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Abstract

In this paper, we consider the ideal based zero divisor graph ΓI(R) of
a commutative ring R. We discuss some graph theoretical properties of
ΓI(R) in relation with zero divisor graph. We also relate certain parameters
like vertex chromatic number, maximum degree and minimum degree for
the graph ΓI(R) with that of Γ(R

I
). Further we determine a necessary and

sufficient condition for the graph to be Eulerian and regular.
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1. Introduction

The study of algebraic graph theory is an interesting subject for mathematicians
and goes back at least to 1973, when N. Biggs published his work. As he wrote
in the preface of his book, his aim was “to translate properties of graphs into al-
gebraic properties and then, using the results and methods of algebra, to deduce
theorems about graphs”. Although Biggs spoke of algebraic methods and algebra
in general, the kind of algebra he really used was linear algebra and some prop-
erties of polynomials. Later on, Beck [6], studied the graph of zero divisors of a
commutative ring, where he was mainly interested in coloring. This investigation
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of coloring of the zero divisor graph of a commutative ring was then continued
by Anderson and Naseer [4]. Since then, the attention of algebraist’s and graph
theorists has focused on the graph of zero divisors. In this article we have the
same aim as N. Biggs has had but we will study the generalized zero divisor graph
of an associative ring. Let R be a commutative ring with identity 1 and Z(R) be
its zero divisors. The zero divisor graph of R denoted by Γ(R) is an undirected
graph whose vertices are the nonzero zero divisors of R with two distinct vertices
x and y joined by an edge if and only if xy = 0. The zero-divisor graph has been
extended to other algebraic structures in DeMeyer [8] et al. and Redmond [11].

Let R be a commutative ring and let I be an ideal of R. The ideal based
zero divisor graph is an undirected graph ΓI(R) with vertices {x ∈ R− I : xy ∈ I
for some y ∈ R − I},where distinct vertices x and y are adjacent if and only
if xy ∈ I. It was introduced by Redmond [12]. In [12], he found the values of
parameters such as connectivity, clique, diameter, girth etc. in relation with zero
divisor graph. Further various research work is going on here. In this paper, we
find the values of parameters such as vertex chromatic number, clique number,
maximum and minimum degree etc. In Section 2, we give the definition and
theorem from [12] which are needed for subsequent sections. Section 3 discusses
vertex chromatic number and the relation between clique number and chromatic
number of the graph. In Section 4 discusses minimum and maximum degree of
the graph. Further we find a necessary and sufficient condition for the graph
ΓI(R) to be an Eulerian graph and a regular graph.

A ring R is said to be decomposable if R can be written as R1 × R2, where
R1 and R2 are rings; otherwise R is said to be indecomposable. If X is either
an element or a subset of R, then Ann(X) denotes the annihilator of X in R.
For any subset X of R, we define X∗ = X − {0} and |X| denote the number of
elements in X.

For a graph G, the degree deg(v) of a vertex v in G is the number of edges
incident with v. Denote the degree of the vertex v in ΓI(R) by deg(v) and that
of Γ(R) by degΓ(v). We denote the minimum and maximum degree of vertices
of G by δ(G) and ∆(G), respectively. A graph G is regular if the degrees of all
vertices of G are the same. A graph G is 1-factor if every vertex of G is of degree
1. We denote the complete graph with n vertices and complete bipartite graph
with two parts of sizes m and n, by Kn and Km,n, respectively. A subset X of
the vertices of G is called a clique if the induced subgraph on X is a complete
graph. The number of vertices in the set X is denoted by |X|.

An Eulerian trail is a closed trail which traverses each edge exactly once. A
graph is Eulerian if it contains an Eulerian trail. A proper k-vertex coloring of a
graph G is an assignment of k colors {1, . . . , k} to the vertices of G such that no
two adjacent vertices have the same color. The vertex chromatic number χ(G)
of a graph G, is the minimum k for which G has a proper k-vertex coloring.
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2. Preliminaries

Definition 2.1 [12]. Let R be a commutative ring and let I be an ideal of R.
The ideal based zero divisor graph is an undirected graph ΓI(R) with vertices
{x ∈ R − I : xy ∈ I for some y ∈ R − I}, where distinct vertices x and y are
adjacent if and only if xy ∈ I.

Example 2.2. For R ∼= Z6 × Z3 and I ∼= 0× Z3, ΓI(R) is shown in Figure 1.

(2,0) (3,0) (4,0)

(2,1) (3,1)
(4,1)

(2,2) (4,2)(3,2)

Figure 1.

Remark 2.3 [12]. Let I be an ideal of a ring R. Then ΓI(R) is a graph on a finite
number of vertices if and only if either R is finite or I is a prime ideal. Moreover,
if Γ(R

I
) is a graph on N vertices, then ΓI(R) is a graph on N |I| vertices.

Theorem 2.4 [12]. Let I be an ideal of a ring R, and let x, y ∈ R− I. Then

(a) if x+ I is adjacent to y + I in Γ(R
I
), then x is adjacent to y in ΓI(R),

(b) if x is adjacent to y in ΓI(R) and x+ I 6= y + I, then x + I is adjacent to

y + I in Γ(R
I
),

(c) if x is adjacent to y in ΓI(R) and x+ I = y + I, then x2, y2 ∈ I.

Corollary 1 [12]. If x and y are (distinct) adjacent vertices in ΓI(R), then all

(distinct) elements of x+ I and y + I are adjacent in ΓI(R). If x2 ∈ I, then all

the distinct elements of x+ I are adjacent in ΓI(R).

Remark 2.5 [12]. Clearly there is a strong relationship between Γ(R
I
) and ΓI(R).

Let I be an ideal of a ringR. One can verify that the following method can be used
to construct a graph ΓI(R). Let {aλ}λ∈Λ ⊆ R be a set of coset representatives
of the vertices of Γ(R

I
). For each i ∈ I, define a graph Gi with vertices {aλ + i :

λ ∈ Λ}, where edges are defined by the relationship aλ + i is adjacent to aβ + i
in Gi if and only if aλ + I is adjacent to aβ + I in Γ(R

I
) (i.e., aλaβ ∈ I).

Define the graph G to have as its vertex set V =
⋃

i∈I Gi. We define the edge
set of G to be:

(1) all edges contained in Gi for each i ∈ I,
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(2) for distinct λ, β ∈ Λ and for any i, j ∈ I, aλ + i is adjacent to aβ + j if and
only if aλ + I is adjacent to aβ + I in Γ(R

I
) (i.e., aλaβ ∈ I),

(3) for λ ∈ Λ and distinct i, j ∈ I, aλ + i is adjacent to aλ + j if and only if
a2λ ∈ I.

Definition 2.6 [12]. Using the notation as in the above construction, we call
the subset aλ + I a column of ΓI(R). If a2λ ∈ I, then we call aλ + I a connected
column of ΓI(R).

Remark 2.7. Denote the vertices of Γ(R
I
) by V (Γ(R

I
)) = {ai + I : i ∈ Λ}. From

the Remark 2.5, we can denote the vertex set of ΓI(R) as V (ΓI(R)) = {ai + h :
i ∈ Λ, h ∈ I}.

Theorem 2.8 [2, Theorem 7]. Let R be a finite ring. If Γ(R) is a regular graph,

then it is either a complete graph or a complete bipartite graph.

Theorem 2.9 [12, Theorem 5.7]. Let I be a nonzero ideal of a ring R. Then

ΓI(R) is bipartite if and only if either (a) gr(ΓI(R)) = ∞ or (b) gr(ΓI(R)) = 4
and Γ(R

I
)) is bipartite.

Theorem 2.10 [3, Theorem 2.8]. Let R be a commutative ring. Then Γ(R) is a
complete graph if and only if either R ∼= Z2×Z2 or xy = 0 for every x, y ∈ Z(R).
In particular, if R is a reduced commutative ring and not a field, then Γ(R) is a

complete graph if and only if R ∼= Z2 × Z2.

3. Chromatic number of ΓI(R)

In this section we characterize when the chromatic number and clique number
of ΓI(R) are equal and we also prove the following relationship ω(ΓI(R)) ≤
|I|ω(Γ(R

I
)) and χ(ΓI(R)) ≤ |I|χ(Γ(R

I
)).

Theorem 3.1. Let R be a commutative ring and I be an ideal of R. If χ(Γ(R
I
)) =

ω(Γ(R
I
)), then χ(ΓI(R))) = ω(ΓI(R)).

Proof. Assume χ(Γ(R
I
)) = ω(Γ(R

I
)) = k. Let V (Γ(R

I
)) = {ai + I : i ∈ Λ}.

Let A1, A2, . . . , Ak be the distinct color classes of Γ(R
I
). Since ω(Γ(R

I
)) = k,

there exists elements a1 + I, a2 + I, . . . , ak + I such that no two of them lie
in same color class. Without loss of generality, let ai + I ∈ Ai for all i. Let
S = {a1 + I, a2 + I, . . . , ak + I}. Then 〈S〉 is a maximal complete subgraph of
Γ(R

I
). Let H = {ai : ai + I ∈ S} ∪ {ai + m : ai + I ∈ S, a2i ∈ I,m ∈ I∗}.

Since 〈S〉 is maximal, 〈H〉 is a maximal complete subgraph in ΓI(R). Hence
ω(ΓI(R)) ≥ |H|. So color the vertices of H with |H| distinct colors. Clearly a+I
induces an independent set in ΓI(R) for a2 /∈ I with a+ I ∈ S and so color that
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vertices a + m with the color of a, for all m ∈ I∗. Let X = {a : a + I ∈ S}.
Then X have distinct colors. For each y /∈ X, y = as + m, where m ∈ I and
s /∈ {1, 2, . . . , k} and y+ I = as + I. Since as + I ∈ Ai and Ai’s are independent,
color the vertices as+m with the color of ai+m. Hence color the vertices which
are not in X in this way and so this coloring is proper. Hence χ(ΓI(R)) ≤ |H|.
Since ω(ΓI(R)) ≤ χ(ΓI(R)), χ(ΓI(R)) = ω(ΓI(R)).

Theorem 3.2. Let R be a commutative ring and I be an ideal of R. Then

ω(ΓI(R)) ≤ |I|ω(Γ(R
I
)).

Proof. Let ω(Γ(R
I
)) = m. Choose a1 + I, a2 + I, . . . , am + I in Γ(R

I
) such that

M =
⋃

1≤i≤m{ai + I} induces a maximal complete subgraph. Let S = {a + h :

a + I ∈ M,h ∈ I}. Assume a2 ∈ I for all a+ I ∈ M . Then by Corollary 1, 〈S〉
is a complete subgraph in ΓI(R). If S ∪ {p} is complete subgraph in ΓI(R), then
p(a+ h) ∈ I and so (p+ I)(a+ I) = 0+ I. So M ∪ {p+ I} forms a clique of size
m + 1, which is a contradiction. Thus 〈S〉 is maximal and so ω(ΓI(R)) = |S|.
Hence ω(ΓI(R)) = |I|ω(Γ(R

I
)). In all other cases, ω(ΓI(R)) < |I|ω(Γ(R

I
)) and

so the result follows.

Theorem 3.3. Let I be an ideal of a ring R. If ΓI(R) has no connected columns,

then χ(Γ(R
I
)) = χ(ΓI(R)).

Proof. We have χ(Γ(R
I
)) ≤ χ(ΓI(R)). Assume χ(Γ(R

I
)) = k. Let A1, A2, . . . , Ak

be distinct color classes for Γ(R
I
). Consider the set Bi = {a + h : a + I ∈ Ai,

h ∈ I}. Since a2 /∈ I, Bi’s are independent and V (ΓI(R)) =
⋃k

i=1 Bi. Hence B1,
B2, . . . , Bk are distinct color classes of ΓI(R). ΓI(R) is a graph colored by k dis-
tinct colors and it is proper and so χ(ΓI(R)) ≤ k. Thus χ(Γ(R

I
)) = χ(ΓI(R)).

Theorem 3.4. Let I be an ideal of a ring R. Then 2 ≤ χ(Γ(R
I
)) ≤ χ(ΓI(R)) ≤

|I|χ(Γ(R
I
)).

Proof. Since Γ(R
I
) is connected, χ(ΓI(R)) ≥ 2. Since Γ(R

I
) is a subgraph of

ΓI(R), we have χ(Γ(R
I
)) ≤ χ(ΓI(R)). Let χ(Γ(R

I
)) = k and A1, A2, . . . , Ak be

distinct color classes of Γ(R
I
). We have V (Γ(R

I
)) = {ai + I : i ∈ Λ}. Assume

x2 ∈ I, for all x+ I ∈ Γ(R
I
). Then x+ I is a complete subgraph in ΓI(R). Now

for each 1 ≤ i ≤ k, and h ∈ I define the set Bih = {x + h : x + I ∈ Ai}. Since
A′

is are independent, so is Bih. Also
⋃

1≤i≤k

⋃

h ∈ IBih = V (ΓI(R)). Hence
{Bih : 1 ≤ i ≤ k and h ∈ I} are distinct color classes of ΓI(R). So it needs
|I| k colors. Hence this coloring is proper and χ(Γ(R

I
)) ≤ k |I|. In all other cases,

χ(Γ(R
I
)) < k |I|. Hence the result follows.
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Example 3.5.

(1) Consider R ∼= Z25 × Z2 and I = {0} × Z2. Since Γ(R
I
) ∼= K4 and every non

zero element is nilpotent element of order 2, ΓI(R) ∼= K8. So χ(ΓI(R)) =
8 = |I|χ(Γ(R

I
)).

(2) Consider R ∼= Z3 × Z2 × F4 and I = Z3 × {0} × {0}. Then Γ(R
I
) ∼= K2,2.

By Theorem 2.9, ΓI(R) is complete bipartite graph and χ(ΓI(R)) = 2 =
χ(Γ(R

I
)).

(3) Consider R ∼= Z24 and I = (8). Then Γ(R
I
) ∼= K1,2. Also ω(χ(ΓI(R))) = 4.

so χ(Γ(R
I
)) < χ(ΓI(R)).

Theorem 3.6. Let I 6= (0) be an ideal of R. If Γ(R
I
) is a graph on a single

vertex, then χ(ΓI(R)) = |I|.

Proof. If Γ(R
I
) has only one vertex, then ΓI(R) consists of a single connected

column and, therefore, is the complete graph on |I| vertices and so the result
follows.

Theorem 3.7. Let I be an ideal of a ring R. If a+ I is a connected column of

ΓI(R), then a+ I is a complete subgraph of ΓI(R) and thus χ(ΓI(R)) ≥ |I|.

Proof. Since a+ I is a complete subgraph of ΓI(R), ω(ΓI(R)) ≥ |I|. Hence the
result follows.

Corollary 2. If ΓI(R) has at least one connected column and I is infinite, then

χ(ΓI(R)) = ∞.

Corollary 3. If ΓI(R) has a connected column and Γ(R
I
) has at least two ver-

tices, then χ(ΓI(R)) ≥ |I|+ 1.

Proof. Let a + I be a connected column of ΓI(R). By hypothesis, there exist
b ∈ R−I such that a+I 6= b+I and a+I is adjacent to b+I in ΓI(R). Then each
element of the connected column a+ I is adjacent to b and so {a+ I}∪{b} forms
a complete subgraph and it needs exactly |I| colors. Hence χ(ΓI(R)) ≥ |I|+1.

4. Eulerian property of ΓI(R)

In this section we discuss on maximum and minimum degree of ΓI(R). Using
this result we prove the Eulerian property and regularity of ΓI(R).

Lemma 4.1. Let I be an ideal of a ring R. Then in ΓI(R),

deg(a) =

{

|I| degΓ(a+ I) if a2 /∈ I,

|I| degΓ(a+ I) + |I| − 1 if a2 ∈ I.
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Proof. Let a ∈ V (ΓI(R)). Then deg(a) ≥ |I|degΓ(a+I), since a+h1 is adjacent
to b + h2 if and only if a + I is adjacent to b + I. If a2 ∈ I, then a + I is a
complete subgraph in ΓI(R). Hence deg(a) = |I| degΓ(a + I) + |I| − 1. If not,
then deg(a) = |I| degΓ(a+ I)

Lemma 4.2. Let I 6= (0) be an ideal of a ring R. Then

δ(ΓI(R)) =























|I| − 1 if Γ(R
I
) has a single vertex

|I| δ(Γ(R
I
)) + |I| − 1 if ΓI(R) has a connected column

a+ I with degΓ(a+ I) = δ(Γ(R
I
))

|I| δ(Γ(R
I
)) otherwise.

Proof. If Γ(R
I
) is a graph on a single vertex, then ΓI(R) is a complete graph and

δ(ΓI(R)) = |I| − 1. If ΓI(R) has a connected column, choose a + I ∈ V (ΓI(R))
such that degΓ(a + I) = δ(Γ(R

I
)). Clearly either a2 ∈ I or a2 /∈ I. If a2 ∈

I, since degΓ(a + I) = δ(Γ(R
I
)), deg(a) ≤ deg(b), for all b ∈ V (ΓI(R)). By

Lemma 4.1, deg(a) = |I|degΓ(a + I) + |I| − 1. So δ(ΓI(R)) = |I| δ(Γ(R
I
)) +

|I| − 1. If a2 /∈ I, Since ΓI(R) has a connected columns, b2 ∈ I, for some
b ∈ V (ΓI(R)). Also degΓ(b+I) ≥ degΓ(a+I). This implies that deg(b) ≥ deg(a).
By Lemma 4.1, deg(a) = |I| deg(a+ I). So δ(ΓI(R)) = |I| δ(Γ(R

I
)). If ΓI(R) has

no connected column, then by Lemma 4.1 deg(a) = |I| degΓ(a+I). So δ(ΓI(R)) =
|I| δ(Γ(R

I
)).

Lemma 4.3. Let I 6= (0) be an ideal of a ring R which is not prime. Then

∆(ΓI(R)) =























|I| − 1 if Γ(R
I
) has a single vertex

|I|∆(Γ(R
I
)) + |I| − 1 if ΓI(R) has a connected column

a+ I with degΓ(a+ I) = ∆(Γ(R
I
))

|I|∆(Γ(R
I
)) otherwise.

Proof. If Γ(R
I
) has a single vertex, then ΓI(R) is a complete graph and

∆(ΓI(R)) = |I|−1. If ΓI(R) has a connected column, then choose a+I ∈ V (Γ(R
I
))

such that degΓ(a + I) = ∆(Γ(R
I
)). Clearly either a2 ∈ I or a2 /∈ I. If a2 ∈ I,

then by Lemma 4.1 deg(a) = |I| degΓ(a + I) + |I| − 1 and so deg(a) ≥ deg(b).
Thus ∆(ΓI(R)) = |I|∆(Γ(R

I
)) + |I| − 1. If a2 /∈ I, since ΓI(R) has a connected

columns, b2 ∈ I, for some b ∈ V (ΓI(R)). We have degΓ(a + I) ≥ degΓ(b + I).
This implies that deg(a) ≥ deg(b) and deg(a) = |I|degΓ(a + I). In this case
∆(ΓI(R)) = |I|∆(Γ(R

I
)). If ΓI(R) has no connected columns, then deg(a) =

|I|degΓ(a+ I) and so the result follows.

Theorem 4.4. Let I be an ideal of a ring R. If ΓI(R) has no connected column,

then ΓI(R) is Eulerian if and only if either |I| is even or Γ(R
I
) is Eulerian.
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Proof. Since ΓI(R) has no connected column, deg(a) = |I| deg(a + I), for all
a ∈ V (ΓI(R)). Assume Γ(R

I
) is Eulerian. Then deg(a + I) is even, for all

a+ I ∈ V (Γ(R
I
)). Therefore deg(a) is even, for all a ∈ V (ΓI(R)) and so ΓI(R) is

Eulerian. Similarly if |I| is even, then deg(a) is even, for all a ∈ V (ΓI(R)) and
so ΓI(R) is Eulerian.

Conversely assume that ΓI(R) is Eulerian. Then deg(a) is even, for all a ∈
V (ΓI(R)). So |I|degΓ(a+ I), is even for all a+ I ∈ V (Γ(R

I
)). Hence either |I| is

even or degΓ(a+ I) is even, for all a+ I ∈ V (Γ(R
I
)) and so the result follows.

Theorem 4.5. Let I be an ideal of a ring R. If ΓI(R) has a connected column,

then ΓI(R) is Eulerian if and only if Γ(R
I
) is Eulerian and |I| is odd.

Proof. Assume ΓI(R) is Eulerian. Then deg(a) is even, where a ∈ V (ΓI(R)).
Since ΓI(R) has a connected column, there exist a vertex a ∈ ΓI(R) such that
a2 ∈ I. By Lemma 4.1 deg(a) = |I|degΓ(a+I)+ |I|−1 is even. So |I| degΓ(a+I)
is even and |I| − 1 is even, for all a+ I ∈ V (Γ(R

I
)). This implies that degΓ(a+ I)

is even and |I| is odd, for all a+ I ∈ V (Γ(R
I
)). Thus Γ(R

I
) is Eulerian and |I| is

odd.
Conversely, assume that Γ(R

I
) is Eulerian and |I| is odd. Then degΓ(a + I)

is even. By Lemma4.1, the result follows.

Example 4.6.

(1) Consider R ∼= Z3 ×Z3 ×Z3 and I = Z3 ×{0} × {0}. Then Γ(R
I
) ∼= K2,2 and

ΓI(R) has no connected column. In this case Γ(R
I
) is Eulerian. By Lemma

4.1, deg(a) = 2 |I| , for all a ∈ V (ΓI(R)) and is even. So ΓI(R) is Eulerian
(see Figure 2(a)).

(2) Consider R ∼= Z4×Z2×Z3 and I = Z4×{0}×{0}. Then Γ(R
I
) is not Eulerian

and ΓI(R) has no connected column. By Lemma 4.1, deg(a) = 4 deg(a+I),
for all a ∈ V (ΓI(R)) and is even. So ΓI(R) is Eulerian (see Figure 2(b)).

(3) Consider R ∼= Z3×
F4[x]
(x2)

and I = Z3×{0}. Then Γ(R
I
) ∼= K3 is Eulerian and

|I| is odd. Also ΓI(R) has a connected column. By Lemma 4.1, ΓI(R) ∼= K9

is Eulerian.

Theorem 4.7. Let I 6= (0) be an ideal of a ring R. If ΓI(R) has no connected

columns, then ΓI(R) is a regular graph if and only if Γ(R
I
) is a regular graph.

Proof. Assume ΓI(R) is a regular graph. Then deg(a) = k, for all a ∈ V (ΓI(R)).
Since ΓI(R) has no connected columns, a2 /∈ I, for all a ∈ V (ΓI(R)). By Lemma
4.1, |I|degΓ(a + I) = k, for all a + I ∈ V (Γ(R

I
)). So degΓ(a + I) = k

|I| ,for all

a+ I ∈ V (Γ(R
I
)). If k is prime, then |I| degΓ(a+ I) = p, for all a+ I ∈ V (Γ(R

I
)).

Since I 6= (0), |I| = p and degΓ(a+ I) = 1, for all a+ I ∈ V (Γ(R
I
)). Then Γ(R

I
)

is a 1-factor graph. Since diam(Γ(R
I
)) ≤ 3, Γ(R

I
) ∼= K2 and is regular. If not,

Γ(R
I
) is a k

|I| -regular graph.
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Figure 2.

Conversely, assume that Γ(R
I
) is a regular graph. Then degΓ(a + I) is k

for all a + I ∈ V (Γ(R
I
)). Since ΓI(R) has no connected columns, by Lemma

4.1, deg(a) = |I| degΓ(a + I) = k |I| , for all a ∈ V (ΓI(R)). Thus ΓI(R) is a
k |I|-regular graph.

Corollary 4. Let I 6= (0) be an ideal of a ring R and p be prime. Assume ΓI(R)
has no connected columns. If ΓI(R) is a p-regular graph, then R

I
is isomorphic

to one of the following rings:

Z2 × Z2,Z9, or
Z3[x]
(x2)

.

Proof. If ΓI(R) is a p-regular graph, then as in the proof of Theorem 4.7 Γ(R
I
) ∼=

K2 and R
I
is isomorphic to the following rings Z2 × Z2,Z9, or

Z3[x]
(x2)

.

Converse of Corollary 4 is not true. For example consider R ∼= Z2 × Z2 × Z4

and I = {0} × {0} × Z4. Then R
I

∼= Z2 × Z2 and ΓI(R) ∼= K4,4. So ΓI(R) is
regular graph but not p-regular graph, for any prime p.

Theorem 4.8. Let I 6= (0) be an ideal of a ring R. Assume a2 ∈ I, for all

a+ I ∈ V (Γ(R
I
)). Then ΓI(R) is a k-regular graph, where k 6= |I| − 1 if and only

if Γ(R
I
) is a regular graph.

Proof. If ΓI(R) is a k-regular graph, then deg(a) = k, for all a ∈ V (ΓI(R)).

Since a2 ∈ I, for all a ∈ V (Γ(R
I
)). Then by Lemma 4.1, deg(a) = |I|degΓ(a+

I) + |I| − 1 for all a ∈ V (ΓI(R)) and so degΓ(a + I) = k−|I|+1
|I| , for all a + I ∈

V (Γ(R
I
)). Since diam(Γ(R

I
)) ≤ 3, degΓ(a + I) 6= 0. Thus k 6= |I| − 1. For all

remaining values of k, Γ(R
I
) is a regular graph.

Conversely assume that Γ(R
I
) is a regular graph. Then degΓ(a+ I) = m and

a2 ∈ I, for all a ∈ V (Γ(R
I
)). So deg(a) = |I|m + |I| − 1, for all a ∈ V (ΓI(R)).

Thus ΓI(R) is a k-regular graph.
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Theorem 4.9. Let I be a non-zero ideal of a ring R. If Γ(R
I
) is a graph on a

single vertex, then ΓI(R) is (|I| − 1)-regular graph.

Proof. Since Γ(R
I
) is a graph on single vertex, ΓI(R) is complete graph and so

the result follows.

Theorem 4.10. Let I be an ideal of a ring R such that R
I

is a finite ring. If

ΓI(R) has no connected columns and is a regular graph, then Γ(R
I
) is complete

or a complete bipartite graph.

Proof. The result follows from Theorems 4.7 and 2.8.
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