
Discussiones Mathematicae
General Algebra and Applications 40 (2020) 267–274
doi:10.7151/dmgaa.1334

ISOMORPHISMS IN EQ-ALGEBRAS

M. Bakhshi, M.R. Khavari

and

M. Nazifi

University of Bojnord

Department of Mathematics, Bojnord, Iran

e-mail: bakhshi@ub.ac.ir
khavari66@gmail.com
mohadesenazifi1866@gmail.com

Abstract

In this paper we investigate some isomorphism theorems in EQ-algebras.
After establishing some basic results we give the Fundamental Homomor-
phism Theorem and by using it we state and prove some other isomorphism
theorems. We also state and prove a correspondence theorem. Next, using
some results of the theory of universal algebra we characterize subdirectly
irreducible EQ-algebras.
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1. Introduction

Every many-valued logic is uniquely determined by the algebraic properties of the
structure of its truth values. It is accepted that this algebraic structure should
be considered as a residuated lattice fulfilling some additional properties in fuzzy
logic (see [8]). In this case, both propositional and first-order logics have been
developed. A natural question arises that whether also a higher-order fuzzy logic
can be developed as a counterpart of the classical higher-order logic (type theory,
see [1]). This question has been answered positively with the introduction of
fuzzy type theory (FTT) which in [5] its the algebra of truth values is called an
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EQ-algebra [6]. Many investigations has been done on EQ-algebras by authors
(see [2, 4, 7]).

In this paper, we consider certain classes of EQ-algebras which are called
separated EQ-algebras and state and prove some isomorphism theorems. We
also state and prove a correspondence theorem. Furthermore, we investigate those
EQ-algebras which are subdirectly irreducible and give some characterizations of
them.

2. Preliminaries

This section is devoted to give some definitions and results from the literature.
For more details, we refer to [5, 7].

Definition 1. An EQ-algebra is an algebra E = 〈E,∧, ∗,∼, 1〉 of type (2,2,2,0)
such that for all x, y, z, t ∈ E:

(E1) 〈E,∧, 1〉 is a semilattice with top element 1 (the induced order is defined
as x ≤ y if and only if x ∧ y = x);

(E2) 〈E, ∗, 1〉 is a commutative monoid and ∗ is isotone with respect to ” ≤ ”;

(E3) x ∼ x = 1;

(E4) ((x ∧ y) ∼ z) ∗ (t ∼ x) ≤ z ∼ (t ∧ y);

(E5) (x ∼ y) ∗ (z ∼ t) ≤ (x ∼ z) ∼ (y ∼ t);

(E6) (x ∧ y ∧ z) ∼ x ≤ (x ∧ y) ∼ x;

(E7) x ∗ y ≤ x ∼ y.

Definition 2. Le E = 〈E,∧, ∗,∼, 1〉 be an EQ-algebra.

• E is said to be separated if a ∼ b = 1 implies that a = b, for all a, b ∈ E.

• The multiplication ∗ is said to be monotone with respect to → (or E is said
to be →-monotone) if a→ b = 1 implies that a∗c → b∗c = 1, for each c ∈ E.

Example 1. The {∧, ∗,↔, 1}-reduct of any residuated lattice 〈L,∧,∨, ∗,→, 0, 1〉
is a separated EQ-algebra (see [6]).

Definition 3. A nonempty subset F of EQ-algebra E is called a filter if

(i) 1 ∈ F ,

(ii) a, b ∈ F implies that a ∗ b ∈ F ,

(iii) a, a→ b ∈ F implies that b ∈ F ,

(iv) a→ b ∈ F implies that a ∗ c→ b ∗ c ∈ F .

By Fil(E) we mean the set of all filters of EQ-algebra E .
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Notice that if E is a separated EQ-algebra, the condition (ii) may be removed
(see [7, Lemma 15]). Hence in a separated EQ-algebra a nonempty subset F which
satisfies the conditions (i), (iii) and (iv) is called a filter. Any filter F of an EQ-
algebra is an upset; i.e., a ≤ b and a ∈ F imply b ∈ F . Moreover a, a ∼ b ∈ F
imply that b ∈ F .

In an EQ-algebra E , any filter F induces a congruence θF as aθF b if and only
if a ∼ b ∈ F. The set of all congruence classes, E/F , forms an EQ-algebra with
respect to the induced operations from E . Moreover E/F is separated and the
natural mapping a 7→ a/F is an onto homomorphism. Some additional properties
are as follows.

Proposition 1. In any EQ-algebra E, the following properties hold, for all

x, y, z ∈ E:

(i) x ∗ y ≤ x, y, x ∗ y ≤ x ∧ y;

(ii) x ∼ y ≤ x→ y, where x→ y := (x ∧ y) ∼ x;

(iii) x→ x = 1;

(iv) (x ∧ y) ∼ x ≤ (x ∧ y ∧ z) ∼ (x ∧ z);

• If E is separated, a→ b = 1 implies that a = b.

We recall some definitions from universal algebra. For more details we refer
to [3].

Definition 4. An algebra A is said to be a subdirect product of an indexed
family (Ai)i∈I of algebras if A is a subalgebra of

∏
i∈I Ai and πi(A) = Ai, for

each i ∈ I.

An embedding φ : A →
∏

i∈I Ai is called a subdirect if φ(A) is a subdirect
product of the Ai’s.

Definition 5. An algebraA is called subdirectly irreducible if for every subdirect
embedding φ : A →

∏
i∈I Ai there is an i ∈ I such that πiφ : A → Ai is an

isomorphism.

In the rest of the paper, E will denote an EQ-algebra, unless otherwise stated.

3. Isomorphism theorems

In this section we establish the Fundamental Homomorphism Theorem of uni-
versal algebra for EQ-algebras. We also state and prove some new results in this
context.
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Lemma 1. Let E be a separated EQ-algebra and f : E −→ G be a homomorphism

of EQ-algebras. Then f is one-to-one if and only if Ker(f) = {x ∈ E : f(x) =
1} = {1}.

Proof. It is easy.

Theorem 1. Let f : G −→ H be a homomorphism of EQ-algebras and F be a

filter of G. Then there exists a unique homomorphism f̃ : G/F −→ H such that

Im(f̃) = Im(f) and Ker(f̃) = Ker(f)/F . Furthermore f̃ is an isomorphism if

and only if f is onto and Ker(f) = F .

Proof. We define f̃ : G/F −→ H as f̃(a/F ) = f(a). Since f is a homomorphism,
so f̃ is a homomrphism and is such that Im(f̃) = Im(f). Now,

Ker(f̃) = {a/F : f(a) = 1H} = {a/F : a ∈ Ker(f)} = Ker(f)/F.

From the definition of f̃ , it is obvious that f̃ is unique. Now, f̃ is an isomorphism
if and only if it is onto and Ker(f)/F = Ker(f̃) = F and this true if and only if
f is onto and Ker(f) = F .

Lemma 2. Let H be a separated and →-monotone EQ-algebra. Then for every

homomorphism f : G −→ H of EQ-algebras, Ker(f) is a filter of G.

Proof. Assume that f : G −→ H is a homomorphism and a, a→ b ∈ Ker(f), for
a, b ∈ E. Then 1 → f(b) = f(a) → f(b) = f(a → b) = 1. Since H is separated
so f(b) = 1 and so b ∈ Ker(f). Also if a → b ∈ Ker(f), then f(a) → f(b) = 1.
So by →-monotonicity we have f(a ∗ c → b ∗ c) = f(a) ∗ f(c) → f(b) ∗ f(c) = 1,
whence a ∗ c → b ∗ c ∈ Ker(f). Moreover for a, b ∈ Ker(f) we have f(a ∗ b) =
f(a) ∗ f(b) = 1, whence a ∗ b ∈ Ker(f). Hence Ker(f) is a filter of G.

Theorem 2 (Fundamental Homomorphism Theorem). Let G be an EQ-algebra

and H be a separated and →-monotone EQ-algebra. If f : G −→ H is an epimor-

phism, then G/Ker(f) ≃ H.

Proof. Let f : G −→ H be an epimorphism. Since H is separated it follows
that Ker(f) is a filter of G, by Lemma 2. So G/Ker(f) is a separated EQ-
algebra. To prove that G/Ker(f) is →-monotone, assume that a/Ker(f) →
b/Ker(f) = 1 = Ker(f). Hence f(a) → f(b) = f(a → b) = 1 and since H is
separated, so f(a) = f(b). Now, for any c ∈ G, f(a) ∗ f(c) = f(b) ∗ f(c) and so
f(a ∗ c→ b ∗ c) = 1, whence a ∗ c→ b ∗ c ∈ Ker(f). Hence

a/Ker(f) ∗ c/Ker(f) → b/Ker(f) ∗ c/Ker(f) = Ker(f) = 1G/Ker(f).

Thus G/Ker(f) ≃ H, by Theorem 1.



Isomorphisms in EQ-algebras 271

Corollary 1. Let H be a separated EQ-algebra, f : G −→ H be a homomorphism

of EQ-algebras and A and B be filters of G and H such that f(A) ⊆ B. Then

the mapping f̃ : G/A −→ H/B with a/???A 7→ f(a)/B is a homomorphism such

that if f is onto, f(A) = B and Ker(f) ⊆ A, then f̃ is an isomorphism.

Proof. It is clear that H/B is a separated EQ-algebra and the natural mapping
π : H −→ H/B with a 7→ a/B is an epimorphism. For homomorphism πf : G −→
H/B, by Theorem 1, there exists a unique homomorphism f̃ : G/A −→ H/B with
f̃(a/A) = πf(a) = f(a)/B which Im(f̃) = Im(πf) and Ker(f̃) = Ker(πf)/A.
Moreover, f̃ is an isomorphism if and only if πf is onto and Ker(πf) = A. If f
is onto, then πf is also onto. Now we show that Ker(πf) = A. If a ∈ Ker(πf),
then f(a)/B = B, whence f(a) ∈ B = f(A). Hence f(a) = f(b) for some b ∈ A.
So f(a → b) = f(a) → f(b) = 1. Thus a → b ∈ Ker(f) ⊆ A. Therefore a ∈ A.
So, Ker(πf) ⊆ A. Obviously, A ⊆ Ker(πf).

Proposition 2. If F and G are filters of E such that F ⊆ G, then G/F = {a/F ∈
E/F : a ∈ G} is a filter of E/F .

Proof. Routine.

Corollary 2. Assume that E is a→-monotone EQ-algebra and F and G are filters

of E such that F ⊆ G. Then G/F is a filter of E/F and (E/F )/(G/F ) ≃ E/G.

Proof. By Proposition 2, (E/F )/(G/F ) is a separated EQ-algebra and the map-
ping ψ : E/F −→ E/G defined by a/F 7→ a/G is an onto homomorphism with
Ker(ψ) = G/F . Hence (E/F )/(G/F ) ≃ E/G, by Fundamental Homomorphism
Theorem.

Lemma 3. Let f : G −→ H be a homomorphism of EQ-algebras.

(i) Ker(f) ⊆ K if and only if f−1(f(K)) = K, for any filter K of G.

(ii) The inverse image under f of any filter of H is again a filter of G containing

Ker(f).

(iii) If f is onto, then the image of any filter of G is a filter of H.

Proof. Routine.

Theorem 3 (Correspondence Theorem). Let f : G −→ H be an onto homo-

morphism of separated EQ-algebras. Then the assignment K 7→ f(K) defines a

bijection correspondence between Sf (G) of all filters of G containing Ker(f) and
the set S(H) of all filters of H.

Proof. We define the mappings Φ : Sf (G) −→ S(H) and Ψ : S(H) −→ Sf (G) by
K 7→ f(K) and M 7→ f−1(M). Φ and Ψ are well-defined and ΦΨ = idS(H) and
ΨΦ = idSf (G), by Lemma 3(ii) and (iii). Hence Φ is a bijection.
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Theorem 4. Let E be a separated EQ-algebra. Then E is a subdirect product of

a family {Ei : i ∈ I} of separated and →-monotone EQ-algebras if and only if for

each i ∈ I there exists a filter Fi ⊆ E such that
⋂

i∈I Fi = {1} and E/Fi ≃ Ei.

Proof. Assume that {Ei : i ∈ I} is a family of separated and →-monotone EQ-
algebras. If E is a subdirect product of Ei’s, there exists a monomorphism φ :
E →

∏
Ei such that gi =def πiφ(E) = Ei. So, by Fundamental Homomorphism

Theorem, E/Kergi ≃ Ei. Now, we show that
⋂

i∈I Kergi = {1}. Let a ∈ E.
Then a ∈

⋂
i∈I Kergi if and only if φ(a)(i) = πφ(a) = 1Ei

if and only if a = 1.
Conversely, assume that for each i ∈ I there exists a filter Fi of E such that⋂

i∈I Fi = {1} and E/Fi ≃ Ei. Now, we consider the mapping φ : E →
∏

Ei by
φ(a)(i) = φi(a/Fi). It is easy to check that φ is a homomorphism. Moreover, for
a ∈ E, φ(a) = 1 if and only if φi(a/Fi) = φ(a)(i) = 1, for each i ∈ I, if and only
if a/Fi = 1/Fi, for each i ∈ I, if and only if a = a ∼ 1 ∈ Fi, for each i ∈ I. This
implies that a = 1 and so

⋂
i∈I Fi = {1}.

Lemma 4. Let φi : E → Ei (i ∈ I) be a family of homomorphisms of EQ-algebras.

Then the natural homomorphism φ : E →
∏

i∈I Ei is an embedding if and only if⋂
i∈I Kerφi = {1}.

Proof. Assume that φ is an embedding and a ∈
⋂

i∈I Kerφi, for a ∈ E. Then
φ(a)(i) = φi(a) = 1, for all i ∈ I. This implies that a ∈ Kerφ and so a = 1.
Conversely, assume that φ(a) = φ(b), for a, b ∈ E. Then for all i ∈ I we have
φi(a) = φ(a)(i) = φ(b)(i) = φi(b). This implies that φi(a → b) = 1, for all i ∈ I
and so a→ b = 1. Since E is separated so a = b, whence φ is an embedding.

Lemma 5. If Fi ∈ Fil(E) and
⋂

i∈I Fi = {1}, then the natural homomorphism

ν : E →
∏

i∈I E/Fi defined by ν(a)(i) = a/Fi is a subdirect embedding.

Proof. Consider the natural homomorphism νi : E → E/Fi. Since Kerνi = Fi,
from Lemma 4 it follows that ν is an embedding. On the other hand, since every
νi is surjective, so ν is subdirect embedding.

Theorem 5. A nontrivial EQ-algebra E is subdirectly irreducible if and only if

the intersection of all members of Fil(E)− {1} differs from {1}.

Proof. Assume that ∩ (Fil(E)−{1}) = {1} and let I = Fil(E)−{1}. Then the
mapping φ : E →

∏
F∈I E/F is a subdirect embedding, by Lemma 5 and since

the mapping E → E/F is not injective, so E is not subdirectly irreducible.
Conversely, assume that F = ∩ (Fil(E)−{1} 6= {1}. Let a ∈ E be such that

a ∈ F but a 6= 1. If φ : E →
∏

i∈I Ei is a subdirect embedding, on one hand
the mapping πiφ : E → Ei is an empimorphism, on the other hand φ(a)(i) 6= 1,
for some i ∈ I. This implies that πiφ(a) 6= 1 and so F 6⊆ Ker(πiφ), whence
Ker(πiφ) = {1}, means that πiφ is injective. Hence πiφ is an isomorphism.
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Corollary 3. A nontrivial EQ-algebra E is subdirectly irreducible if and only if

when E is isomorphic to a subdirect product of the family {Ei : i ∈ I} of EQ-

algebras, then E ≃ Ei, for some i ∈ I.

Proof. Assume that E is subdirectly irreducible and is isomorphic by a subdirect
product of a family {Ei : i ∈ I}. By Theorem 4, for each i ∈ I there is Fi ∈ Fil(E)
such that E/Fi ≃ Ei and

⋂
i∈I Fi = {1}. Considering Theorem 5, we conclude

that Fi = {1}, for some i ∈ I, and hence E ≃ Ei, for some i ∈ I.
Conversely, assume that the intersection of all nontrivial filters of E is trivial

and I = FiL(E) − {1}. Then the homomorphism φi : E → E/Fi induces the
homomorphism φ : E →

∏
Fi∈I

E/Fi which is an embedding because
⋂

i∈I Fi =
{1}. Obviuosly, πiφ(E) = E/Fi. Hence E is isomorphic by a subdirect product
of the family of {E/Fi : i ∈ I}. So, by hypothesis, E ≃ E/Fi, for some i ∈ I. This
implies that Fi = {1}, which is a contradiction.

4. Conclusion

Homomorphism theorems are a useful and applicable tool to characterize and clas-
sify algebras of the same type. In this paper we investigated some isomorphism
theorems to characterize EQ-algebras such as Fundamental Homomorphism The-
orem. We also investigate some other characterizations for EQ-algebras by using
isomorphism theorems.
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