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Abstract

Let L be a complete lattice. In a manner analogous to a commutative
ring, we introduce and investigate the L-fuzzy multiplication modules over a
commutative ring with non-zero identity. The basic properties of the prime
L-fuzzy submodules of L-fuzzy multiplication modules are characterized.

Keywords: L-fuzzy multiplication modules, L-fuzzy Noetherian modules,
L-fuzzy radical, generalized maximal L-fuzzy submodules.

2010 Mathematics Subject Classification: 08A72, 03E72.

1. INTRODUCTION

The idea of investigating a mathematical structure via its representation in sim-
pler structure is commonly used and often successful. The representation the-
ory of multiplication modules over a commutative ring has developed greatly in
the recent years. Among the most interesting modules are multiplication mod-
ules because, for example, they are top module (an R-module M equipped with
Zariski topology is called top module, see [13]). Let R be a commutative ring
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and M an R-module. Then M is called a multiplication module if for each sub-
module N of M, N = IM for some ideal I of R. In this case we can take
I=(N:M)={r € R:rm C N}. The literature on multiplication ideals and
modules is quite extensive, for example, see [1, 2, 4, 6, 7| and [16]. In particular
[2, 7], and [16] contain a number of characterizations of multiplication modules.

Research on the theory of fuzzy sets has been witnessing an exponential
growth; both within mathematics and in its applications. This ranges from tra-
ditional mathematical like logic, topology, algebra, analysis etc. to pattern recog-
nition, information theory, artificial intelligence, neural networks and planning.
Consequently, fuzzy set theory has emerged as a potential area of interdisciplinary
research and fuzzy module theory is of recent interest. In the last few years a
considerable amount of work has been done on fuzzy modules. Zadeh in [17]
introduced the notion of a fuzzy subset p of a non-empty set X as a function
from X to [0,1]. Goguen in [8] generalized the notion of fuzzy sets of X to a
lattice L. In [14], Rosenfeld considered the fuzzification of algebraic structures.
Liu [10] introduced and examined the notion of a fuzzy ideal of a ring. Since then
several authors have obtained interesting results on L-fuzzy ideals of a ring and
L-fuzzy modules (see [3, 4, 5, 9, 11] and [14]). See also [12] for a comprehensive
survey of the literature of these developments. Hence the study of the L-fuzzy
multiplication modules theory is worthy of study.

In the present paper, we introduce and study the L-fuzzy multiplication mod-
ules over a commutative ring with non-zero identity. There are many basic open
questions concerning the L-fuzzy module theory. The most essential one among
them is to know whether or not an L-fuzzy P-module is a P-module and vice
versa. We give a condition giving an affirmative answer to these questions. Our
main purpose is to establish a connection between the L-fuzzy multiplication
modules (resp. the L-fuzzy Noetherian modules) and the multiplication mod-
ules (resp. the Noetherian modules) over a commutative ring. In Section 3, we
introduce the L-fuzzy multiplication modules and make an intensive study of
this notion. It is shown that, in Theorem 10, an R-module M is a multiplica-
tion module if and only if M is an L-fuzzy multiplication module (so it is top
module). Also, we introduce L-fuzzy Noetherian modules and show that every
L-fuzzy Noetherian module is a Noetherian module (Theorem 8), but the con-
verse is not true. In Section 4, we introduce the notion of L-fuzzy radical of
an L-fuzzy submodule of an L-fuzzy module over a commutative ring. Finally,
in Theorem 21, we formulate the L-fuzzy radical of L-fuzzy submodules of an
L-fuzzy multiplication module.

2. PRELIMINARIES

Throughout this paper R is a commutative ring with non-zero identity, M is an
unitary R-module, and L stands for a complete lattice with least element 0 and
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greatest element 1. Let 0jp; denote the zero element of M. In order to make
this paper easier to follow, we recall in this section various notions from fuzzy
commutative algebra theory which will be used in the sequel.

An element o,  # 1, is called a prime element in L if for all a,b € L such
that a A b < «, then either a < a or b < . Given a nonempty set X, an L-fuzzy
subset 4 is a function from X to L. We denote by F'(X) the set of all L-fuzzy
subsets of X. For pu,v € F(X) we write p C v if and only if p(z) < v(z) for all
x € X. Also, p C vifand only if 4 C v and pu # v. Let p € F(X) and t € L.
Then the set uy = {z € X : u(z) >t} is called the level subset of X with respect
to u. By an L-fuzzy point z, of X, x € X, r € L\ {0}, we mean z, € F(X) is

defined by
r ify=ux,
zr(y) = { v

0 otherwise.

If z, is an L-fuzzy point of X and z, C p € F(X), we write z, € u. We let
x4 denote the characteristic function of a subset A of X. The following are two
very basic definition given in [12].

Definition. (a) Let v € F(R). Then 7 is called an L-fuzzy ideal of R if for all
z,y € R,

(1) v(@—y) = (@) Av(y),

(2) v(zy) = v(2) v (y)

(b) Let € F(M). Then p is called an L-fuzzy R-module of M if for all z,y € M
and for all r € R,

(1) (@ —y) = p@) A p(y),

(2) plrz) = p(z),

(3) n(On) = 1.

Let L(M) denote the set of all L-fuzzy R-modules of M and LI(R) denote
the set of all L-fuzzy ideals of R.

Theorem 1 [3, Theorem 2.4]. Let p € F(M). Then u is an L-fuzzy module if
and only if for all t € L such that p; # 0, then py is an R-submodule of M.

Definition [3, Definition 2.5]. For a non-constant v € LI(R), v is called an L-
fuzzy prime ideal of R if for any L-fuzzy points x,,ys € F(R), x,ys € 7 implies
that either x, € v or ys € 7.

Definition [3, Definition 3.1]. For p,v € L(M), v is called an L-fuzzy submodule
of p if and only if ¥ C u. In particular, if 4 = xas, then we say v is an L-fuzzy
submodule of M.
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Definition [3, Definition 3.2]. Let v be an L-fuzzy submodule of p. Then v is
called an L-fuzzy prime submodule of u if for r, € F(R), zs € F(M) (r € R,
x € M and t,s € L), rxs € v implies that either x4 € v or ru C v.

In particular, taking p = xu, if 14 € F(R), zs € F(M) we have rzs € v
implies that either x; € v or rxy C v, then v is called an L-fuzzy prime
submodule of M.

Theorem 2 [3, Theorem 3.4]. Let v be an L-fuzzy prime submodule of w. If
vt # e for somet € L, then vy is a prime submodule of ;.

Lemma 3 [3, Corollary 3.5|. Let v be an L-fuzzy prime submodule of M. Then
vi ={x € M :v(x)=v(0nr)} is a prime submodule of M.

Definition [12, Definition 4.1.6]. Let ¢ € LI(R) and pu € L(M). Define:

(Cu)(x) =V{¢(r) Au(y) : 7 € R,y € M and ry = x}.
If ((0g) = 1, then (p € L(M) by [12, Theorem 4.1.16]. It is clear that, if
¢’ C¢and p C v for some (,¢' € LI(R) and p,v € L(M), then ¢'u C Cv.

Definition [12, Definition 4.5.1]. For pu,v € L(M) and ¢ € LI(R), define the

residual quotients as

(w:v)=|J{n:neLI(R),nv C u}.

By [12, Theorem 4.5.6], (i : v) is an L-fuzzy ideal of R and it is easy to see
that (p:v)(0g) = 1.

Theorem 4 [12, Theorem 4.5.3]. Let p,v € F(M) and ( € F(R). Then

(1) (v Cp

(2) Cv C p if and only if ¢ C (s : v),

Definition [12, Theorem 4.3.1]. Let y € L(M). The L-fuzzy submodule gener-

ated by the L-fuzzy subset p is denoted by < p > and defined by < p >=({v:
uwCvveL(M)}.

3. L-FUZZY MULTIPLICATION MODULES

In this section we list some basic properties concerning L-fuzzy multiplication
modules over a commutative ring. We begin with the key definition of this paper.

Definition. Let M be a module over a commutative ring R. M is called an L-
fuzzy multiplication module provided for each L-fuzzy submodule p of M, there
exists ¢ € LI(R) with ((0r) = 1 such that u = {xas. One can easily show that
if = (xar for some ¢ € LI(R) with ((0g) = 1, then p = (1 : xamr)x M-
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In [7] it was proved that an R-module M is a multiplication module if and
only if for each m in M there exists an ideal I of R such that Rm = IM. Now,
we have the following proposition for L-fuzzy multiplication R-modules.

Proposition 5. An R-module M is an L-fuzzy multiplication module if and only
if for each x € M and a € L, there exists an L-fuzzy ideal ( € LI(R) with
C(0R) =1 such that < x4 >= (x -

Proof. The necessity is clear. Conversely, suppose that for each x € M and
a € L, there exists ( € LI(R) with ((0g) = 1 such that < z, >= (xa. Let
p € L(M) and € M. There exists a € L such that u(z) = a, so z, € u; hence
< x4 >C p by definition. By assumption, there exists ¢, € LI(R) with ((0g) =1
such that < z, >= (;xar. Then (. xar C p; thus ¢ C (u: xar) by Theorem 4.
It follows that (,(r) < (u: xar)(r) for each r € R. Set ( = J{¢ : x € M}. So
¢(r) = V{¢(r) : @ € M} for each r € R and ((0r) = 1; hence ¢(r) < (1 : xar)(r)
for every r € R. Thus (xa C p by Theorem 4. For the other containment,
assume that m € M. There exists a € L such that pu(m) = a, and hence m, € p.
It follows that < mg >= Cn,xm € (xar- On the other hand, < m, > (m) = a by
[12, Theorem 4.3.4]. Therefore, p(m) =< mq > (m) < (xm(m). Thus p C (xm,
and so we have the equality. [ |

Lemma 6. Let M be an R-module and p € L(M). Then (p: xm) =U{re:a €
Lir e RN (g : M)}.

Proof. By [12, Theorem 4.5.2], we have

(w:xm) = U{ra ca € L,r € Ryrgxam C u}.
On the other hand, for each y € M, by definition we have

a if y = rm for some m € M,
0 otherwise.

TaXM(y) :{
Therefore, (1 : xap) = U{re : a € L,r € R,a < p(rm) for each m € M} =
U{re:a € L,r € R, and rm € pu, for each m € M}
=U{re:aeLire RerM C sy =U{ra:ac€Lire Ror € (ug: xXm)}t m

Let us now define a basic concept and new properties of them over commu-
tative rings.

Definition. An R-module M is called an L-fuzzy Noetherian module, if every
ascending chain of L-fuzzy submodules in M is stationary.
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Theorem 7. Let R be an L-fuzzy Noetherian ring and M be an L-fuzzy multi-
plication module. Then M is an L-fuzzy Noetherian module.

Proof. Let p3 C puo C pug C --- be an ascending chain of L-fuzzy submodules
of M. Then (u1 : xm) € (p2 @ xar) € (ps : xar) C --- is an ascending chain
of L-fuzzy ideals of R. By assumption, there is a positive integer ¢ such that

(e : xamr) = (pess = xar) for every positive integer s; hence py = (@ xm) XM =
(s = XM)XM = pi+s for every s, and so the chain is stationary. [

In the next theorem, we show that the notion of L-fuzzy Noetherian R-
module is a generalization of the notion of Noetherian R-module.

Theorem 8. If M is an L-fuzzy Noetherian module, then M is a Noetherian
R-module.

Proof. Assume that Ny C Ny C N3 C --- be an ascending chain of submodules
of M. For each positive integer ¢, we define the mapping u; : M — L by

(1‘)_ 1 ifx e N,
Hil®) =19 0 otherwise.

Clearly, p; = xn, and p; € L(M). Then g C pa C pg C --- is an ascending
chain of L-fuzzy submodules of M so there exists a positive integer n such that
Wy = pntr for every positive integer k. Now we show that N, = N,4 for all
k. Let k be a positive integer and x € N, yk. So pn(z) = pprk(x) = 1. Hence
x € Np. Thus N, C N+, C N,, and so we have the equality. Therefore M is a
Noetherian R-module. [

Example 9. Let M = R denote the field of real numbers with the usual addition
and multiplication, and let L = [0,1]. So M is a Noetherian R-module. We define
the mappings u, : M — L by

1 ifx =0,
1—1/n otherwise.

pin (@) = {

for all positive integer n. An inspection will show that i, is an L-fuzzy submodule
of M for each n. Then puy C uo C --- is an infinite strictly ascending chain of
L-fuzzy submodules of M, and M is not an L-fuzzy Noetherian R-module.

The Example 9 shows that the converse of Theorem 8 is not true. So a
Noetherian module need not be an L-fuzzy Noetherian module, but we have the
following theorem for multiplication modules.

Theorem 10. Let M be an R-module. Then M is a multiplication module if and
only M is an L-fuzzy multiplication module.
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Proof. Let M be a multiplication module, and let y € L(M). Since the inclusion
(@ xm)xm € p is clear, we will prove the reverse inclusion. Let x € M
and p(z) = a for some a € L. It suffices to show that a < (u : xa)xm(x).
By assumption, pg = (a : Xam)XM, since pu(z) = a, we must have x € p,.
Then x = > | riz;, where x; € M and r; € (g : M) (i = 1,2,...,n). It
then follows from Lemma 6 that (r;), € (u : xar) for each i. On the other
hand, for each 4, (x;)q € xar. Hence (r;2i)qa = (1i)a(®i)a < (1 : xar)Xxar; thus
(rizi)a € (0 xar)xm (1 <@ <mn). It follows that ((x : xar)xa)(rizs) > a for
each i (1 <i<mn). Then

(e xan)xan) (@) = ((s xar)xan) (riza) A A (s X)) xn) (rnn) 2 a.

Therefore, p(z) = a < ((1 = xa)xm) (@), so p(m) < (1 xar)xar)(m) for each
m € M. Hence p C (p: xar)xar, and we have the equality.

Conversely, assume that M is an L-fuzzy multiplication module and let N
be a proper submodule of M. It suffices to show that N C (N : M)M. We define
the mapping p: M — L by

1 ifzeN,
px) =

0 otherwise.

One can easily to see that u = xn, p € L(M) and p, = N for each 0 # a € L.
So pu = (p : xam)xam since M is an L-fuzzy multiplication module. Let m € N.
Then p(m) = ((1: xam)xar)(m) = 1. So by definition,

(( s xar)xar)(m) =V A{(p: xar)(s) A xa(x) : sz =m for some s € R,z € M}
=VA{(u: xnm)(s) : m € sM for some s € R}.

On the other hand, (u : xar)(s) = V{re(s) : r € (N : M)} by [12, Theorem
4.5.2] and the fact that p, = N for each non-zero element a of L. If there is no
1 # r € R such that m € rM, then

(s xa)(1) = V{ra(1) : 7 € (N2 M)} =0
since N # M and 1 ¢ (N : M). Therefore,
(e sxar)xm)(m) = V{(p = xm)(s) : m € sM for some s € R} = (u:xm)(1) =0,

which is a contradiction. So there exists ' € R such that m € r'M. Set A =
{re(N:M):merM}. If A=10, then for each t € R with m € tM, we have
t¢ (N:M). So (u:xm)(t)=V{re(t):re (N: M)} =0. Therefore,

((e = xar)xmr)(m) = V{(p : xar)(s) : m € sM for some s € R} =0,
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a contradiction. So we may assume that A # (). Then there exists r € R such
that m € rM and r € (N : M); so N C (N : M)M. Thus M is a multiplication
R-module. [

Let M be an R-module. A submodule N of M is called prime if N # M
and whenever r € R and m € M satisfy rm € N then rM C N or m € N. Let
Spec(M) denote the collection of prime submodule of M. We define V(N) to be
the set of all prime submodules of M containing N (so V(M) = () and V(0) =
Spec(M)). If {(M) denotes the collection of all subset V(IN) of Spec(M), then
¢(M) contains the empty set and Spec(M), and ((M) is closed under arbitrary
intersections. We shall say that M is a module with a Zariski topology, or a top
module for short, if ((M) is closed under finite unions, i.e. for any submodules
N and L of M there exists a submodule J of M such that V(N)UV (L) =V (J),
for in this case (M) satisfies the axioms for the closed subsets of a topological
space [13]. We recall that by [13, Theorem 3.5] every multiplication module is a
top module. Now by [4, Theorem 4.5] and Theorem 10 we obtain the following
theorem.

Theorem 11. Every L-fuzzy multiplication R-module is L-top module.

4. RADICAL OF AN L-FUZZY SUBMODULE

In [12], the notion of L-fuzzy radical of an L-fuzzy ideal and its properties are
given. We generalized their definition to any L-fuzzy submodule of an L-fuzzy
module over a commutative ring.

Definition. Let M be an R-module and p € L(M). Let P, be the family of all
L-fuzzy prime submodules of M containing p. The L-radical of u, denoted by
radps(p), is defined by

(radpr(p))(z) = { {\uePu e i)ftljlzrvfife’.

First, we have the following lemma.

Lemma 12. Let M be an R-module and p € L(M). If u is an L-fuzzy submodule
of M, then rads(ps) C (radas(pe))s-

Proof. If P, = 0, then radas (1) = xar, and hence (rada(p))s = M. So we may
assume that P, # (). Let v € P,. Then v, is a prime submodule of M by Lemma
3 and p. C vy hence rady(ps) € ({vs : v € Py} Let m € N {vs : v € P,}. So
m € vy; thus v(m) = 1 for every v € P,; hence (radps(i))(m) = 1 by definition.
It follows that m € (radas(i))«, so rada(ps) € ({vs : v € P,} C (radpr(p))«. ®
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In view of Lemma 12 and [3, Theorem 3.6], we have the following theorem.

Theorem 13. Let p be a nonconstant L-fuzzy submodule of M, and let A{u(x) :
x ¢ radpy(ps)} = a. If a < 1 and a is a prime element of L, then radys(ps) =
(radar (1))

Proof. By Lemma 12, it suffices to show that (radys (1))« C radps(ps). Let P
be a prime submodule of M containing .. Then the mapping v : M — L is

defined by
1 ifxeP,
v(z) = { a otherwise.

is an L-fuzzy prime submodule of M by [3, Theorem 3.6]. Now we show that
pwCwv. Ifz € P, then u(x) <wv(x) =1. Ifz ¢ P, then v(x) = a, so x ¢ radps ().
Since by hypothesis p(z) < a, we must have p(z) < a = v(x). Hence p C v. It
follows that v is an L-fuzzy prime submodule of M containing p and v, = P.
Now, let = € (radps(p))«. Then (radys(p))(z) =1, so v(z) =1 and = € v, = P;
hence x € radys(p4), and so we have the equality. |

Definition. Let M be an R-module and p € L(M). Then p is called a generalized
mazimal L-fuzzy submodule of M, if for any L-fuzzy submodule v of M, if u C v,
then either p, = v, or v = xu,.

In [7, Theorem 2.5], it was proved that every proper submodule of a non-zero
multiplication R-module is contained in a maximal submodule of M. Now we
have the following theorem for L-fuzzy multiplication R-modules.

Theorem 14. Let M be a non-zero L-fuzzy multiplication R-module. Then every
L-fuzzy submodule u # xar of M is contained in a generalized mazimal L-fuzzy
submodule of M.

Proof. Let u be a non-constant L-fuzzy submodule of M. So u, # M and there
exists a maximal submodule N of M such that p,. C N by [7, Theorem 2.5] and
Theorem 10. Let a = V{u(z) : x € M}. We define the mapping v : M — L by

I/({L’)—{ 1 ifzeN,

a otherwise.

One can easily to see that v is an L-fuzzy submodule of M and p C v. Now
we show that v is a generalized maximal L-fuzzy submodule of M. Let v C (8
and 3 € L(M). Therefore N = v, C B,. So either N = 3, or 8, = M since N is
a maximal submodule of M. Hence v, = N = 3, or 8 = xu- [ |

Definition. Let M be an R-module. We define the L-fuzzy radical of M, de-
noted by Jac(xas), to be the intersection of all the generalized maximal L-fuzzy
submodules of M if such exist, and x s otherwise.
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Proposition 15. Let i be a non-constant L-fuzzy submodule of an L-fuzzy mul-
tiplication module M such that xpr = p+ Jac(xar). Then xpr = p.

Proof. If xar # i, then p is contained in a generalized maximal L-fuzzy sub-
module v of M. So xa = p+ Jac(xar) C v, which is a contradiction. [

Here we have the following proposition that is a generalization of [7, Lemma
2.10] for L-fuzzy multiplication R-modules.

Proposition 16. Assume that M is a faithful L-fuzzy multiplication R-module
and let { be a prime L-fuzzy ideal of R, a,b € L and rqxy € (xar for some r € R
and x € M. Thenrg €  or xp € (xnr-

Proof. Let ¢ be a prime L-fuzzy ideal of R. Then by [12, Theorem 3.5.5], for
each r € R, there exist a prime ideal P of R and a prime element ¢ € L such that

C(r)z{ 1 ifreP,

¢ otherwise.
By assumption, (xar(rxz) > a Ab. On the other hand, by definition, we have

Cxam(re) =V{C(s) Axam(y) : s € Ry € Myra = sy}
=V{{(s):s€ R,rx € sM}.

Set K ={s € P:rx € sM}. First suppose that K = (). Then there is no s € P
such that rx € sM. Hence (xap(rz) = ¢ > a Ab. It follows that either ¢ > a or
¢ > b since ¢ is a prime element of L. We split the proof into two cases:

Case 1. ¢ > a. Since ((r) € {1, ¢}, we must have ((r) > a, and so r, € (.

Case 2. ¢ > b. Similarly, (xam(xz) = V{¢(s') : 8 € R,z € M}. So (xm(x)
€ {1,c}. Therefore, {xp(x) > b, and so xp € (xap- So we may assume that
K # (. Then there exists s’ € P such that rz € s’M. Therefore we have
Cxm(re) =Vv{{(s):s€ R, re € sM} =1and re € s M C PM. It then follows
from [7, Lemma 2.10] and Theorem 10 that either r € P or x € PM. If r € P,
then ((r) =1 >a,and sor, € (. If x € PM, then x = ryzq + -+ + rpz, for
some r; € P and x; € M such that ¢ =1,2,...,n; hence

n

Cxm () = CXM<ZT¢$¢> > Cxm(rizy) A AQxm(rnn) 2 LA~ A1=1
1=1

Thus (xm(z) =1 > b, so zp € (xum, and the proof is complete. [

In view of Proposition 16 and [4, Theorem 3.6] we have the following theorem.
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Theorem 17. The following statements are equivalent for a non-constant L-fuzzy
submodule i of an L-fuzzy multiplication module M .

(1) p is an L-fuzzy prime submodule of M.
(2) p=Cxn for some L-fuzzy prime ideal ¢ of R.

Proposition 18. Assume that M is a faithful L-fuzzy multiplication R-module
and let ( be a prime L-fuzzy ideal of R. If n is an L-fuzzy ideal of R such that

nxm S Cxamr and Cxar # X then n © C. In particular, (Cxar < xam) = G-

Proof. Let r € R and n(r) = a for some a € L. Then r, € n and there
exists m € M such that (xa(m) < 1, since (xnm # xm- So myy € Cxars
hence romy;y € nxm € (xm. Therefore r, € ¢ by Proposition 16. Hence
¢(r) > a=mn(r), and so n C {. The particular statement is clear. |

Proposition 19. Let M be an R-module. If p is an L-fuzzy submodule of M,

then /(p = xar)xar C radas(p).

Proof. If radpyr(p) = Xxm, the result is clear. Otherwise, if v € P,, then we

have (1 : xam) € (v : xam)- So /(w:xm) € (v : xar) by [4, Theorem 3.6];
hence /(1 : xam)xm € (v @ xar)xm C v. Since v is an arbitrary prime L-fuzzy
submodule of M containing p, we have /(1 : xar)xm C radas(p). [ ]

Lemma 20. Let pu, v be L-fuzzy submodules of an R-module M. Ifn is an L-fuzzy
ideal of R, then the following hold:

(1) (g = M) C (s X0a)s
(2) Meptne C (M)

Proof. (1) Let 7 € (s : M). Then rM C p, C p, for each a € L. Therefore we
have

(:xm)(r)=V{se(r):s€ Ria€ L,s € (g : M)} >V{re(r)=a:a€ L} =1.

Hence r € (i : xar)«, and the proof is complete.

(2) Let m € nypus. Then m = 37" | rym,; for some r; € 1, and m; € p, such
that ¢ = 1,2,...,n. Therefore,

nuw(m) > nu(rimy) A Anu(rpmy) =1A--- A1 =1
Thus m € (nu)«, as required. ]

Now, we have the following theorem that is a generalization of [7, Theorem
2.12].

Theorem 21. Let M be a faithful L-fuzzy multiplication R-module. If u is an
L-fuzzy submodule of M, then rady(p) = /(1 Xar)X M-
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Proof. By Proposition 19, it suffices to show that radns(u) C /(¢ : X)X
Since M is an L-fuzzy multiplication module, we must have

vadyr (1) = (radas (1) : xar)Xar-

Now it is enough to show that (radas () : xar) € /(1 : xar). Let n be a prime
L-fuzzy ideal of R containing (u : xaz). Then 7, is a prime ideal of R by [12,
Theorem 3.5.5], and we have

(0: M) C (ps s M) C (12 xar)s S 14

by Proposition 20. Hence 7, M is a prime submodule of M by [7, Corollary 2.11].
Therefore, n,M # M, and Proposition 20 gives nxas # xa- Then by Theorem
17, nxap is a prime L-fuzzy submodule of M; so pu = (pu : xm)xm S nxm
and radys(p) € nxar. Hence (radas(p) @ xar)xar € mxar. It then follows from
Proposition 18 that (radas(u) : xar) € 1, and so we have equality. [

5. CONCLUSION

Letting L — {(M) = {V(nxam) | n € LI(R)}. R. Ameri and R. Mahjoob showed
that L — (M) induces a topology which is called Zariski topology if and only
if M is an L-top module. By following them we define L-fuzzy multiplication
R-modules and we show that every L-fuzzy multiplication R-module is an L-top
module. Also we find a connection between the L-fuzzy multiplication R-modules
and the multiplication R-modules.
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