product of hoops, where

(x, z) ⊗ (y,w) = (x⊙H1
y, z ⊙H2

w) and (x, z) (y,w) = (x→H1
y, z →H2

w)

for any (x, z), (y,w) ∈ H1 ×H2.

Proposition 24. Let H2 and H1 be two hoops. Then K ∈ F(H1 ×H2) if and
only if there exist F ∈ F(H1) and G ∈ F(H2) such that K = F ×G.

Proof. Let K ∈ F(H1 ×H2) such that K = F ×G, where F = {x ∈ H1|(x, z) ∈
K, for some z ∈ H2} and G = {w ∈ H2|(y,w) ∈ K, for some y ∈ H1}. Suppose
x, y ∈ F . Then there exist z, w ∈ H2 such that (x, z), (y,w) ∈ K. Since K ∈
F(H1×H2), we have (x⊙ y, z⊙w) = (x, z)⊙ (z, w) ∈ K, and so x⊙ y ∈ F . Now
suppose x ≤ y and x ∈ F . Then there exists z ∈ H2 such that (x, z) ∈ K. Since
(x, z) ≤ (y, z) and K ∈ F(H1 × H2), we get (y, z) ∈ K, and so y ∈ F . Hence,
F ∈ F(H1). By a similar way, we can prove that G ∈ F(H2).

Theorem 25. The hoops H1 and H2 are Noetherian (Artinian) if and only if
H1 ×H2 is a Noetherian (Artinian) hoop.

Proof. Let 1 −→ H1
φ

−→ H1 ×H2
ψ

−→ H2 −→ 1 be a short sequence of hoops.
It is clear that φ is one-to-one and ψ is surjective. Then this sequence is a short
exact sequence of hoops and by Theorem 19, the proof is clear.

Lemma 26. If H is a ∨-hoop such that for any x, y ∈ H, (x→ y)∨(y → x) = 1,
then P ∈ Spec(H) if and only if x ∈ P or y ∈ P .

Proof. Consider P is a prime filter of H and x ∨ y ∈ P such that x /∈ P and
y /∈ P . Since P is prime, we have x → y ∈ P or y → x ∈ P . Suppose
x → y ∈ P . By Proposition 2, x ∨ y = ((x → y) → y) ∧ ((y → x) → x) and
so ((x → y) → y) ∧ ((y → x) → x) ≤ (x → y) → y. From P ∈ F(H) and
x ∨ y ≤ (x → y) → y, we get (x → y) → y ∈ P . As P ∈ F(H) and x → y ∈ P ,
we obtain y ∈ P , which is a contradiction.
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Conversely, since (x → y) ∨ (y → x) = 1 ∈ P for any x, y ∈ H, by (i) the proof
is clear.

Note. Let H be a ∨-hoop. Then a subset S ⊆ H is a ∨-closed subset if x∨y ∈ S
for any x, y ∈ S.

Proposition 27. Let H be a ∨-hoop. If F is a proper filter of H and S is a
∨-closed subset of H such that S ∩ F = ∅, then F is contained in a prime filter
P of H such that S ∩ P = ∅, and F ⊆ P .

Proof. Let Γ = {G ∈ F(H)|F ⊆ G,G ∩ S = ∅}. Since F ∈ Γ, we get Γ 6= ∅.
Consider {Gi}i∈I is a family of filters of H such that Gi ∈ Γ for any i ∈ I.
By Zorn’s Lemma (Γ,⊆) has a maximal element such as P =

⋃

i∈I Gi. Now,
we prove P is a prime filter of H. Clearly P is a proper filter of H. Suppose
x ∨ y ∈ P such that x /∈ P and y /∈ P . Since F ⊆ 〈P ∪ {x}〉, F ⊆ 〈P ∪ {y}〉,
and P is a maximal element of Γ, we get 〈P ∪ {x}〉 /∈ Γ and 〈P ∪{y}〉 /∈ Γ. Thus
〈P ∪ {x}〉 ∩ S 6= ∅ and 〈P ∪ {y}〉 ∩ S 6= ∅. So there exist a ∈ 〈P ∪ {x}〉 ∩ S and
b ∈ 〈P ∪{y}〉∩S. Since S is ∨-close, we have a∨ b ∈ S. Also, by Lemma 5(ii) we
have a∨ b ∈ 〈P ∪{x}〉∩ 〈P ∪{y}〉 = 〈P ∪{x∨ y}〉 = P . Hence, P ∩S 6= ∅, which
is a contradiction. Thus x ∈ P or y ∈ P . If x ∈ P , then since for any y ∈ H, we
have x ≤ y → x, we obtain y → x ∈ P . Hence by Lemma 26, P is a prime filter
of H.

Corollary 28. Let H be a ∨-hoop. Then

(i) If F is a filter of a ∨-hoop H and x ∈ H \F , then there exists a prime filter
P of H such that F ⊆ P and x /∈ P .

(ii) Every proper filter of hoop H can be extend to a maximal filter of hoop H.

Proof. (i) Clearly S = {x} is a ∨-closed subset of H. Thus by Proposition 27,
the proof is completed.

(ii) Let F be a proper filter of H. Then there exists x ∈ H \F and by (i), F
contained in a prime filter P such that x /∈ P . Suppose

X = {G|P ⊆ G,G is a proper filter of H}.

By Zorn’s Lemma (Γ,⊆) has a maximal element such as M =
⋃

{G|G ∈ X}.
Obviously, by (i), M is a maximal filter of H.

Proposition 29. Let H be a ∨-hoop. Every proper filter F of H is intersection
of all prime filters including F .

Proof. Let F be a proper filter of H and {Pi}i∈I be the set of all prime filters
of H such that for any i ∈ I, F ⊆ Pi. So F ⊆

⋂

i∈I Pi. Suppose x ∈
⋂

i∈I Pi and
x /∈ F . Then by Corollary 28, there exists a prime filter of H such as Pj such
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that F ⊆ Pj and x /∈ Pj . Moreover, since x ∈
⋂

i∈I Pi ⊆ Pj, we get x ∈ Pj which
is a contradiction. Hence, every proper filter F of H is intersection of all prime
filters including F .

Proposition 30. Let H be a ∨-hoop. Then Max(H) ⊆ Spec(H).

Proof. Let M ∈ Max(H). Then M is a proper filter of H. By Proposition
29, there exists a prime filter P of H such that M ⊆ P . Since M is a maximal
filter and P ∈ Spec(H), we get M = P . Hence M ∈ Spec(H). Therefore,
Max(H) ⊆ Spec(H).

Lemma 31. Let H be a ∨-hoop and I, J ∈ F(H) such that I ∩ J ⊆ P , where
P ∈ Spec(H). Then I ⊆ P or J ⊆ J .

Proof. Let P ∈ Spec(H) such that for I, J ∈ F(H), we have I∩J ⊆ P . If I * P
and J * P , then there exist x ∈ I \P and y ∈ J \P . Since I, J ∈ F(H), we have
x ∨ y ∈ I ∩ J ⊆ P . In addition, P ∈ Spec(H), and so x ∈ P or y ∈ P , which is a
contradiction. Hence, I ⊆ P or J ⊆ J .

Theorem 32. Let H be an Artinian ∨-hoop. Then Max(H) is a finite set.

Proof. Let

S = {F ∈ F(H) | F is an intersection of finitely many maximal filters of H}.

If Max(H) is an empty set, then Max(H) is finite and the proof is clear. If
Max(H) is a non-empty set, then there exists a maximal filter of H such as M
such that M ∈ S, and so S is a non-empty set. Thus, by Theorem 10, we get
S has a minimal element. Suppose G is a minimal element of S. Then there
exist M1,M2 · · ·Mn ∈ Max(H) such that G = M1 ∩M2 ∩ · · · ∩Mn. Now, let
M ∈ Max(H). Then M ∩G ⊆ G and so M ∩G =M ∩M1 ∩M1 ∩ · · · ∩Mn ∈ S.
Since G is a minimal element of S and M ∩ G ⊆ G, we get M ∩ G = G. Thus
G = M1 ∩M2 ∩ · · · ∩Mn ⊆ M . Since M ∈ Max(H), by Proposition 30, we get
M ∈ Spec(H) and by Lemma 31, there exists i ∈ N, such that Mi ⊆ M . Since
M,Mi ∈ Max(H), we obtain M =Mi. Hence Max(H) = {M1,M2 · · ·Mn} and
it is a finite set.

In the following example, we show that every filter of Noetherian hoop H is
not an intersection of finitely number of prime filters of H.

Example 33. Let H = {0, a, b, c, 1} be a set. Define the operations → and ⊙ on
H as follow.
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→ 0 a b c 1

0 1 1 1 1 1
a b 1 0 0 1
b c 0 1 0 1
c c 0 0 1 1
1 0 a b c 1

⊙ 0 a b c 1

0 0 0 0 0 0
a 0 a 0 0 a
b 0 0 b 0 b
c 0 0 0 c c
1 0 a b c 1

Then (H,⊙,→, 1) is a hoop. By a routine calculate the set of all filters and
primes filters of H are

F(H) = {{1}, {a, 1}, {b, 1}, {0, a, b, c, 1}} and Spec(H) = ∅.

Theorem 34. Let H be a Noetherian ∨-hoop such that for any x, y ∈ H, (x →
y) ∨ (y → x) = 1. Then every filter of H is an intersection of finitely number of
prime filters of H.

Proof. Let

S = {G ∈ F(H) | G is not an intersection of finitely number

of prime filters of H}.

If S is a non-empty set, since H is a Noetherian ∨-hoop, then by Theorem 10,
S has a maximal element G. According to definition of set S, clearly G is not
a prime filter of H. Thus there exist x, y ∈ H such that x → y /∈ G and
y → x /∈ G. So G $ 〈G ∪ {x → y}〉 and G $ 〈G ∪ {y → x}〉. Since G is a
maximal element of S, 〈G ∪ {x → y}〉 /∈ S and 〈G ∪ {y → x}〉 /∈ S. Now, there
exist P1, P2, . . . , Pn, P

′
1, P

′
2, . . . , P

′
m ∈ Spec(H) such that

〈G ∪ {x→ y}〉 = P1 ∩ P2 ∩ · · · ∩ Pn , 〈G ∪ {y → x}〉 = P ′
1 ∩ P

′
2 ∩ · · · ∩ P ′

n.

By Remark 5,

G = 〈G ∪ {x→ y}〉 ∩ 〈G ∪ {y → x}〉 = P1 ∩ P2 ∩ · · · ∩ Pn ∩ P
′
1 ∩ P

′
2 ∩ · · · ∩ P ′

m

which is a contradiction. Hence S is an empty set. Therefore, every filter of H
is an intersection of finitely number of prime filters of H.

Definition. Let (A,≤) be an order set and B,C ∈ P(A) where P(A) is the
power set of A. Then B is covered by C if B ⊆ C and there is no D ⊆ A such
that B ⊆ D ⊆ C.

Similarly we can define covered elements if sets are singletone.
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Example 35. Let H = {0, a, b, 1} be a set such that 0 ≤ a, b ≤ 1 with the
following Hasse diagram.

r

0

rbra

r

1

�
�

�
�

@
@

@
@

→ 0 a b c

0 1 1 1 1
a b 1 b 1
b a a 1 1
c 0 a b 1

⊙ 0 a b c

0 0 0 0 0
a 0 a 0 a
b 0 0 b b
c 0 a b 1

According to Definition 3 clearly, 0 covered by a and b.

Definition. Let F ∈ F(H). Then an increasing sequence of filters {Fi| i =
1, 2, . . . , n} of H such that {1} = F1 ⊆ F2 ⊆ · · ·Fn−1 ⊆ Fn = F is called an
F -chain of H.

Example 36. Let H be the hoop as in Example 35. Consider F1 = {1} and
F2 = {a, 1}. Then it is clear that the sequence {Fi| i = 1, 2} is an F -chain of H.

Theorem 37. Let F,G ∈ F(H) such that F ⊆ G. Then the followings state-
ments are equivalent.

(i) F is covered by G,

(ii) 〈F ∪ {x}〉 = G for all x ∈ G \ F ,

(iii) 〈 x
F
〉 = G

F
for all x ∈ G \ F .

Proof. (i)⇒(ii) Let x ∈ G \ F and F covered by G. Since F ⊆ 〈F ∪ {x}〉 ⊆ G
by Definition 3, we get 〈F ∪ {x}〉 = G.

(ii)⇒(iii) Let a
F

∈ G
F
. Then by Lemma 13, we have a ∈ G. Since by (ii),

〈F ∪{x}〉 = G, by Definition 2, there exist u ∈ F and n ∈ N such that (u⊙xn) →
a ∈ F . Since u ∈ F , we get xn → a ∈ F , and so G

F
⊆ 〈 x

F
〉. By the similar way,

〈 x
F
〉 ⊆ G

F
. Hence, 〈 x

F
〉 = G

F
.

(iii)⇒(i) Let F ⊆ K ⊆ G, for K ∈ F(H). If F 6= K, then there exists
x ∈ K \ F . Since K ⊆ G and x ∈ K \ F , we get x ∈ G \ F . Then by assumption
〈 x
F
〉 = G

F
. Let a ∈ G. By Definition 2, x

n

F
→ a

F
= 1

F
, for some n ∈ N. It follows

that xn → a ∈ F ⊆ K. Thus from x ∈ K, we conclude a ∈ K. Therefore, K = G
and so F is covered by G.

Definition. An F -chain {Fi | i = 1, 2, . . . , n} is called a composition series for F
if for any 0 ≤ i ≤ n − 1, Fi is covered by Fi+1 in ordered set (F(H),⊆). The
smallest length of a composition series for F is denoted by le(F ). We denoted
le(F ) = ∞ if F has no composition series.

Example 38. Let H be the hoop as in Example 35. Suppose an F -chain F =
{Fi | 1 ≤ i ≤ 3} such that F1 = {1}, F2 = {a, 1} and F3 = {0, a, b, 1}. Clearly F
is a composition series for F3.
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Theorem 39. Let F,G ∈ F(H) such that F ⊂ G and G has a composition
series. Then le(F ) < le(G).

Proof. Let le(G) = n. Then there is a composition series {1} = G0 ⊂ G1 ⊂
· · · ⊂ Gn = G for G. Thus {1} = G0∩F ⊆ G1∩F ⊆ · · · ⊆ Gn∩F = F . Consider
x ∈ (Gi+1 ∩ F ) \ (Gi ∩ F ) for 0 ≤ i ≤ n. If x ∈ Gi, then since x ∈ Gi+1 ∩ F ,
we have x ∈ Gi ∩ F , which is a contradiction. Hence, x /∈ Gi. Then by Theorem
37, 〈Gi ∪ {x}〉 = Gi+1. Let z ∈ Gi ∩ F . Then z ∈ 〈Gi ∪ {x}〉 and by Definition
2, there exist n ∈ N such that xn → z ∈ Gi. Since z ∈ F , by Proposition 1(vi),
xn → z ∈ F ∩Gi. Hence, z ∈ 〈(Gi ∩ F ) ∪ {x}〉 and 〈(Gi ∩ F )∪ {x}〉 = Gi+1 ∩ F .
Now, by Theorem 37, Gi ∩ F is covered by Gi+1 ∩ F . By repeating this method,
the sequence {1} = G0 ∩ F ⊆ G1 ∩ F ⊆ · · · ⊆ Gn ∩ F = F , is a composition
series for F . Hence le(F ) ≤ le(G). Now, suppose le(F ) = le(G). A chain
{1} = G0 ∩ F ⊆ G1 ∩ F ⊆ · · · ⊆ Gn ∩ F = F is a composition series by length n
for F . By assumption, F ⊂ G, and so

{1} = G0 ∩ F ⊆ G1 ∩ F ⊆ · · · ⊆ Gn ∩ F = F ⊂ G

is a composition series for G, where le(G) = n+ 1, which is a contradiction.

Theorem 40. Let F ∈ F(H) such that le(F ) = n, for some n ∈ N. Then the
length of any composition series for F is n.

Proof. Let {1} = F0 ⊂ F1 ⊂ · · · ⊂ Fm−1 ⊂ Fm = F be a composition series
for F . Since le(F ) = n, by Definition 3, we get n ≤ m. Thus by Theorem 39,
0 = le(F0) < le(F1) < · · · < le(Fm−1) < le(F ) = n. By adding only one unit to
each le(Fi), 1 ≤ i ≤ n, we get le(F ) at least is m. Hence m ≤ n and the length
of every composition series for F is n.

Theorem 41. Let H be a ∨-hoop. Then H is a Noetherian and Artinian ∨-hoop
if and only if le(H) is finite.

Proof. Let H be a ∨-hoop. If H is a finite hoop, then the proof is clear. Suppose
H is an infinite Noetherian and Artinian ∨-hoop. If {1} is a maximal filter of
H, then {1} ⊆ H is a composition series for H and le(H) is finite. Suppose
{1} is not a maximal filter of H. By Theorem 25, Max(H) is a finite set. Let
Max(H) = {M1,M2, . . . ,Mn}. AssumeMi ∈ Max(H) has a composition series.
Let {1} = F0 ⊂ F1 ⊂ · · · ⊂ Fj =Mi be a composition series forMi. SinceMi is a
maximal filter of H, we get {1} = F0 ⊂ F1 ⊂ · · · ⊂ Fj =Mi ⊂ H is a composition
series for H. Thus le(H) is finite. In the other case, suppose for any 1 ≤ i ≤ n,
le(Mi) = ∞. Consider the set V = {F ∈ F(H)|le(F ) = ∞}. Clearly, since
Mi ∈ V, we get V is a non-empty set. Since H is an Artinean hoop, by Theorem
10, every non-empty set of filter of H has minimal element, thus V has a minimal
elementK. Let U = {F ∈ F(H)|F ⊂ K}. Since {1} ∈ U , we get U is a non-empty
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set and since H is a Noetherian hoop, by Theorem 10, U has a maximal element
such as K ′. Since K ′ ⊂ K and K is a minimal element in V, we have K ′ /∈ V.
Suppose le(K ′) = m for some m ∈ N and {1} = K ′

0 ⊂ K ′
1 ⊂ · · · ⊂ K ′

m = K ′

is a composition series for K ′. Hence, {1} = K ′
0 ⊂ K ′

1 ⊂ · · · ⊂ K ′
m ⊂ K is a

composition series for K, which is a contradiction. Therefore, le(H) is finite.

Conversely, by Theorem 39, the length of every chain of filters of H is finite
and H is a Noetherian and Artinian hoop.

Theorem 42. Let F ∈ F(H). If le(H) is finite, then le
(

H
F

)

is finite. Moreover

le(H) = le(F ) + le
(

H
F

)

.

Proof. Suppose le(H) is finite. Then by Theorems 14 and 41, we have le(H
F
)

is finite. Moreover, by Theorem 39, we get le(F ) is finite. Let m,n ∈ N such
that le(F ) = n and le(H

F
) = m. Consider {1} = F0 ⊂ F1 ⊂ F2 ⊂ · · · ⊂ Fn = F

as a composition series for F . By Lemma 13, for any 1 ≤ i ≤ m, there exists
Ki ∈ F(H) such that F ⊆ Ki and

Ki

F
∈ F(H

F
). Suppose

{

1

F

}

=
K0

F
⊂
K1

F
⊂
K2

F
⊂ · · · ⊂

Km

F
=
H

F

is a composition series for H
F
. Now, we get

{1} = F0 ⊂ F1 ⊂ F2 ⊂ · · · ⊂ Fn ⊂ K1 ⊂ K2 ⊂ · · · ⊂ Km = H

is a composition series for H. Hence, by Theorem 40, le(H) = le(F ) + le
(

H
F

)

.

Definition. The intersection of all maximal filters of hoop H is called a radical
of H and is denoted by Rad(H). It means that

Rad(H) =
⋂

M∈Max(H)

M.

Example 43. Let H be a hoop as in Example 35. Clearly Max = {{a, 1}, {b, 1}}
and so Rad(H) = {1}.

Lemma 44. Let H be bounded and F,G ∈ F(H) such that 〈F ∪G〉 = H. Then
there exists x ∈ H such that x ∼F 1 and x ∼G 0, where ∼ is a congruence relation
on H by F and G, respectively.

Proof. Since 0 ∈ H = 〈F ∪G〉 there exist x ∈ F and y ∈ G such that x⊙ y = 0.
Since x ∈ F , clearly, x ∼F 1. By Proposition 1(viii), since x ⊙ y ≤ 0, we
get y ≤ x′. Moreover, y ∈ G, G ∈ F(H) and y ≤ x′, then x′ ∈ G. Hence,
(0 → x)⊙ (x→ 0) = x′ ∈ G, and so x ∼G 0.
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Example 45. Let H be a hoop as in Example 35. Obviously, H = 〈{a, 1} ∪
{b, 1}〉. So there exist F,G ∈ F(H) such that 〈F ∪G〉 = H.

Theorem 46. Let H be bounded and Max(H) = {M1,M2, . . . ,Mn}. Then a
mapping CR : H →

∏n
i=1

H
Mi

define by CR(x) =
(

x
M1
, x
M2
, . . . , x

Mn

)

is a surjective
hoop homomorphism.

Proof. Since CR is a product of the natural homomorphismsCRi : H → H
Mi

such
that CRi(x) =

x
Mi

where 1 ≤ i ≤ n, clearly we have CR is a hoop homomorphism.
Now, we prove CR is a surjective homomorphism. Let

y =

(

x1
M1

,
x2
M2

, . . . ,
xn
Mn

)

∈
n
∏

i=1

H

Mi

such that xi
Mi

∈ H
Mi

for all 1 ≤ i ≤ n. Clearly, xi ∈ H \Mi. If xi ∈ Mi, then
xi
Mi

= 1
Mi

in other word xi ∼Mi
1, 1 ≤ i ≤ n. Now, we try to find an element

z ∈ H such that CR(z) = y. Since for every 1 ≤ i ≤ n, Mi are maximal filters
of H, we get 〈Mi ∪Mj〉 = H for any 1 ≤ i 6= j ≤ n. By Lemma 44, for any
1 ≤ i 6= j ≤ n, there is an element ai,j ∈ H such that ai,j ∼Mi

1 and ai,j ∼MJ
0.

Thus ai,j ∈Mi and a
′
i,j ∈Mj . Consider

r1 = a1,2 ⊙ a1,3 ⊙ a1,n,

r2 = a2,1 ⊙ a2,3 ⊙ a2,n,

...

rn = an,1 ⊙ an,2 ⊙ an,n−1.

Then for any 1 ≤ i 6= j ≤ n, since Mi is a maximal filter of H and ai,j ∈ Mi,
we get ri ∈ Mi. By Proposition 1(iii), ri ≤ ai,j and so a′i,j ≤ r′i. Moreover,
from Mj is a maximal filter of H and a′i,j ∈ Mj , we have r′j ∈ Mj . Since
Mj ∈ F(H) and r′i ∈Mj we obtain ri ∼Mi

1 and ri ∼Mj
0. Let z = ((x1 ⊙ r1)

′ ⊙
(x2 ⊙ r2)

′ ⊙ · · · ⊙ (xn ⊙ rn)
′)′. According to Lemma 44, it is enough to prove

(xi → z)⊙ (z → xi) ∈Mi for any 1 ≤ i ≤ n. By using (H3), we have

(xi ⊙ ri)⊙ (xi ⊙ [(x1 ⊙ r1)
′ ⊙ · · · ⊙ (xn ⊙ rn)

′]) = 0

⇔ xi ⊙ ri ≤ (xi ⊙ [(x1 ⊙ r1)
′ ⊙ · · · ⊙ (xn ⊙ rn)

′])′

⇔ xi ⊙ ri ≤ xi → ([(x1 ⊙ r1)
′ ⊙ · · · ⊙ (xi ⊙ ri)

′] → 0)

⇔ xi ⊙ ri ≤ xi → z.

Since xi, ri ∈ Mi and Mi ∈ F(H), we have xi → z ∈ Mi. Moreover, by Proposi-
tion 1(vi), xi ≤ z → xi. Since Mi ∈ F(H) and xi ∈ Mi, we obtain z → xi ∈ Mi.
Hence, by Definition 4, (xi → z) ⊙ (z → xi) ∈ Mi, and so z

Mi
= xi

Mi
. Therefore,

CR(z) =
(

z
M1
, z
M2
, . . . , z

Mn

)

=
(

x1
M1
, x2
M2
, . . . , xn

Mn

)

, and so CR is a surjective hoop
homomorphism.
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Corollary 47. If H is bounded, then H
Rad(H)

∼=
∏n
i=1

H
Mi
, where Max(H) =

{M1,M2, . . . ,Mn}.

Proof. Let x ∈ H and for every 1 ≤ i ≤ n, Mi ∈ Max(H) such that CR(x) =
(

1
M1
, 1
M2
, . . . , 1

Mn

)

= 1∏n
i=1

H
Mi

. By definition of CR we have
(

x
M1
, x
M2
, . . . , x

Mn

)

=
(

1
M1
, 1
M2
, . . . , 1

Mn

)

, and so x ∼Mi
1 for any 1 ≤ i ≤ n. Thus for any 1 ≤ i ≤ n, we

get x ∈ Mi and so x ∈
⋂n
i=1Mi = Rad(H). By Theorem 46 and Proposition 21,

since CR is surjective, we get CR is one-to-one and ker(CR) = Rad(H). Hence,
by using the first isomorphism theorem, we obtain H

Rad(H)
∼=

∏n
i=1

H
Mi

.

Definition. A hoop H is called a simple hoop if F(H) = {H, {1}}.

Example 48. Let H2 be a hoop as in Example 17. Clearly H is a simple hoop.

Note. Let F,G ∈ F(H). An interval of [F,G] is denoted by K ∈ F(H) where
F ⊆ K ⊆ G.

Theorem 49. Let M ∈ F(H). Then H
M

is a simple hoops if and only if M ∈
Max(H).

Proof. Suppose H
M

is not simple. Then there exists K
M

∈ F(H
M
) such that 1

M
6=

K
M

6= H
M
, and so 1 ⊂ K ⊂ H. Hence, M /∈ Max(H), which is a contradiction.

The proof of converse is similar.

Theorem 50. Let H be bounded such that Rad(H) = {1}. Then the following
statements hold.

(i) H is up to isomorphism a finite product of some simple hoop if and only if
H is an Artinian hoop.

(ii) If Max(H) is finite, then H is an Artinian hoop.

(iii) If H is an Artinian hoop, then H is Noetherian.

Proof. (i) Let H be an Artinian hoop and Rad(H) = {1}. By Theorem 32, we
get Max(H) is finite. Moreover, by Corollary 47, we have H ∼=

∏n
i=1

H
Mi

. Since

Mi is a maximal filter of H, for every 1 ≤ i ≤ n, we have H
Mi

is a simple hoop.
Hence, H is a finite direct product of simple hoops.

Conversely, suppose H ∼=
∏n
i=1Hi such that for every 1 ≤ i ≤ n, Hi is a

simple hoop. Then for every 1 ≤ i ≤ n, F(Hi) = {{1},Hi} and by Proposition
24, we get F(

∏n
i=1Hi) is finite. Hence, H is an Artinian hoop.

(ii) By (i) the proof is clear.

(iii) Let H be an Artinian hoop. By (i), H is a finite direct product of simple
hoops and by Proposition 24, we get F(H) is finite. Therefore, H is a Noetherian
hoop.
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Theorem 51. Let H be a ∨-hoop. Then Max(H) is finite if and only if every
properly increasing chain of filters of H

Rad(H) is finite.

Proof. Suppose Max(H) if finite. Assume Max(H) = {M1,M2, . . . ,Mn}, then
by Theorem 14, every properly increasing chain of filters of H

Rad(H) is finite. For
the converse by Theorem 32 and Proposition 24, the proof is clear.

4. Conclusions and future works

In this paper, the notion of Noetherian and Artinian hoops are defined and char-
acterized by using the filters of hoops. Then the relation between Noetherian
and Artinian hoops are investigated. Also, the notion of a short exact sequence
is introduced and the relation between a short exact sequence and Noetherian
and Artinian hoops are investigated. The concept of composition series is de-
fined and proved every ∨-hoop is Noetherian and Artinian hoop if it has a finite
composition series. Finally, we investigate the condition that proved H is up to
isomorphism a finite product of some simple hoop if and only if H is an Artinian
hoop.
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[14] D. Buşneag, D. Piciu and A. Jeflea, Archimedean residuated lattices , Annals A.I.
Cuza University, Mathematics 56 (2010) 227–252.
https://doi.org/10.2478/v10157-010-0017-5

[15] R. Cignoli, F. Esteva, L. Godo and A. Torrens, Basic fuzzy logic is the logic of
continuous t-norm and their residua, Soft Comp. 4 (2000) 106–112.
https://doi.org/10.1007/s005000000044

[16] A. Di Nola, G. Georgescu and A. Iorgulescu, Pseudo-BL algebras: Part II , Multi-
Valued Logic 8 (2002) 717–750.

[17] A. Dvureccenskij, A short note on categorical equivalences of proper weak pseudo
EMV-algebras , J. Alg. Hyperstructures and Logical Alg. 3(1) (2022) 35–44.
https://doi.org/10.52547/hatef.jahla.3.1.4

[18] R. Elohlavek, Some properties of residuated lattices , Czechoslovak Math. J. 53(123)
(2003) 161–171.

[19] A. Filipoiu, G. Georgescu and A. Lettieri, Maximal MV-algebras , Mathware Soft
Comp. 4(1) (1997) 53–62.

[20] T. Jeufack Yannick Lea, D. Joseph and T. Alomo Etienne Romuald, Residuated lat-
tices derived from filters (ideals) in double Boolean algebras , J. Alg. Hyperstructures
and Logical Alg. 3(2) (2022) 25–45.
https://doi.org/10.52547/hatef.jahla.3.2.3

[21] S. Motamed and J. Moghaderi, Noetherian and Artinian BL-algebras , Soft Comp.
16 (2012) 1989–1994.
https://doi.org/10.1007/s00500-012-0876-7

[22] F. Xie and H. Liu, Ideals in pseudo-hoop algebras , J. Alg. Hyperstructures and
Logical Alg. 1(4) (2020) 39–53.
https://doi.org/10.29252/hatef.jahla.1.4.3

https://doi.org/10.29252/hatef.jahla.1.1.5
https://doi.org/10.3390/math7060566
https://doi.org/10.5391/IJFIS.2019.19.3.213
https://doi.org/10.2478/BF02476010
https://doi.org/10.2478/v10157-010-0017-5
https://doi.org/10.1007/s005000000044
https://doi.org/10.52547/hatef.jahla.3.1.4
https://doi.org/10.52547/hatef.jahla.3.2.3
https://doi.org/10.1007/s00500-012-0876-7
https://doi.org/10.29252/hatef.jahla.1.4.3


198 M.S. Kish, R.A. Borzooei, S.H. Jabbari and M.A. Kologani

[23] O. Zahiri, Chain conditions on BL-algebras , Soft Comp. 18 (2014) 419–426.
https://doi.org/10.1007/s00500-013-1099-2

Received 19 June 2021
Revised 17 January 2023

Accepted 17 January 2023

This article is distributed under the terms of the Creative Commons Attribution 4.0 International
License https://creativecommons.org/licenses/by/4.0/

Powered by TCPDF (www.tcpdf.org)

https://doi.org/10.1007/s00500-013-1099-2
https://creativecommons.org/licenses/by/4.0/
http://www.tcpdf.org

