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Abstract

The purpose of this paper is to introduce the concept of 3-prime ideal as a
generalization of prime ideal. Further, we generalize the concepts of 3-prime
ideal and primary ideal, namely as quasi 3-primary ideal in a commutative
ternary semiring with zero. The relationship among prime ideal, 3-prime
ideal, primary ideal, quasi primary and quasi 3-primary ideal are investi-
gated. Various results and examples concerning 3-prime ideals and quasi
3-primary ideals are given. Analogous theorems to the primary avoidance
theorem for quasi 3-primary ideals are also studied.
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1. Introduction

The concept of the ternary algebraic system was first introduced by Lehmer [8]
in 1932 which is a generalization of abelian groups. In 1971, Lister [7] introduced
ternary rings. To generalize the ternary rings, Dutta and Kar [3] introduced the
notion of ternary semirings in 2003. A ternary semiring is an algebraic system
consisting of a set S together with a binary operation ‘+’, called addition, and
a ternary multiplication, denoted by juxtaposition, which forms a commutative
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semigroup relative to addition, a ternary semigroup relative to multiplication and
the left, right, lateral distributive laws hold, i.e., for all a, b, c, d ∈ S, (a+ b)cd =
acd + bcd, a(b + c)d = abd + acd, ab(c + d) = abc + abd. If there exists an
element e such that eea = eae = aee = a for all a ∈ S, then e is called the
identity element of S. If there exists an element 0 ∈ S such that 0 + x = x and
0xy = x0y = xy0 = 0 for x, y ∈ S, then 0 is called zero of the ternary semiring S.

The notion of prime ideals and its generalization have an important place in
commutative algebra, for their applications in many areas such as graph theory,
coding theory, information science, algebraic geometry, topological spaces, etc.
In 2016, Beddani and Messirdi [1] introduced the concept of 2-prime ideals as a
generalization of prime ideals in a ring. A proper ideal P of ring R is said to be
2-prime if for all a, b ∈ R ab ∈ P implies either a2 ∈ P or b2 ∈ P. Recall that in a
commutative ternary semiring S, an ideal I is called primary if for all a, b, c ∈ S,
abc ∈ I implies a ∈ I or b ∈ I or c2n+1 ∈ I for some n ∈ Z+

0 and an ideal I of
S is said to be quasi primary if Rad(I) is a prime ideal. In [9], Koc, Tekir and
Ulucak introduced a new class of ideals, an intermediate class between the class
of primary ideals and the class of quasi-primary ideals in a ring and is called the
class of strongly quasi primary ideals. A proper ideal P in a commutative ring
R is said to be strongly quasi primary if ab ∈ P for some a, b ∈ R implies either
a2 ∈ P or bn ∈ P for some positive integer n.

We shortly summarize the content of the paper. In the first Section, we re-
call some essential preliminaries. In Section 2, we introduce 3-prime ideals as a
generalization of prime ideals on ternary semirings. Various properties and rela-
tionships among radical ideals, maximal ideals and irreducible ideals are studied.
We give a characterization of 3-prime ideals in ternary semirings. Then we study
ternary semirings, where every 3-prime ideal is prime. In Section 3, we define a
quasi 3-primary ideal, which is a generalization of 3-prime ideal and is an interme-
diate class between 3-prime ideals and quasi-primary ideals in a ternary semiring.
We show that in regular ternary semirings, the concept of 3-prime ideals, quasi
3-primary ideals and primary ideals are the same. Theorem 4.39 is a character-
ization for quasi 3-primary ideals on a ternary semiring. At the end, we focus
on the study of the avoidance theorem for quasi 3-primary ideals by using the
techniques of efficient covering (cf. Theorem 4.44) and give an extended version
of the theorem (cf. Theorem 4.45).

2. Theoretical background for ternary semirings

In this section, we review some definitions and results which will be used in later
sections.

Definition 2.1 [3]. A nonempty set S together with a binary operation called
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addition and a ternary multiplication, denoted by juxtaposition is said to be a
ternary semiring if S is an additive commutative semigroup satisfying the follow-
ing conditions:

(1) (abc)de = a(bcd)e = ab(cde),

(2) (a+ b)cd = acd+ bcd,

(3) a(b+ c)d = abd+ acd,

(4) ab(c+ d) = abc+ abd for all a, b, c, d, e ∈ S.

Example 1 [2]. Let S be a set of continuous functions f : X → R−, where X
is a topological space and R− is the set of all negative real numbers. Define a
binary addition and a ternary multiplication on S as follows: For f, g, h ∈ S and
x ∈ X,

(1) (f + g)(x) = f(x) + g(x),

(2) (fgh)(x) = f(x)g(x)h(x).

Then with respect to the binary addition and ternary multiplication, S forms
a ternary semiring.

Let A,B and C be three subsets of S. By ABC, we mean the set of all finite
sums of the form

∑
aibici with ai ∈ A, bi ∈ B and ci ∈ C.

Definition 2.2 [3]. A ternary semiring S is called a commutative ternary semir-
ing if abc = bac = bca for all a, b, c ∈ S.

Definition 2.3 [3]. An additive subsemigroup T of S is called a ternary sub-
semiring if t1t2t3 ∈ T for all t1, t2, t3 ∈ T.

Definition 2.4 [3]. An additive subsemigroup I of S is called a left (resp. right,
lateral) ideal of S if s1s2i (resp. is1s2, s1is2) ∈ I, for all s1, s2 ∈ S and i ∈ I. If
I is both a left and a right ideal of S, then I is called a two-sided ideal of S. If I
is a left, a right and a lateral ideal of S, then I is called an ideal of S.

Definition 2.5 [2]. An ideal I of a ternary semiring S is said to be a k-ideal if
for x, y ∈ S, x+ y ∈ I and y ∈ I implies x ∈ I.

Definition 2.6 [3]. An element a in a ternary semiring S is called regular if
there exists an element x in S such that axa = a. A ternary semiring is called
regular if all of its elements are regular.

Definition 2.7 [4]. A proper ideal P of a ternary semiring S is called a prime
ideal if for any three ideals A, B and C of S, ABC ⊆ P implies A ⊆ P or B ⊆ P
or C ⊆ P .
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Corollary 2.8 [4]. A proper ideal P of a commutative ternary semiring S is

prime if and only if abc ∈ P implies that a ∈ P or b ∈ P or c ∈ P for all

elements a, b, c ∈ S.

Definition 2.9 [5]. A proper ideal Q of a ternary semiring S is called a semiprime
ideal of S if I3 ⊆ Q implies I ⊆ Q for any ideal I of S.

Corollary 2.10 [5]. A proper ideal Q of a commutative ternary semiring S is

semiprime if and only if x3 ∈ Q implies that x ∈ Q for any element x of S.

Definition 2.11 [5]. Let S be a ternary semiring and A be an ideal of S. The
radical of A, denoted by Rad(A), is defined to be the intersection of all the
prime ideals of S each of which contains A. In a commutative ternary semiring
S, Rad(A) = {a ∈ S : a2n+1 ∈ A for some positive integer n}.

Definition 2.12 [5]. A proper ideal I of a ternary semiring S is called a strongly
irreducible if for any two ideals H and K of S, H ∩ K ⊆ I implies H ⊆ I or
K ⊆ I.

Lemma 2.13 [12]. Let S be a commutative ternary semiring and I be an ideal

of S. Then (I : a : b) is an ideal in S, where (I : a : b) = {c ∈ S : abc ∈ I}.

Definition 2.14 [11]. A proper ideal P of a commutative ternary semiring S is
called primary if for any a, b, c ∈ S, abc ∈ P implies a ∈ P or b ∈ P or c2n+1 ∈ P
for some positive integer n. An ideal I of a commutative ternary semiring S is
called quasi primary if Rad(I) is prime.

3. On 3-prime ideals

Throughout the paper, unless otherwise stated S stands for a commutative ternary
semiring with zero. Z−

0 and Z+
0 denote the set of all negative integers with zero

and the set of all positive integers with zero respectively.

Definition 3.15. An ideal I of a ternary semiring S is called a 3-prime ideal if
for any x, y, z ∈ S; xyz ∈ I implies x3 ∈ I or y3 ∈ I or z3 ∈ I.

Example 2. In the ternary semiring Z−
0 , the ideal 8Z−

0 is a 3-prime ideal.

It’s easy to see that in a ternary semiring, every prime ideal is 3-prime but
the converse may not be true. In the above example, 8Z−

0 is a 3-prime but not
a prime ideal of Z−

0 . If 3-prime ideal is semiprime, then the converse holds as is
shown in the next result.

Theorem 3.16. If an ideal I of a ternary semiring S is 3-prime as well as

semiprime, then I is prime.
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Proof. Let xyz ∈ I for some x, y, z ∈ S. Since I is a 3-prime ideal of S, x3 ∈ I
or y3 ∈ I or z3 ∈ I. As I is semiprime, we have x ∈ I or y ∈ I or z ∈ I.

Proposition 3.17. If I is 3-prime, then Rad(I) is prime.

Proof. Let xyz ∈ Rad(I) for some x, y, z ∈ S. Then (xyz)2n+1 ∈ I for some
n ∈ Z+

0 . Thus x2n+1y2n+1z2n+1 ∈ I, which implies x2n+1 ∈ I or y2n+1 ∈ I or
z2n+1 ∈ I. So x ∈ Rad(I) or y ∈ Rad(I) or z ∈ Rad(I).

The converse of the above proposition may not be true, as is shown in the
following example.

Example 3. Consider the ternary subsemiring Z−
0 × 3Z−

0 of the ternary semir-
ing Z−

0 × Z−
0 . Then the ideal 32Z−

0 × 81Z−
0 is not 3-prime in Z−

0 × 3Z−
0 but

Rad(32Z−
0 × 81Z−

0 ) = 2Z−
0 × 3Z−

0 is a prime ideal of Z−
0 × 3Z−

0 . This is be-
cause (−4,−3)(−4,−3)(−2,−27) = (−32,−243) ∈ 32Z−

0 ×81Z−
0 but (−4,−3)3 /∈

32Z−
0 × 81Z−

0 , (−4,−3)3 /∈ 32Z−
0 × 81Z−

0 and (−2,−27)3 /∈ 16Z−
0 × 81Z−

0 .

Proposition 3.18. If Rad(I) is prime and (Rad(I))3 ⊆ I. Then I is 3-prime.

Proof. Let Rad(I) be prime and (Rad(I))3 ⊆ I. For x, y, z ∈ S, suppose
xyz ∈ I. Then xyz ∈ Rad(I) which implies x ∈ Rad(I) or y ∈ Rad(I) or
z ∈ Rad(I). So x3 ∈ (Rad(I))3 ⊆ I or y3 ∈ (Rad(I))3 ⊆ I or z3 ∈ (Rad(I))3 ⊆ I.
Hence I is 3-prime.

Theorem 3.19. In a regular ternary semiring, an ideal is prime if and only if

it is 3-prime.

Proof. Clearly if an ideal I is prime then it is 3-prime.
Conversely, let I be a 3-prime ideal and xyz ∈ I. Then x3 ∈ I or y3 ∈ I or

z3 ∈ I. Suppose x3 ∈ I. By regularity, there exist a, b ∈ I such that x = xaxbx,
that is, x = abx3 ∈ I. So I is prime.

Proposition 3.20. Let S be a ternary semiring. If an ideal I is a 3-prime ideal

of S, then (I : a3 : b3) is a 3-prime ideal of S, where a, b ∈ S \Rad(I).

Proof. Let xyz ∈ (I : a3 : b3) for some x, y, z ∈ S. Then xyza3b3 ∈ I. This
implies (xab)(yab)(zab) ∈ I. Thus (xab)3 = x3a3b3 ∈ I or (yab)3 = y3a3b3 ∈ I
or (zab)3 = z3a3b3 ∈ I. Hence x3 ∈ (I : a3 : b3) or y3 ∈ (I : a3 : b3) or
z3 ∈ (I : a3 : b3) and so (I : a3 : b3) is a 3-prime ideal of S.

The ternary product of 3-prime ideals may not be 3-prime, as is shown in
the next example.

Example 4. In the ternary semiring Z−
0 , ternary product of the 3-prime ideals

2Z−
0 , 3Z−

0 and 5Z−
0 is 30Z−

0 , which is not a 3-prime ideal of Z−
0 .
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Lemma 3.21. Let P be a prime ideal and P ′, P ′′ be two ideals with P ⊆ P ′ and

P ⊆ P ′′. Then PP ′P ′′ is 3-prime. Moreover, PP ′P ′′ is prime if and only if

PP ′P ′′ = P.

Proof. Let abc ∈ PP ′P ′′. Then abc ∈ PP ′P ′′ ⊆ P which implies a ∈ P or b ∈ P
or c ∈ P . So a3 ∈ P 3 ⊆ PP ′P ′′ or b3 ∈ P 3 ⊆ PP ′P ′′ or c3 ∈ P 3 ⊆ PP ′P ′′.

Now, let PP ′P ′′ be a prime ideal of S. Clearly, PP ′P ′′ ⊆ P . Consider a ∈ P .
It follows that a3 ∈ PP ′P ′′. As PP ′P ′′ is a prime ideal of S, we have a ∈ PP ′P ′′

and so P ⊆ PP ′P ′′. Hence PP ′P ′′ = P .

Corollary 3.22. If P is a prime ideal, then P 3 is a 3-prime ideal.

Proposition 3.23. In a ternary semiring S, every maximal ideal is 3-prime.

Proof. If S is a ternary semiring with identity, then every maximal ideal is
prime and hence 3-prime. Now suppose that S is a ternary semiring without
identity and M is a maximal ideal of S. Consider xyz ∈ M and x3 /∈ M ,
y3 /∈ M for some x, y, z ∈ S. If possible, let z3 /∈ M . Then clearly x, y, z /∈ M .
Thus we conclude that M + 〈x〉 = S, M + 〈y〉 = S, M + 〈z〉 = S. Now x3 =
(m1+s1s2x+n1x)(m2+s3s4y+n2y)(m3+s5s6z+n3z) for some m1,m2,m3 ∈ M ,
s1, s2, s3, s4, s5, s6 ∈ S and n1, n2, n3 ∈ Z+

0 . This implies x3 ∈ M . Similarly
y3 ∈ M . But x3 /∈ M and y3 /∈ M , hence z3 ∈ M and so M is a 3-prime ideal.

Lemma 3.24. Let I be a 3-prime ideal of a ternary semiring S. If abC ⊆ I and

a3 /∈ I, b3 /∈ I for some elements a, b ∈ S and some ideal C, then {c3 : c ∈ C} ⊆ I.

Proof. Suppose abC ⊆ I and a3 /∈ I, b3 /∈ I for some a, b ∈ S and some ideal C.
Consider any arbitrary element c ∈ C, then abc ∈ abC ⊆ I. Since I is 3-prime,
we conclude that c3 ∈ I. Hence {c3 : c ∈ C} ⊆ I.

Theorem 3.25. Let I be a proper ideal of a ternary semiring S with identity.

Then I is a 3-prime ideal if and only if whenever I1I2I3 ⊆ I for some ideals

I1, I2, I3 of S, we have {a3 : a ∈ I1} ⊆ I or {b3 : b ∈ I2} ⊆ I or {c3 : c ∈ I3} ⊆ I.

Proof. Suppose that the condition holds and abc ∈ I for some a, b, c in S. Then
(SSa)(SSb)(SSc) ⊆ I and so by the given condition {x3 : x ∈ SSa} ⊆ I or
{y3 : y ∈ SSb} ⊆ I or {z3 : z ∈ SSc} ⊆ I. Thus a3 ∈ I or b3 ∈ I or c3 ∈ I.

Conversely, suppose I is a 3-prime ideal of S and I1I2I3 ⊆ I for some ideals
I1, I2, I3. Also, suppose that {a3 : a ∈ I1} * I and {b3 : b ∈ I2} * I. Then there
exist i1 ∈ I1, and i2 ∈ I2 such that i31, i

3
2 /∈ I. By Lemma 3.24, {c3 : c ∈ I3} ⊆ I.

Theorem 3.26. Let f : S −→ T be a ternary homomorphism of ternary semir-

ings. Then the following statements hold.

(1) If J is a 3-prime ideal of T , then f−1(J) is a 3-prime ideal of S.
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(2) Let f be a ternary epimorphism and I be a k-ideal of S with {x ∈ S : for
some a, b ∈ S, x = a+ b and f(a) = f(b)} ⊆ I, then f(I) is a 3-prime ideal

of T if I is a 3-prime ideal of S.

Proof. (1) Let xyz ∈ f−1(J) for some x, y, z ∈ S. Then f(xyz) = f(x)f(y)f(z) ∈
J , which implies (f(x))3 = f(x3) ∈ J or (f(y))3 = f(y3) ∈ J or (f(z))3 = f(z3) ∈
J . Thus x3 ∈ f−1(J) or y3 ∈ f−1(J) or z3 ∈ f−1(J). Consequently, f−1(J) is a
3-prime ideal of S.

(2) Let xyz ∈ f(I) for some x, y, z ∈ S. Then there exist a, b, c ∈ S such
that x = f(a), y = f(b) and z = f(c). So xyz = f(a)f(b)f(c) = f(abc) ∈ f(I).
Then f(abc) = f(i) for some i ∈ I. Thus abc+ i ∈ I. Hence abc ∈ I, since I is a
k-ideal of S and i ∈ I. So a3 ∈ I or b3 ∈ I or c3 ∈ I. Therefore f(a3) = (f(a))3 =
x3 ∈ f(I) or f(b3) = (f(b))3 = x3 ∈ f(I) or f(c3) = (f(c))3 = x3 ∈ f(I).
Consequently, f(I) is a 3-prime ideal of T .

Proposition 3.27. If an ideal I is strongly irreducible in a regular ternary semir-

ing S, then I is 3-prime.

Proof. Assume that S is a regular ternary semiring and I is a strongly irreducible
ideal of S. Suppose that abc ∈ I and a3 /∈ I, b3 /∈ I for some a, b, c ∈ S. We have
to show that c3 ∈ I. On the contrary, assume that c3 /∈ I. Then I is properly
contained in (I + 〈a3〉) ∩ (I + 〈b3〉) ∩ (I + 〈c3〉). So there exists an element
x ∈ (I+ 〈a3〉)∩ (I + 〈b3〉)∩ (I + 〈c3〉) such that x /∈ I. Since S is regular, we have
x ∈ (I+〈a3〉)(I+〈b3〉)(I+〈c3〉)= (I+〈a3〉)∩(I+〈b3〉)∩(I+〈c3〉). Thus for some
i1, i2, i3 ∈ I and r1, r2, s1, s2, t1, t2 ∈ S x = (i1+r1r2a

3)(i2+s1s2b
3)(i3+ t1t2c

3) ∈
I, which is a contradiction. Therefore I is a 3-prime ideal of S.

Definition 3.28. A ternary semiring S is called a 3-P-ternary semiring if every
3-prime ideal of S is prime.

Example 5. Every regular ternary semiring is a 3-P-ternary semiring.

Definition 3.29. Let A be an ideal of a ternary semiring S. A 3-prime ideal I
containing A, is called a minimal 3-prime ideal over A if for any 3-prime ideal Q,
A ⊆ Q ⊆ I implies Q = I.

Proposition 3.30. A ternary semiring S is a 3-P-ternary semiring if and only

if every 3-prime ideal is semiprime.

Proof. Follows from Theorem 3.16.

Theorem 3.31. A ternary semiring S is a 3-P-ternary semiring if and only if

every prime ideal is idempotent and every 3-prime ideal is of the form P 3, for

some prime ideal P of S.
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Proof. Let S be a 3-P-ternary semiring and P ′ be a prime ideal of S. By Corol-
lary 3.22, P ′3 is a 3-prime ideal. Thus P ′3 is prime and so P ′ ⊆ P ′3. Also
P ′3 ⊆ P ′ and hence P ′3 = P ′. Now, consider any 3-prime ideal P ′′ of S, then P ′′

is prime. So we have P ′′ is idempotent as it is needed.
Conversely, let I be a 3-prime ideal of S. Then I is of the form I = P ′3 for

some idempotent prime ideal P ′, it follows that I = P ′, as required.

Theorem 3.32. Let S be a ternary semiring with unique maximal ideal M . Then

for any prime ideal P of S, P 2M is a 3-prime ideal of S. Moreover, P 2M is prime

if and only if P 2M = P .

Proof. Since P ⊆ M , the proof follows from the Lemma 3.21.

Theorem 3.33. Let S be a ternary semiring with unique maximal ideal M ,

then S is a 3-P-ternary semiring if and only if for for every 3-prime ideal I,
I2M = Rad(I).

Proof. Suppose for every 3-prime ideal I, I2M = Rad(I). Thus I ⊆ Rad(I) =
I2M ⊆ I. So I = Rad(I). Hence I is prime. The converse part follows from the
Theorem 3.32.

Theorem 3.34. Let S be a ternary semiring with unique maximal ideal M and

P be a prime ideal of S. If (Rad(I))3 ⊆ I for any 3-prime ideal I of S, then the

following are equivalent.

(i) For every minimal 3-prime ideal I over P 3, if P is minimal prime over I,
then I2M = P .

(ii) For every minimal 3-prime ideal I over P 3 such that I ⊆ P, then I = P.

Proof. (i) =⇒ (ii) Let I be a minimal 3-prime ideal over P 3 and I ⊆ P . We
claim that P is a minimal prime ideal over I. If I ⊆ J ⊆ P , for some prime ideal
J of S. Then for any x ∈ P , x3 ∈ P 3 ⊆ I ⊆ J . Thus x ∈ J . So J = P and hence
P is minimal. By (i), I2M = P . Thus P = I2M ⊆ I ⊆ P and so I = P.

(ii) =⇒ (i) Assume that I is a minimal 3-prime ideal over P 3 and P is a
minimal prime ideal over I. Since Rad(I) is a prime ideal and P 3 ⊆ I ⊆ Rad(I),
it follows that P = Rad(I). By hypothesis, P 3 ⊆ I ⊆ P and so I = P . Also
P 3 ⊆ P 2M ⊆ P = I and by Theorem 3.32, P 2M is 3-prime. Therefore P 2M =
P 2I = P , as required.

On quasi 3-primary ideals

Definition 4.35. An ideal I of a ternary semiring S is called a quasi 3-primary
ideal if for any a, b, c ∈ S, abc ∈ I and a3 /∈ I, b3 /∈ I implies there exists an
integer n ∈ Z+

0 such that c2n+1 ∈ I.
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It can be easily obtained by the definition that every 3-prime ideal is a quasi
3-primary ideal. The following example shows that the converse may not be true.

Example 6. Consider the ternary subsemiring Z−
0 ×3Z−

0 of the ternary semiring
Z−
0 × Z−

0 . Then the ideal {0} × 81Z−
0 is strongly quasi primary, but not 3-

prime in Z−
0 × 3Z−

0 , since (0,−81) = (−6,−9)(−5,−3)(0,−3) ∈ {0} × 81Z−
0 and

(−6,−9)3 /∈ {0}× 81Z−
0 , (−5,−3)3 /∈ {0}× 81Z−

0 and (0,−3)3 /∈ {0}× 81Z−
0 but

(0,−3)5 ∈ {0} × 81Z−
0 .

Theorem 4.36. Let S be a regular ternary semiring, then an ideal I is quasi

3-primary if and only if I is 3-prime.

Proof. Let I be a quasi 3-primary ideal of S. Assume that abc ∈ I and a3 /∈ I,
b3 /∈ I. Then there exists an integer n ∈ Z+

0 such that c2n+1 ∈ I. Since S is a
regular ternary semiring, there exists x ∈ S such that c = xc2n+1 ∈ I. So c3 ∈ I
and hence I is a 3-prime ideal of S.

Theorem 4.37. If I is a quasi 3-primary ideal of ternary semiring S, then I is

a quasi primary ideal.

Proof. Let abc ∈ Rad(I) for some a, b, c ∈ S and a /∈ Rad(I), b /∈ Rad(I).
Then there exists an integer n ∈ Z+

0 such that (abc)2n+1 = a2n+1b2n+1c2n+1 ∈ I.
Since I is a quasi 3-primary ideal and a /∈ Rad(I), b /∈ Rad(I), so we have
c(2m+1)(2n+1) ∈ I for some integer m ∈ Z+

0 . This implies c ∈ Rad(I) and so I is
a quasi primary ideal of S.

The converse may not be true as is shown in the following example.

Example 7. Consider the ternary subsemiring 2Z−
0 ×Z−

0 of the ternary semiring
Z−
0 × Z−

0 . Then the ideal 16Z−
0 × 81Z−

0 is quasi primary, since Rad(16Z−
0 ×

81Z−
0 ) = 2Z−

0 × 3Z−
0 is prime on 2Z−

0 × Z−
0 . But this ideal is not quasi 3-

primary, as (−2,−27)(−4,−3)(−2,−4) = (−16,−324) ∈ 16Z−
0 × 81Z−

0 , where
(−2,−27)3 /∈ 16Z−

0 × 81Z−
0 , (−4,−3)3 /∈ 16Z−

0 × 81Z−
0 and (−2,−4)2n+1 /∈

16Z−
0 × 81Z−

0 for any n ∈ Z+
0 .

Proposition 4.38. In a ternary semiring S, I is a quasi 3-primary ideal if and

only if Rad(I) is a 3-prime ideal.

Proof. Suppose I is a quasi 3-primary ideal of S. Then Rad(I) is a prime ideal
of S, thus Rad(I) is a 3-prime ideal.

Conversely, assume that Rad(I) is a 3-prime ideal of S. Let abc ∈ I and
a3 /∈ I, b3 /∈ I for some a, b, c ∈ S. Since abc ∈ I ⊆ Rad(I), we have c3 ∈ Rad(I).
Thus there exists an integer n ∈ Z+

0 such that c2n+1 ∈ I and hence I is a quasi
3-primary ideal of S.



172 M. Mandal, N. Tamang and S. Das

In a commutative regular ternary semiring, every non-zero proper ideal is
semiprime. Hence it can be easily shown that in a regular ternary semiring the
concept of prime ideal, 3-prime ideal, primary ideal, quasi 3-primary and quasi
primary ideal are the same.

The following example shows that the intersection of quasi 3-primary ideals
may not be a quasi 3-primary ideal.

Example 8. In the ternary semiring Z−
0 , the intersection of quasi 3-primary

ideals 3Z−
0 , 5Z−

0 and 2Z−
0 is 30Z−

0 , which is not a quasi 3-primary ideal.

Theorem 4.39. Let S be a ternary semiring with identity and I be a proper ideal

of S, then the following are equivalent.

(i) I is a quasi 3-primary ideal of S.

(ii) For any a, b ∈ S, if 〈a〉 * (I : a : a) and 〈b〉 * (I : b : b), then (I : a : b) ⊆
Rad(I).

(iii) For any three ideals J,K,L of S, JKL ⊆ I, {a3 : a ∈ J} * I and {b3 : b ∈
K} * I implies K ⊆ Rad(I).

Proof. (i) =⇒ (ii) Suppose I is a quasi 3-primary ideal of S and 〈a〉 * (I : a : a),
〈b〉 * (I : b : b). Then a3 /∈ I and b3 /∈ I. We have to show (I : a : b) ⊆ Rad(I).
Take c ∈ (I : a : b). Then abc ∈ I. Also a3 /∈ I and b3 /∈ I. Thus there exists an
integer n ∈ Z+

0 such that c2n+1 ∈ I and hence (I : a : b) ⊆ Rad(I).

(ii) =⇒ (iii) Consider JKL ⊆ I, {a3 : a ∈ J} * I and {b3 : b ∈ K} * I for
some ideals J,K,L of S. Then a ∈ J and b ∈ K such that a3, b3 /∈ I and so
〈a〉 * (I : a : a) and 〈b〉 * (I : b : b). Then by (ii), (I : a : b) ⊆ Rad(I). For
any arbitrary element c ∈ K, abc ∈ JKL ⊆ I. So c ∈ (I : a : b) ⊆ Rad(I). This
yields that K ⊆ Rad(I).

(iii) =⇒ (i) Assume that abc ∈ I and a3 /∈ I, b3 /∈ I. Then {x3 : x ∈ 〈a〉} * I
and {y3 : y ∈ 〈b〉} * I. Since abc ∈ 〈a〉 〈b〉 〈c〉 ⊆ I, by (iii) there exists an integer
n ∈ Z+

0 such that c2n+1 ∈ I. So I is a quasi 3-primary ideal of S.

Proposition 4.40. Let I be a quasi 3-primary ideal of ternary semiring S with

identity and 〈a〉 = 〈a3〉 for a ∈ S. If a /∈ (I : a : a), then (I : a : a) is a quasi

3-primary ideal of S.

Proof. Suppose I is a quasi 3-primary ideal of S. Here 〈a〉 * (I : a : a), since
a /∈ (I : a : a). So by Theorem 4.39, (I : a : a) ⊆ Rad(I). Thus (I : a : a) =
Rad(I). Consider xyz ∈ (I : a : a) and z2n+1 /∈ (I : a : a) for some x, y, z ∈ S
and any n ∈ Z+

0 . Whence (xa2)yz = xyza2 ∈ I and z2n+1 /∈ I implies (xa2)3 ∈ I
or y3 ∈ I. That is x3 ∈ (I : a3 : a3) = (I : a : a) or y3 ∈ I ⊆ (I : a : a). Hence
(I : a : a) is a quasi 3-primary ideal of S.
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Proposition 4.41. Suppose that I1 and I2 are two ideals of ternary semiring

S1 and S2 respectively. Consider the ternary semiring S = S1 × S2, then the

followings hold.

(i) I1 ×S2 is a quasi 3-primary ideal of S if and only if I1 is a quasi 3-primary

ideal of S1.

(ii) S1 × I2 is a quasi 3-primary ideal of S if and only if I2 is a quasi 3-primary

ideal of S2.

Proof. (i) Suppose that I1×S2 is a quasi 3-primary ideal of S, abc ∈ I1 for some
a, b, c ∈ S1 and a3 /∈ I1, b

3 /∈ I1. Then we have (abc, 0) = (a, 0)(b, 0)(c, 0) ∈ I1×S2

and (a, 0)3 = (a3, 0) /∈ I1 × S2, (b, 0)
3 = (b3, 0) /∈ I1 × S2. So we conclude that

there exists an integer n ∈ Z+
0 such that (c, 0)2n+1 = (c2n+1, 0) ∈ I1 × S2. Thus

there exists an integer n ∈ Z+
0 such that c2n+1 ∈ I1.

Conversely, assume that I1 is a quasi 3-primary ideal of S1. Let (a, x)(b, y)
(c, z) ∈ I1 × S2 and (a, x)3 /∈ I1 × S2, (b, y)

3 /∈ I1 × S2. This implies abc ∈ I1 and
a3 /∈ I1, b

3 /∈ I1. So there exists an integer n ∈ Z+
0 such that c2n+1 ∈ I1. Hence

(c, z)2n+1 = (c2n+1, z2n+1) ∈ I1×S2. Therefore I1 ×S2 is a quasi 3-primary ideal
of S.

(ii) The proof is similar to (i).

Definition 4.42. Let I, I1, I2, . . . , In be ideals of a ternary semiring S. The col-
lection {I1, I2, . . . , In} is said to be a cover of I if I ⊆ I1 ∪ I2 ∪ · · · ∪ In. We call
such a cover of I efficient, if I is not contained in the union of any n− 1 ideals of
I1, I2, . . . , In.

Lemma 4.43. Let {I1, I2, . . . , In} be an efficient covering of the ideal I, where
I1, I2, . . . , In are k-ideals of ternary semiring S and n > 1. If I ∩ Rad(Ii) *
I ∩Rad(Ij) for each i 6= j, then no Ij is quasi 3-primary ideal of S.

Proof. We first show that for efficient covering I ⊆ I1 ∪ I2 ∪ · · · ∪ In of I,
(
⋂

i 6=k Ii) ∩ I = (
⋂n

i=1 Ii) ∩ I for all k. Let x ∈ (
⋂

i 6=k Ii) ∩ I. Since the cover is
efficient, there exists xk ∈ Ik ∩ I such that xk /∈ (

⋃
i 6=k Ii) ∩ I. Now consider the

element x+ xk in I. If x+ xk ∈ Ii for i 6= k, then xk ∈ Ii for all i 6= k, which is a
contradiction. Then x+xk ∈ Ik and thus x ∈ Ik. So (

⋂
i 6=k Ii)∩ I = (

⋂n
i=1 Ii)∩ I.

If possible, let Ij be a quasi 3-primary ideal of S for some j = 1, 2, . . . , n. Since
I ∩ Rad(Ii) * I ∩ Rad(Ij) for each i 6= j we have I =

⋃n
i=1(Rad(Ii) ∩ I). Since

{Rad(Ii) ∩ I : 1 ≤ i ≤ n} is also an efficient covering of I, there exists an
element xi ∈ I \ Rad(Ii). This yields that x3i /∈ Ii for each i = 1, 2, . . . , n. Also
Rad(Ii) * Rad(Ij) for each i 6= j. Hence there exist yi ∈ Rad(Ii) \ Rad(Ij) for
every i 6= j. Thus y2ni+1

i ∈ Ii but y
2ni+1
i /∈ Ij for some ni ∈ N and i 6= j. Consider

y = (y1)
n+1y2 · · · yj−1yj+1 · · · yn. Since Rad(Ii) is prime, we have y /∈ Rad(Ij).

Assume that k = max{2n1 + 1, 2n2 + 1, . . . , 2nj−1 + 1, 2nj+1 + 1, . . . , 2nn + 1},
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then yk ∈ Ii for every i 6= j but yk /∈ Ij . Now ykxjxj ∈ I ∩ Ii for every i 6= j
but ykxjxj /∈ I ∩ Ij. Since ykxjxj ∈ Ij and x3j /∈ Ij , there exists an integer

n ∈ Z+
0 such that (yk)(2n+1) ∈ Ij , that is, y ∈ Rad(Ij), a contradiction. Thus

ykxjxj ∈ I ∩ (
⋂n

i 6=j Ii) but y
kxjxj /∈ I ∩ Ij , which also contradicts (

⋂
i 6=k Ii)∩ I =

(
⋂n

i=1 Ii) ∩ I. Therefore Ij is not a quasi 3-primary ideal of S.

By using Lemma 4.43, we obtain the following Theorem.

Theorem 4.44. Let I be an arbitrary ideal in a commutative ternary semiring

S and I1, I2, . . . , In be k-ideals of S such that at least n − 2 of which are quasi

3-primary ideals. If {I1, I2, . . . , In} be a cover of I and I ∩Rad(Ii) * I ∩Rad(Ij)
for each i 6= j, then I ⊆ Ii for some i.

Proof. We may assume that the cover is efficient since the hypothesis remains
valid if one reduces the covering to an efficient covering. Then n 6= 2. Since
I ∩ Rad(Ii) * I ∩ Rad(Ij) for each i 6= j, by Lemma 4.43, we have n < 2.
Therefore n = 1 and hence I ⊆ Ii for some i.

Theorem 4.45. Let S be a commutative ternary semiring and I1, I2, . . . , In be

quasi 3-primary k-ideals of S such that I ∩ Rad(Ii) * I ∩ Rad(Ij) for all i 6= j.
Let I be an ideal of S such that aSS + I *

⋃n
i=1 Ii for some a ∈ S. Then there

exists an element c ∈ I such that a+ c /∈
⋃n

i=1 Ii.

Proof. Assume that a lies in all of I1, I2, . . . , Ik but none of Ik+1, . . . , In. If
k = 0, then a + 0 /∈

⋃n
i=1 Ii. So consider k ≥ 1. Now I *

⋃k
i=1 Rad(Ii). If

I ⊆
⋃k

i=1Rad(Ii), by Theorem 4.44, I ⊆ Rad(Ii) for some 1 ≤ i ≤ k, which
contradicts the hypothesis that I ∩Rad(Ii) * I ∩Rad(Ij) for all i 6= j. So there

exists an element p ∈ I such that p /∈
⋃k

i=1Rad(Ii). Also, Ik+1 ∩ · · · ∩ In *
Rad(I1) ∪ Rad(I2) ∪ · · · ∪ Rad(Ik). If Ik+1 ∩ · · · ∩ In ⊆ Rad(I1) ∪ Rad(I2) ∪
· · · ∪Rad(Ik), then by Theorem 4.44, we get Ik+1 ∩ · · · ∩ In ⊆ Rad(Ij) for some
1 6 j 6 k. Thus (Rad(Ik+1))

n−k ∩ · · · ∩ Rad(In) = Rad((Ik+1)
n−k ∩ · · · ∩ In) ⊆

Rad(Ik+1∩· · ·∩In) ⊆ Rad(Ij) and since Rad(Ij) is a prime ideal of S, we conclude
that Rad(I l) ⊆ Rad(Ij) for k+1 6 l 6 n, so I ∩Rad(Ii) * I ∩Rad(Ij) for i 6= j,
which contradicts the hypothesis. Thus there exists q ∈ Ik+1 ∩ · · · ∩ In such that
q /∈ Rad(I1) ∪Rad(I2) ∪ · · · ∪ Rad(Ik). Consider the element c = ppq ∈ I. Then
c ∈ Ik+1 ∩ · · · ∩ In but c /∈ I1 ∪ I2 ∪ · · · ∪ Ik. If c ∈ I1 ∪ I2 ∪ · · · ∪ Ik, then
c = ppq ∈ Ii for some 1 6 i 6 k. Also p3 /∈ Ii. Since Ii is a quasi 3-primary
ideal, there exists an integer n ∈ Z+

0 such that q2n+1 ∈ Ii, a contradiction.

Hence c ∈
⋃n

j=k+1 Ij \
⋃k

i=1 Ii. Again, as a ∈
⋃k

i=1 Ii \
⋃n

j=k+1 Ij , it follows that
a+ c /∈

⋃n
i=1 Ii.
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