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Abstract

In this work, we study the notions of k-ideals and h-ideals of ternary
semirings and investigate some of their algebraic properties. Furthermore,
we construct a congruence relation with respect to a full k-ideal on a ternary
semiring for the purpose of forming a ternary ring from the quotient ternary
semiring.
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1. Introduction

The concept of an algebraic structure together with a ternary operation was
introduced first by Lehmer [12] in 1932. Later, Sioson [16] defined the notion
of a ternary semigroup and studied algebraic properties of ideals on a ternary
semigroup. Afterward, in 1990, the notion of a regularity on a ternary semigroup
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was investigated by Santiago [14]. The concept of an algebraic structure which
contains a binary operation and a ternary operation was defined by Lister [13]
as a ternary ring. As a generalization of a ternary ring, Dutta and Kar [5, 6, 7]
defined the notion of a ternary semiring and investigated some of their properties
such as regularity and Jacobson radical.

A semiring which is a notable generalization of rings and distributive lattices
was defined first by Vandiver [17]. This algebraic structure appears in a natural
manner in some applications to the theory of automata, formal languages, op-
timization theory and other branches of applied mathematics (for example, see
[3, 4, 8, 9, 11]). In abstract algebra, it is not difficult to prove that the kernel
of a ring homomorphism is an ideal and each ideal of a ring can be considered
as the kernel of a ring homomorphism. Similarly, the kernel of a semiring ho-
momorphism is an ideal as well. However, there is an ideal of a semiring such
that it cannot be considered as the kernel of a semiring homomorphism [1, 2].
This condition can be true on a semiring by using a more restrict type of ideals
(see [2]) namely a k-ideal defined by Henriksen [10]. Later, in [15], Sen and Ad-
hikari defined the notion of a full k-ideal and used a full k-ideal to construct a
congruence relation on a semiring such that the quotient semiring forms a ring.
Furthermore, the notion of an h-ideal, a more special kind of k-ideals, was also
defined by Henriksen [10].

It is easy to construct a ternary semiring from a given semiring; however,
there is a ternary semiring such that it cannot be considered as a semiring.
Consequently, we are able to study a ternary semiring as a generalization of
a semiring. In this work, we study the concept of a k-ideal of a ternary semiring
as a similar way of Sen and Adhikari [15] on a semiring. In other words, we
define the notion of a full k-ideal of a ternary semiring and use a full k-ideal to
construct a congruence relation such that the quotient ternary semiring forms a
ternary ring. Moreover, we also show that every h-ideal of a ternary semiring
is immediately full and the concepts of k-ideals and h-ideals are coincidence in
additively inverse ternary semirings.

2. Preliminaries

A nonempty set S together with a binary operation + : S × S → S is called a
semigroup if a + (b + c) = (a + b) + c for all a, b, c ∈ S. A ternary groupoid is
an algebra 〈S; f〉 such that f : S × S × S → S is a ternary operation on the
nonempty set S. A ternary groupoid 〈S; f〉 is called a ternary semigroup if f
satisfies the associative property on S, i.e., f(f(a, b, c), d, e) = f(a, f(b, c, d), e) =
f(a, b, f(c, d, e)) for all a, b, c, d, e ∈ S. A ternary semiring is an algebra 〈S; +, f〉
type (2, 3) for which 〈S; +〉 is a semigroup, 〈S; f〉 is a ternary semigroup and for
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all a, b, x, y ∈ S, f(a+ b, x, y) = f(a, x, y) + f(b, x, y), f(x, a+ b, y) = f(x, a, y) +
f(x, b, y) and f(x, y, a + b) = f(x, y, a) + f(x, y, b). A ternary semiring 〈S; +, f〉
is said to be additively commutative if a+ b = b+ a for all a, b ∈ S.

The set of all negative integers together with the usual addition and the
usual multiplication is an example of a ternary semiring such that it cannot be
considered as a semiring because every product of two negative integers is not a
negative integer.

Throughout this work, we simply write S instead of an additively commuta-
tive ternary semiring 〈S; +, f〉 and the juxtaposition abc instead of f(a, b, c) for
all a, b, c ∈ S.

For any nonempty subsets A, B, and C of a ternary semiring S, we denote
that A + B = {a + b ∈ S | a ∈ A, b ∈ B} and ABC = {abc ∈ S | a ∈ A, b ∈ B,
c ∈ C}.

A nonempty subset T of a ternary semiring S is called a subalgebra of S if
T + T ⊆ T and TTT ⊆ T .

Definition 2.1. A nonempty subset A of a ternary semiring S is called a left

ideal (respectively, lateral ideal, right ideal) of S if A + A ⊆ A and SSA ⊆ A
(respectively, SAS ⊆ A, ASS ⊆ A). A is called an ideal of S if A is a left ideal,
a lateral ideal, and a right ideal of S.

An element a of a ternary semiring S is called additively regular if a = a+b+a
for some b ∈ S. If the element b is unique and satisfies b = b+a+b, then b is called
an additively inverse of a in S and will be denoted by the notation a′. Particularly,
if every element of S is additively regular, then S is called an additively regular

ternary semiring. Furthermore, if every additively regular element of S has the
unique additively inverse, then S is called an additively inverse ternary semiring.

Let S be an additively inverse ternary semiring. It is obvious that x = (x′)′

and (x+ y)′ = x′ + y′ for all x, y ∈ S.

Lemma 2.2. Let S be an additively inverse ternary semiring. Then for any

x, y, z ∈ S, (xyz)′ = x′yz = xy′z = xyz′.

Proof. Let x, y, z ∈ S. Since xyz + x′yz + xyz = (x + x′ + x)yz = xyz and
x′yz + xyz + x′yz = (x′ + x + x′)yz = x′yz, we obtain that (xyz)′ = x′yz. The
cases of (xyz)′ = xy′z and (xyz)′ = xyz′ can be proved similarly.

An element x of a ternary semiring S is called additively idempotent if
x+ x = x. The set of all additively idempotent elements of S is defined by

E+ = {x ∈ S | x+ x = x}.

It is not difficult to verify that E+ is an ideal of S.
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A partially ordered set (L,≤) is said to be a lattice if every pair of elements
a and b of L has both greatest lower bound and least upper bound. If every
subset A of a lattice L has both greatest lower bound and least upper bound,
then L is called a complete lattice. It is not difficult to verify that a lattice L is
a complete lattice if L has the greatest element and every nonempty subset of L
has the greatest lower bound.

A lattice L is called modular if L satisfies the following law; for all a, b ∈ L,
a ≤ b implies a ∨ (x ∧ b) = (a ∨ x) ∧ b for every x ∈ L where x ∨ y and x ∧ y is
the least upper bound and the greatest lower bound of x, y ∈ L, respectively.

Lemma 2.3. A lattice L is modular if and only if for any a, b, c ∈ L, a∧b = a∧c,
a ∨ b = a ∨ c and b ≤ c implies b = c.

3. Full k-ideals and h-ideals of ternary semirings

The notions and some properties of full k-ideals and h-ideals of ternary semirings
have been defined and studied in this section.

Definition 3.1. An ideal A of a ternary semiring S is called a k-ideal of S if for
any x ∈ S, x+ a = b for some a, b ∈ A implies x ∈ A. If A is a k-ideal of S and
E+ ⊆ A, then A is said to be a full k-ideal of S.

The following example is an example of an ideal of a ternary semiring which
is not a k-ideal.

Example 3.2. Define a ternary operation f on the set of all natural numbers N
by f(x, y, z) = x ·y ·z for any x, y, z ∈ N where · is the usual multiplication. Then
〈N;max, f〉 is a ternary semiring. We have that 2N := {2, 4, 6, 8, . . .}, the set of
all positive even numbers, is an ideal of 〈N;max, f〉 but not a k-ideal because
max{1, 2} = 2 but 1 /∈ 2N.

The following example is an example of a k-ideal of a ternary semiring which
is not a full k-ideal.

Example 3.3. Define a ternary operation f on the set of all natural numbersN by
f(x, y, z) = min{x, y, z} for any x, y, z ∈ N. Then 〈N;max, f〉 is a ternary semir-
ing and E+ = N is the set of all additively idempotent elements of 〈N;max, f〉.
It is easy to obtain that the set Im = {1, 2, 3, . . . ,m} for each m ∈ N, is a k-ideal
of 〈N;max, f〉 but not a full k-ideal because E+ 6⊆ Im.

We give an example of a proper full k-ideal of a ternary semiring as follows.

Example 3.4. Let N0 be the set of all nonnegative integers. Then 〈N0; +, f〉 is
a ternary semiring such that + is the usual addition and f(x, y, z) = x · y · z for
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all x, y, z ∈ N0 where · is the usual multiplication. We have that the set of all
additively idempotent elements of 〈N0; +, f〉 is {0} and 2N0 = {0, 2, 4, 6, . . .} is a
full k-ideal.

The proofs of the following two remarks are routine.

Remark 3.5. Let {A}i∈I be a family of full k-ideals of a ternary semiring S.
Then

⋂
i∈I

Ai is also a full k-ideal if it is not empty.

Remark 3.6. Every k-ideal of an additively inverse ternary semiring S is an
additively inverse subalgebra of S.

The k-closure of a nonempty subset A of a ternary semiring S is defined by

[A]k = {x ∈ S | x+ a = b for some a, b ∈ A}.

It is easy to prove that for any ∅ 6= A ⊆ S, A ⊆ [A]k if A+A ⊆ A. Furthermore,
if A is closed under the addition, then [A]k is also closed. Now, we give some
necessary properties of k-closure of nonempty subsets of a ternary semiring as
follows.

Lemma 3.7. Let A,B, and C be nonempty subsets of an n-ary semiring S. Then
the following statements hold.

(i) If A+A ⊆ A, then [A]k = [[A]k]k.

(ii) If A ⊆ B, then [A]k ⊆ [B]k.

(iii) [A]k + [B]k ⊆ [A+B]k.

(iv) If A,B, and C are closed under the addition, then [A]kBC ⊆ [ABC]k,
A[B]kC ⊆ [ABC]k and AB[C]k ⊆ [ABC]k.

Proof. (i) Let ∅ 6= A ⊆ S be such that A + A ⊆ A. Obviously, [A]k ⊆ [[A]k]k.
If x ∈ [[A]k]k, then x + y = z for some y, z ∈ [A]k such that y + a1 = b1 and
z + a2 = b2 for some a1, a2, b1, b2 ∈ A. Then

x+ y + a1 + a2 = z + a1 + a2 = z + a2 + a1 = b2 + a1.(1)

We have y+ a1 + a2 = b1 + a2 ∈ A+A ⊆ A and b2 + a1 ∈ A+A ⊆ A. Using (1),
we get x ∈ [A]k and so [[A]k]k ⊆ [A]k. Therefore, [A]k = [[A]k]k.

(ii)–(iv) are straightforward.

Lemma 3.8. If A is an ideal of a ternary semiring S, then [A]k is a k-ideal of S.

Proof. Let A be an ideal of S. It is clear that [A]k is closed under addition. Using
A being an ideal of S and Lemma 3.7(ii) and (iv), we obtain that SS[A]k ⊆
[SSA]k ⊆ [A]k, S[A]kS ⊆ [SAS]k ⊆ [A]k and [A]kSS ⊆ [ASS]k ⊆ [A]k. If
x ∈ S such that x + a = b for some a, b ∈ [A]k, then by Lemma 3.7(i), we get
x ∈ [[A]k]k = [A]k. Therefore, [A]k is a k-ideal of S.
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The following corollary is directly obtained by Lemma 3.8.

Corollary 3.9. Let S be a ternary semiring. Them the following statements

hold.

(i) An ideal A of S is a k-ideal if and only if A = [A]k.

(ii) [E+]k is a full k-ideal of S.

Lemma 3.10. Let A and B be two full k-ideals of an additively inverse ternary

semiring S. Then [A + B]k is a full k-ideal of S such that A ⊆ [A + B]k and

B ⊆ [A+B]k.

Proof. Obviously, A+B is closed under the addition. We get that SS(A+B) ⊆
SSA + SSB ⊆ A + B, S(A + B)S ⊆ SAS + SBS ⊆ A + B, and (A + B)SS ⊆
ASS + BSS ⊆ A + B. Now, A + B is an ideal of S. Using Lemma 3.8, we
immediately obtain that [A + B]k is a k-ideal. Since E+ ⊆ A and E+ ⊆ B,
E+ = E+ + E+ ⊆ A+B ⊆ [A+B]k. Hence, [A+B]k is a full k-ideal of S. Let
a ∈ A. Then a = a+ a′+ a = a+(a′ + a) ∈ A+E+ ⊆ A+B ⊆ [A+B]k. Hence,
A ⊆ [A+B]k. Similarly, we are able to get that B ⊆ [A+B]k.

Theorem 3.11. Let K(S) be the set of all full k-ideals of an additively inverse

ternary semiring S. Then K(S) is a complete lattice which is also modular.

Proof. We have that K(S) is a partially ordered set with respect to usual set
inclusion. Let A,B ∈ K(S). By Remark 3.5 and Lemma 3.10, we obtain that
A ∩ B ∈ K(S) and [A + B]k ∈ K(S), respectively. Define A ∧ B = A ∩ B and
A∨B = [A+B]k. Obviously, A∩B is the greatest lower bound of A and B. Let
C ∈ K(S) such that A ⊆ C and B ⊆ C. Then A+B ⊆ C +C ⊆ C. By Remark
3.7(ii) and Corollary 3.9(i), we get [A+B]k ⊆ [C]k = C. Hence, [A+B]k is the
least upper bound of A and B. Now, K(S) is a lattice.

Clearly, S is the greatest element of K(S). Let {Ai}in∈I be a family of
nonempty subsets of K(S). Using Remark 3.5, we obtain that

⋂
in∈I

Ai ∈ K(S)
and immediately get that it is the greatest lower bounded of {Ai}i∈I . These
imply that K(S) is a complete lattice.

Finally, let A,B,C ∈ K(S) such that A ∧ B = A ∧ C, A ∨ B = A ∨ C, and
B ⊆ C. Let x ∈ C. Then x ∈ C ⊆ A ∨ C = A ∨ B = [A + B]k. It follows that
there exist a1, a2 ∈ A and b1, b2 ∈ B such that x+ a1 + b1 = a2 + b2. Then

x+ a1 + a′1 + b1 = x+ a1 + b1 + a′1 = a2 + b2 + a′1 = a2 + a′1 + b2.(2)

Now, x ∈ C, a1+a′1 ∈ E+ ⊆ C and b1, b2 ∈ B ⊆ C. Using (2), a2+a′1 ∈ [C]k = C.
At this point, a1 + a′1, a2 + a′1 ∈ A∩C = A∧C = A∧B = A∩B ⊆ B. It follows
that a1 + a′1 + b1 ∈ B and a2 + a′1 + b2 ∈ B. Using (2) again, we obtain that
x ∈ [B]k = B and so C ⊆ B. Hence, B = C. By Lemma 2.3, K(S) is a modular
lattice.
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Now, we introduce a more restrict class of ideals of a ternary semiring as
follows.

Definition 3.12. An ideal A of a ternary semiring S is called an h-ideal of S if
for any x ∈ S, x+ a+ s = b+ s for some a, b ∈ A and s ∈ S implies x ∈ A.

Every h-ideal of a ternary semiring is immediately full and so the notion of
a full h-ideal need not to be defined.

Remark 3.13. If A is an h-ideal of a ternary semiring S, then E+ ⊆ A.

Proof. Let A be an h-ideal of S and let e ∈ E+. If a ∈ A, then e+a+ e = a+ e.
Since A is an h-ideal, e ∈ A. Hence, E+ ⊆ A.

It is clear that every h-ideal of a ternary semiring is a k-ideal. In general,
the converse is not true as shown by the following example.

Example 3.14. Let S = {a, b, c}. Define a ternary operation f on the power set
P (S) of S by f(A,B,C) = A∩B ∩C for any A,B,C ∈ P (S). Then 〈P (S);∪, f〉
is a ternary semiring. We have that T = {∅, {a}, {b}, {a, b}} is a k-ideal of
〈P (S);∪, f〉. However, T is not an h-ideal because {c} ∪ {a, b} ∪ {a, c} = S =
{b} ∪ {a, c} where {a, b}, {b} ∈ T but {c} /∈ T .

Remark 3.15. Let {A}i∈I be a family of h-ideals of a ternary semiring S. Then⋂
i∈I

Ai is also an h-ideal if it is not empty.

Remark 3.16. Every h-ideal of an additively inverse ternary semiring S is an
additively inverse subalgebra of S.

Proof. Let H be an h-ideal of S. Clearly, H is a subalgebra of S. Let a ∈ H.
Then (a + a′) + a + s = a + s for all s ∈ S. So, a + a′ ∈ H. This means that
a′ + a = b for some b ∈ H and thus a′ + a+ t = b+ t for any t ∈ S. This implies
that a′ ∈ H. Hence, H is additively inverse.

The h-closure of a nonempty subset A of a ternary semiring S is defined by

[A]h = {x ∈ S | x+ a+ s = b+ s for some a, b ∈ A, s ∈ S}.

It is obvious that [A]k ⊆ [A]h for any ∅ 6= A ⊆ S. Moreover, it is not difficult
to verify that for any ∅ 6= A ⊆ S, A ⊆ [A]h if A + A ⊆ A. Furthermore, if A is
closed under the addition, then [A]h is also closed. Now, we give some necessary
properties of h-closure of nonempty subsets on a ternary semiring as follows.

Lemma 3.17. Let A,B, and C be nonempty subsets of a ternary semiring S.
Then the following statements hold.

(i) If A+A ⊆ A, then [A]h = [[A]h]h.
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(ii) If A ⊆ B, then [A]h ⊆ [B]h.

(iii) [A]h + [B]h ⊆ [A+B]h.

(iv) If A,B, and C are closed under the addition, then [A]hBC ⊆ [ABC]h,
A[B]hC ⊆ [ABC]h and AB[C]h ⊆ [ABC]h.

Proof. (i) Let ∅ 6= A ⊆ S be such that A + A ⊆ A. Obviously, [A]h ⊆ [[A]h]h.
If x ∈ [[A]h]h, then x + y + s = z + s for some y, z ∈ [A]h and s ∈ S where
y+a1+u = b1+u and z+a2+v = b2+v for some a1, a2, b1, b2 ∈ A and u, v ∈ S.
Then

x+ y + s+ a1 + u+ a2 + v = x+ (y + a1 + u) + a2 + s+ v

= x+ b1 + u+ a2 + s+ v

= x+ b1 + a2 + u+ s+ v(3)

x+ y + s+ a1 + u+ a2 + v = z + s+ a1 + u+ a2 + v

= a1 + (z + a2 + v) + s+ u

= a1 + b2 + v + s+ u.(4)

Using (3) and (4), we get that x+ (b1 + a2) + u+ s+ v = (a1 + b2) + u+ s+ v
where b1 + a2, a1 + b2 ∈ A + A ⊆ A and u + s + v ∈ S implies x ∈ [A]h and so
[[A]h]h ⊆ [A]h. Therefore, [A]h = [[A]h]h.

(ii)–(iv) are straightforward.

Lemma 3.18. If A is an ideal of a ternary semiring S, then [A]h is an h-ideal
of S.

Proof. Let A be an ideal of S. Clearly, [A]h is closed under the addition. Using
A being an ideal of S and Lemma 3.17(ii) and (iv), we obtain that SS[A]k ⊆
[SSA]k ⊆ [A]k, S[A]kS ⊆ [SAS]k ⊆ [A]k and [A]kSS ⊆ [ASS]k ⊆ [A]k. If x ∈ S
such that x+a+s = b+s for some a, b ∈ [A]h and s ∈ S, then by Lemma 3.17(i),
we get x ∈ [[A]h]h = [A]h. Therefore, [A]h is an h-ideal of S.

The following corollary is directly obtained by Lemma 3.18.

Corollary 3.19. Let S be an n-ary semiring. Then the following statements

hold.

(i) An ideal A of S is an h-ideal if and only if A = [A]h.

(ii) [E+]h is an h-ideal of S.

Lemma 3.20. Let A and B be two h-ideals of an additively inverse ternary

semiring S. Then [A + B]h is an h-ideal of S such that A ⊆ [A + B]h and

B ⊆ [A+B]h.
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Proof. Since SS(A+B) ⊆ SSA+ SSB ⊆ A+B, S(A+B)S ⊆ SAS + SBS ⊆
A+B, (A+B)SS ⊆ ASS+BSS ⊆ A+B, and A+B is closed under the addition,
we get that A+B is an ideal of S. Using Lemma 3.18, we obtain that [A+B]h is an
h-ideal. Let a ∈ A. Then a = a+a′+a = a+(a′+a) ∈ A+E+ ⊆ A+B ⊆ [A+B]h.
Hence, A ⊆ [A+B]h. Similarly, we are able to get that B ⊆ [A+B]h.

Theorem 3.21. Let H(S) be the set of all h-ideals of an additively inverse

ternary semiring S. Then H(S) is a complete lattice which is also modular.

Proof. We have that H(S) is a partially ordered set with respect to the usual
set inclusion. Let A,B ∈ H(S). By Remark 3.15 and Lemma 3.20, we obtain
that A ∩ B ∈ H(S) and [A + B]h ∈ H(S), respectively. Define A ∧ B = A ∩ B
and A ∨ B = [A + B]h. Obviously, A ∩ B is the greatest lower bound of A and
B. Let C ∈ H(S) such that A ⊆ C and B ⊆ C. Then A + B ⊆ C + C ⊆ C.
By Remark 3.17(ii) and Corollary 3.19(i), we get [A + B]h ⊆ [C]h = C. Hence,
[A+B]h is the least upper bound of A and B. Now, H(S) is a lattice.

Clearly, S is the greatest element of H(S). Let {Ai}in∈I be a family of
nonempty subsets of H(S). Using Remark 3.15, we obtain that

⋂
in∈I

Ai ∈ H(S)
and immediately get that it is the greatest lower bounded of {Ai}i∈I . These
imply that H(S) is a complete lattice.

Finally, let A,B,C ∈ H(S) such that A ∧ B = A ∧ C, A ∨ B = A ∨ C, and
B ⊆ C. Let x ∈ C. Then x ∈ C ⊆ A ∨ C = A ∨ B = [A + B]h. It follows that
there exist a1, a2 ∈ A, b1, b2 ∈ B and s ∈ S such that x+a1+ b1+s = a2+ b2+s.
Then

x+ a1 + a′1 + b1 + s = x+ a1 + b1 + s+ a′1

= a2 + b2 + s+ a′1(5)

= a2 + a′1 + b2 + s.

Since, x ∈ C, a1 + a′1 ∈ E+ ⊆ C and b1 ∈ B ⊆ C, we have x + a1 + a′1 + b1 ∈
C. Using (5) and b2 ∈ B ⊆ C, we get a2 + a′1 ∈ [C]h = C. At this point,
a1 + a′1, a2 + a′1 ∈ A ∩ C = A ∧ C = A ∧ B = A ∩ B ⊆ B. It follows that
a1+a′1+b1 ∈ B and a2+a′1+b2 ∈ B. Using (5) again, we obtain that x ∈ [B]h = B
and so C ⊆ B. Hence, B = C. By Lemma 2.3, H(S) is a modular lattice.

4. Ternary ring congruences

In this section, we characterize a ternary ring congruence with respect to a full
k-ideal of an additively inverse ternary semirings.

Definition 4.1. A binary relation ρ on a ternary semiring 〈S; +, f〉 is said to
be a congruence if ρ is an equivalence relation on S and satisfies the following



52 J. Sanborisoot and P. Palakawong na Ayutthaya

properties; for any a, b, x, y ∈ S, (a, b) ∈ ρ implies (a + x, b + x), (axy, bxy),
(xay, xby), (xya, xyb) ∈ ρ.

Definition 4.2. A ternary semiring 〈S; +, f〉 is called a ternary ring if 〈S; +〉 is
a group. In other words, the following conditions are satisfied.

(i) There exists 0 ∈ S such that x+ 0 = x = 0 + x for all x ∈ S.

(ii) For each x ∈ S, there is y ∈ S such that x+ y = 0 = y + x.

If 〈S; +, f〉 is a ternary ring, then the element y in (2) is usually denoted by −x.

Definition 4.3. A congruence ρ on a ternary semiring S is called a ternary ring

congruence if the quotient ternary semiring S/ρ := {aρ | a ∈ S} is a ternary ring.

Theorem 4.4. Let A be a full k-ideal of an additively inverse ternary semiring S.
Then the relation

ρA = {(a, b) ∈ S × S | a+ b′ ∈ A}

is a ternary ring congruence such that −(aρA) = a′ρA.

Proof. Let A be a full k-ideal of S. Firstly, we show that ρ is an equivalence
relation on S. Let a, b, c ∈ S. Since a + a′ ∈ E+ ⊆ A, (a, a) ∈ ρA. Thus, ρA
is reflexive. If (a, b) ∈ ρA, then a + b′ ∈ A. By Remark 3.6, we get b + a′ =
(b′)′ + a′ = (b′ + a)′ = (a + b′)′ ∈ A and so (b, a) ∈ ρA. Thus, ρA is symmetric.
Assume that (a, b), (b, c) ∈ ρA. It follows that a + b′ ∈ A and b + c′ ∈ A. Then
a+ c′ + b+ b′ ∈ A. Since b+ b′ ∈ E+ ⊆ A, a+ c′ ∈ [A]k = A. So, (a, c) ∈ ρA and
thus ρA is transitive. Now, ρA is an equivalence relation.

Secondly, let a, b, x, y ∈ S. Assume that (a, b) ∈ ρA and so a+ b′ ∈ A. Then

(a+ x) + (b+ x)′ = a+ x+ b′ + x′ = (a+ b′) + (x+ x′) ∈A+ E+ ⊆ A+A ⊆A.

Hence, (a+ x, b+ x) ∈ ρA. Using Lemma 2.2, we obtain that

axy + (bxy)′ = axy + b′xy = (a+ b′)xy ∈ ASS ⊆ A.

Hence, (axy, bxy) ∈ ρA. Analogously, we are able to obtain that (xay, xby),
(xya, xyb) ∈ ρA. Now, ρA is a congruence on S.

Finally, we show that S/ρA is a ternary ring together with the operations ⊕
and F on S/ρA defined by aρA⊕bρA = (a+b)ρA and F (aρA, bρA, cρA) = (abc)ρA
for any a, b, c ∈ S. It is immediately to obtain that 〈S/ρA;⊕, F 〉 is a quotient
ternary semiring of 〈S; +, f〉. Let e ∈ E+ and x ∈ S. Then (e + x) + x′ =
e+ (x+ x′) ∈ E+ + E+ = E+ ⊆ A and so (e+ x, x) ∈ ρA. It follows that

eρA ⊕ xρA = (e+ x)ρA = xρA.
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Since e+ (x+ x′)′ = e+ x′ + x ∈ A, (e, x + x′) ∈ ρA. It turns out that

xρA ⊕ x′ρA = (x+ x′)ρA = eρA.

Therefore, S/ρA is a ternary ring.

Theorem 4.5. Let ρ be a congruence on an additively inverse ternary semiring

S such that S/ρ is a ternary ring. Then there exists a full k-ideal A of S such

that ρA = ρ.

Proof. Let A = {a ∈ S | (a, e) ∈ ρ for some e ∈ E+}. Since ρ is reflexive,
E+ ⊆ A 6= ∅. Let a, b ∈ A. Then there exist e, f ∈ E+ such that (a, e) ∈ ρ and
(b, f) ∈ ρ. Then (a + b, e + f) ∈ ρ and e + f ∈ E+. Hence a + b ∈ A and thus
A + A ⊆ A. If x ∈ SSA, then x = stc for some s, t ∈ S and c ∈ A such that
(c, g) ∈ ρ for some g ∈ E+. It follows that (x, stg) = (stc, stg) ∈ ρ. Since E+ is
an ideal of S, stg ∈ SSE+ ⊆ E+. So, x ∈ A leads to SSA ⊆ A. Similarly, we
are able to obtain that SAS ⊆ A and ASS ⊆ A. Now, A is an ideal of S.

Let x ∈ [A]k. Then x+a = b for some a, b ∈ A where (a, e) ∈ ρ and (b, f) ∈ ρ
for some e, f ∈ E+. However, fρ and eρ are additively idempotent in the ternary
ring S/ρ. This implies that eρ = fρ is the zero element of S/ρ. It follows that
fρ = bρ = (x + a)ρ = xρ⊕ aρ = xρ⊕ eρ = xρ. Thus, (x, f) ∈ ρ where f ∈ E+.
Thus, x ∈ A and so [A]k = A. By Corollary 3.9(i), A is a full k-ideal of S.

Finally, we show that ρ = ρA. Let (a, b) ∈ ρ. Then (a+ b′, b+ b′) ∈ ρ. Since
b+ b′ ∈ E+, a+ b′ ∈ A and thus (a, b) ∈ ρA. Hence, ρ ⊆ ρA. If (a, b) ∈ ρA, then
a+ b′ ∈ A. Thus, (a+ b′, e) ∈ ρ for some e ∈ E+. We have that bρ = eρ⊕ bρ =
(a+ b′)ρ⊕ bρ = aρ⊕ b′ρ⊕ bρ = aρ⊕ (b+ b′)ρ = aρ, since b+ b′ ∈ E+. This shows
that (a, b) ∈ ρ and so ρA ⊆ ρ. Therefore, ρ = ρA.

We note that the concepts of full k-ideals and h-ideals of an additively inverse
ternary semiring are coincidence as the following remark.

Remark 4.6. The concepts of full k-ideals and h-ideals of an additively inverse
ternary semiring are coincidence.

Proof. We immediately obtain that every h-ideal is a full k-ideal. Let A be a
full k-ideal. By Theorem 4.4, we obtain that S/ρ is a ternary ring and A is its
zero element. Let x ∈ S and x + a + s = b + s for some a, b ∈ A, s ∈ S. Then
xρ+aρ+ sρ = bρ+ sρ and so xρ+0+ sρ = 0+ sρ. Hence, xρ = 0 implies x ∈ A.
Therefore, A is an h-ideal.

5. Conclusion and discussion

The notions of a k-ideal and a full k-ideal of a ternary semiring were defined in
Section 3. There is a k-ideal which is not full as it is shown by Example 3.3.



54 J. Sanborisoot and P. Palakawong na Ayutthaya

However, every h-ideal of a ternary semiring is immediately full. Moreover, h-
ideals and full k-ideals are coincidence in an additively inverse ternary semiring
and the set of all of them forms a complete lattice and also a modular lattice.

A group (ring) congruence is such a congruence relation on a semigroup
(semiring) that the quotient semigroup (semiring) is a group (ring). Similarly,
a ternary ring congruence is such a congruence relation on a ternary semiring
that the quotient ternary semiring is a ternary ring. Constructing a relation with
respect to a full k-ideal of an additively inverse ternary semiring is a way to
obtain a ternary ring congruence.

We claim that all results of this work are also true for an n-ary semiring
for any n ≥ 3. However, some basic properties of an additively inverse n-ary
semiring have to be defined and investigated.
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