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Abstract

Let L be a complete lattice. In a manner analogous to a commutative
ring, we introduce and investigate the L-fuzzy multiplication modules over a
commutative ring with non-zero identity. The basic properties of the prime
L-fuzzy submodules of L-fuzzy multiplication modules are characterized.
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1. Introduction

The idea of investigating a mathematical structure via its representation in sim-
pler structure is commonly used and often successful. The representation the-
ory of multiplication modules over a commutative ring has developed greatly in
the recent years. Among the most interesting modules are multiplication mod-
ules because, for example, they are top module (an R-module M equipped with
Zariski topology is called top module, see [13]). Let R be a commutative ring
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and M an R-module. Then M is called a multiplication module if for each sub-
module N of M , N = IM for some ideal I of R. In this case we can take
I = (N : M) = {r ∈ R : rm ⊆ N}. The literature on multiplication ideals and
modules is quite extensive, for example, see [1, 2, 4, 6, 7] and [16]. In particular
[2, 7], and [16] contain a number of characterizations of multiplication modules.

Research on the theory of fuzzy sets has been witnessing an exponential
growth; both within mathematics and in its applications. This ranges from tra-
ditional mathematical like logic, topology, algebra, analysis etc. to pattern recog-
nition, information theory, artificial intelligence, neural networks and planning.
Consequently, fuzzy set theory has emerged as a potential area of interdisciplinary
research and fuzzy module theory is of recent interest. In the last few years a
considerable amount of work has been done on fuzzy modules. Zadeh in [17]
introduced the notion of a fuzzy subset µ of a non-empty set X as a function
from X to [0, 1]. Goguen in [8] generalized the notion of fuzzy sets of X to a
lattice L. In [14], Rosenfeld considered the fuzzification of algebraic structures.
Liu [10] introduced and examined the notion of a fuzzy ideal of a ring. Since then
several authors have obtained interesting results on L-fuzzy ideals of a ring and
L-fuzzy modules (see [3, 4, 5, 9, 11] and [14]). See also [12] for a comprehensive
survey of the literature of these developments. Hence the study of the L-fuzzy
multiplication modules theory is worthy of study.

In the present paper, we introduce and study the L-fuzzy multiplication mod-
ules over a commutative ring with non-zero identity. There are many basic open
questions concerning the L-fuzzy module theory. The most essential one among
them is to know whether or not an L-fuzzy P-module is a P-module and vice
versa. We give a condition giving an affirmative answer to these questions. Our
main purpose is to establish a connection between the L-fuzzy multiplication
modules (resp. the L-fuzzy Noetherian modules) and the multiplication mod-
ules (resp. the Noetherian modules) over a commutative ring. In Section 3, we
introduce the L-fuzzy multiplication modules and make an intensive study of
this notion. It is shown that, in Theorem 10, an R-module M is a multiplica-
tion module if and only if M is an L-fuzzy multiplication module (so it is top
module). Also, we introduce L-fuzzy Noetherian modules and show that every
L-fuzzy Noetherian module is a Noetherian module (Theorem 8), but the con-
verse is not true. In Section 4, we introduce the notion of L-fuzzy radical of
an L-fuzzy submodule of an L-fuzzy module over a commutative ring. Finally,
in Theorem 21, we formulate the L-fuzzy radical of L-fuzzy submodules of an
L-fuzzy multiplication module.

2. Preliminaries

Throughout this paper R is a commutative ring with non-zero identity, M is an
unitary R-module, and L stands for a complete lattice with least element 0 and
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greatest element 1. Let 0M denote the zero element of M . In order to make
this paper easier to follow, we recall in this section various notions from fuzzy
commutative algebra theory which will be used in the sequel.

An element α, α 6= 1, is called a prime element in L if for all a, b ∈ L such
that a∧ b ≤ α, then either a ≤ α or b ≤ α. Given a nonempty set X, an L-fuzzy
subset µ is a function from X to L. We denote by F (X) the set of all L-fuzzy
subsets of X. For µ, ν ∈ F (X) we write µ ⊆ ν if and only if µ(x) ≤ ν(x) for all
x ∈ X. Also, µ ⊂ ν if and only if µ ⊆ ν and µ 6= ν. Let µ ∈ F (X) and t ∈ L.
Then the set µt = {x ∈ X : µ(x) ≥ t} is called the level subset of X with respect
to µ. By an L-fuzzy point xr of X, x ∈ X, r ∈ L \ {0}, we mean xr ∈ F (X) is
defined by

xr(y) =

{

r if y = x,
0 otherwise.

If xr is an L-fuzzy point of X and xr ⊆ µ ∈ F (X), we write xr ∈ µ. We let
χA denote the characteristic function of a subset A of X. The following are two
very basic definition given in [12].

Definition. (a) Let γ ∈ F (R). Then γ is called an L-fuzzy ideal of R if for all
x, y ∈ R,

(1) γ(x− y) ≥ γ(x) ∧ γ(y),

(2) γ(xy) ≥ γ(x) ∨ γ(y)

(b) Let µ ∈ F (M). Then µ is called an L-fuzzy R-module of M if for all x, y ∈ M
and for all r ∈ R,

(1) µ(x− y) ≥ µ(x) ∧ µ(y),

(2) µ(rx) ≥ µ(x),

(3) µ(0M ) = 1.

Let L(M) denote the set of all L-fuzzy R-modules of M and LI(R) denote
the set of all L-fuzzy ideals of R.

Theorem 1 [3, Theorem 2.4]. Let µ ∈ F (M). Then µ is an L-fuzzy module if

and only if for all t ∈ L such that µt 6= ∅, then µt is an R-submodule of M .

Definition [3, Definition 2.5]. For a non-constant γ ∈ LI(R), γ is called an L-
fuzzy prime ideal of R if for any L-fuzzy points xr, ys ∈ F (R), xrys ∈ γ implies
that either xr ∈ γ or ys ∈ γ.

Definition [3, Definition 3.1]. For µ, ν ∈ L(M), ν is called an L-fuzzy submodule

of µ if and only if ν ⊂ µ. In particular, if µ = χM , then we say ν is an L-fuzzy
submodule of M .
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Definition [3, Definition 3.2]. Let ν be an L-fuzzy submodule of µ. Then ν is
called an L-fuzzy prime submodule of µ if for rt ∈ F (R), xs ∈ F (M) (r ∈ R,
x ∈ M and t, s ∈ L), rtxs ∈ ν implies that either xs ∈ ν or rtµ ⊆ ν.

In particular, taking µ = χM , if rt ∈ F (R), xs ∈ F (M) we have rtxs ∈ ν
implies that either xs ∈ ν or rtχM ⊆ ν, then ν is called an L-fuzzy prime
submodule of M .

Theorem 2 [3, Theorem 3.4]. Let ν be an L-fuzzy prime submodule of µ. If

vt 6= µt for some t ∈ L, then νt is a prime submodule of µt.

Lemma 3 [3, Corollary 3.5]. Let ν be an L-fuzzy prime submodule of M . Then

ν∗ = {x ∈ M : ν(x) = ν(0M )} is a prime submodule of M .

Definition [12, Definition 4.1.6]. Let ζ ∈ LI(R) and µ ∈ L(M). Define:

(ζµ)(x) = ∨{ζ(r) ∧ µ(y) : r ∈ R, y ∈ M and ry = x}.

If ζ(0R) = 1, then ζµ ∈ L(M) by [12, Theorem 4.1.16]. It is clear that, if
ζ ′ ⊆ ζ and µ ⊆ ν for some ζ, ζ ′ ∈ LI(R) and µ, ν ∈ L(M), then ζ ′µ ⊆ ζν.

Definition [12, Definition 4.5.1]. For µ, ν ∈ L(M) and ζ ∈ LI(R), define the
residual quotients as

(µ : ν) =
⋃

{η : η ∈ LI(R), ην ⊆ µ}.

By [12, Theorem 4.5.6], (µ : ν) is an L-fuzzy ideal of R and it is easy to see
that (µ : ν)(0R) = 1.

Theorem 4 [12, Theorem 4.5.3]. Let µ, ν ∈ F (M) and ζ ∈ F (R). Then

(1) (µ : ν)ν ⊆ µ.

(2) ζν ⊆ µ if and only if ζ ⊆ (µ : ν).

Definition [12, Theorem 4.3.1]. Let µ ∈ L(M). The L-fuzzy submodule gener-
ated by the L-fuzzy subset µ is denoted by < µ > and defined by < µ >=

⋂

{ν :
µ ⊆ ν, ν ∈ L(M)}.

3. L-fuzzy multiplication modules

In this section we list some basic properties concerning L-fuzzy multiplication
modules over a commutative ring. We begin with the key definition of this paper.

Definition. Let M be a module over a commutative ring R. M is called an L-
fuzzy multiplication module provided for each L-fuzzy submodule µ of M , there
exists ζ ∈ LI(R) with ζ(0R) = 1 such that µ = ζχM . One can easily show that
if µ = ζχM for some ζ ∈ LI(R) with ζ(0R) = 1, then µ = (µ : χM )χM .
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In [7] it was proved that an R-module M is a multiplication module if and
only if for each m in M there exists an ideal I of R such that Rm = IM . Now,
we have the following proposition for L-fuzzy multiplication R-modules.

Proposition 5. An R-module M is an L-fuzzy multiplication module if and only

if for each x ∈ M and a ∈ L, there exists an L-fuzzy ideal ζ ∈ LI(R) with

ζ(0R) = 1 such that < xa >= ζχM .

Proof. The necessity is clear. Conversely, suppose that for each x ∈ M and
a ∈ L, there exists ζ ∈ LI(R) with ζ(0R) = 1 such that < xa >= ζχM . Let
µ ∈ L(M) and x ∈ M . There exists a ∈ L such that µ(x) = a, so xa ∈ µ; hence
< xa >⊆ µ by definition. By assumption, there exists ζx ∈ LI(R) with ζ(0R) = 1
such that < xa >= ζxχM . Then ζxχM ⊆ µ; thus ζx ⊆ (µ : χM ) by Theorem 4.
It follows that ζx(r) ≤ (µ : χM)(r) for each r ∈ R. Set ζ =

⋃

{ζx : x ∈ M}. So
ζ(r) = ∨{ζx(r) : x ∈ M} for each r ∈ R and ζ(0R) = 1; hence ζ(r) ≤ (µ : χM )(r)
for every r ∈ R. Thus ζχM ⊆ µ by Theorem 4. For the other containment,
assume that m ∈ M . There exists a ∈ L such that µ(m) = a, and hence ma ∈ µ.
It follows that < ma >= ζma

χM ⊆ ζχM . On the other hand, < ma > (m) = a by
[12, Theorem 4.3.4]. Therefore, µ(m) =< ma > (m) ≤ ζχM(m). Thus µ ⊆ ζχM ,
and so we have the equality.

Lemma 6. Let M be an R-module and µ ∈ L(M). Then (µ : χM ) =
⋃

{ra : a ∈
L, r ∈ R ∩ (µa : M)}.

Proof. By [12, Theorem 4.5.2], we have

(µ : χM ) =
⋃

{ra : a ∈ L, r ∈ R, raχM ⊆ µ}.

On the other hand, for each y ∈ M , by definition we have

raχM (y) =

{

a if y = rm for some m ∈ M ,
0 otherwise.

Therefore, (µ : χM ) =
⋃

{ra : a ∈ L, r ∈ R, a ≤ µ(rm) for each m ∈ M} =

⋃

{ra : a ∈ L, r ∈ R, and rm ∈ µa for each m ∈ M}

=
⋃

{ra : a ∈ L, r ∈ R, rM ⊆ µa} =
⋃

{ra : a ∈ L, r ∈ R, r ∈ (µa : χM )}.

Let us now define a basic concept and new properties of them over commu-
tative rings.

Definition. An R-module M is called an L-fuzzy Noetherian module, if every
ascending chain of L-fuzzy submodules in M is stationary.
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Theorem 7. Let R be an L-fuzzy Noetherian ring and M be an L-fuzzy multi-

plication module. Then M is an L-fuzzy Noetherian module.

Proof. Let µ1 ⊆ µ2 ⊆ µ3 ⊆ · · · be an ascending chain of L-fuzzy submodules
of M . Then (µ1 : χM) ⊆ (µ2 : χM ) ⊆ (µ3 : χM ) ⊆ · · · is an ascending chain
of L-fuzzy ideals of R. By assumption, there is a positive integer t such that
(µt : χM ) = (µt+s : χM ) for every positive integer s; hence µt = (µt : χM )χM =
(µt+s : χM)χM = µt+s for every s, and so the chain is stationary.

In the next theorem, we show that the notion of L-fuzzy Noetherian R-
module is a generalization of the notion of Noetherian R-module.

Theorem 8. If M is an L-fuzzy Noetherian module, then M is a Noetherian

R-module.

Proof. Assume that N1 ⊆ N2 ⊆ N3 ⊆ · · · be an ascending chain of submodules
of M . For each positive integer i, we define the mapping µi : M → L by

µi(x) =

{

1 if x ∈ Ni,
0 otherwise.

Clearly, µi = χNi
and µi ∈ L(M). Then µ1 ⊆ µ2 ⊆ µ3 ⊆ · · · is an ascending

chain of L-fuzzy submodules of M ; so there exists a positive integer n such that
µn = µn+k for every positive integer k. Now we show that Nn = Nn+k for all
k. Let k be a positive integer and x ∈ Nn+k. So µn(x) = µn+k(x) = 1. Hence
x ∈ Nn. Thus Nn ⊆ Nn+k ⊆ Nn, and so we have the equality. Therefore M is a
Noetherian R-module.

Example 9. Let M = R denote the field of real numbers with the usual addition
and multiplication, and let L = [0, 1]. So M is a Noetherian R-module. We define
the mappings µn : M → L by

µn(x) =

{

1 if x = 0,
1− 1/n otherwise.

for all positive integer n. An inspection will show that µn is an L-fuzzy submodule
of M for each n. Then µ1 ⊂ µ2 ⊂ · · · is an infinite strictly ascending chain of
L-fuzzy submodules of M , and M is not an L-fuzzy Noetherian R-module.

The Example 9 shows that the converse of Theorem 8 is not true. So a
Noetherian module need not be an L-fuzzy Noetherian module, but we have the
following theorem for multiplication modules.

Theorem 10. Let M be an R-module. Then M is a multiplication module if and

only M is an L-fuzzy multiplication module.
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Proof. LetM be a multiplication module, and let µ ∈ L(M). Since the inclusion
(µ : χM )χM ⊆ µ is clear, we will prove the reverse inclusion. Let x ∈ M
and µ(x) = a for some a ∈ L. It suffices to show that a ≤ (µ : χM )χM (x).
By assumption, µa = (µa : χM )χM , since µ(x) = a, we must have x ∈ µa.
Then x =

∑n
i=1

rixi, where xi ∈ M and ri ∈ (µa : M) (i = 1, 2, . . . , n). It
then follows from Lemma 6 that (ri)a ∈ (µ : χM ) for each i. On the other
hand, for each i, (xi)a ∈ χM . Hence (rixi)a = (ri)a(xi)a ≤ (µ : χM )χM ; thus
(rixi)a ∈ (µ : χM )χM (1 ≤ i ≤ n). It follows that ((µ : χM )χM )(rixi) ≥ a for
each i (1 ≤ i ≤ n). Then

((µ : χM )χM )(x) ≥ ((µ : χM )χM )(r1x1) ∧ · · · ∧ ((µ : χM )χM )(rnxn) ≥ a.

Therefore, µ(x) = a ≤ ((µ : χM )χM )(x), so µ(m) ≤ ((µ : χM )χM )(m) for each
m ∈ M . Hence µ ⊆ (µ : χM )χM , and we have the equality.

Conversely, assume that M is an L-fuzzy multiplication module and let N
be a proper submodule of M . It suffices to show that N ⊆ (N : M)M . We define
the mapping µ : M → L by

µ(x) =

{

1 if x ∈ N ,
0 otherwise.

One can easily to see that µ = χN , µ ∈ L(M) and µa = N for each 0 6= a ∈ L.
So µ = (µ : χM )χM since M is an L-fuzzy multiplication module. Let m ∈ N .
Then µ(m) = ((µ : χM)χM )(m) = 1. So by definition,

((µ : χM )χM )(m) = ∨{(µ : χM )(s) ∧ χM (x) : sx = m for some s ∈ R,x ∈ M}

= ∨{(µ : χM )(s) : m ∈ sM for some s ∈ R}.

On the other hand, (µ : χM )(s) = ∨{ra(s) : r ∈ (N : M)} by [12, Theorem
4.5.2] and the fact that µa = N for each non-zero element a of L. If there is no
1 6= r ∈ R such that m ∈ rM , then

(µ : χM )(1) = ∨{ra(1) : r ∈ (N : M)} = 0

since N 6= M and 1 /∈ (N : M). Therefore,

((µ :χM )χM )(m) = ∨{(µ : χM )(s) : m ∈ sM for some s ∈ R} = (µ :χM )(1) = 0,

which is a contradiction. So there exists r′ ∈ R such that m ∈ r′M . Set A =
{r ∈ (N : M) : m ∈ rM}. If A = ∅, then for each t ∈ R with m ∈ tM , we have
t /∈ (N : M). So (µ : χM )(t) = ∨{ra(t) : r ∈ (N : M)} = 0. Therefore,

((µ : χM )χM )(m) = ∨{(µ : χM )(s) : m ∈ sM for some s ∈ R} = 0,
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a contradiction. So we may assume that A 6= ∅. Then there exists r ∈ R such
that m ∈ rM and r ∈ (N : M); so N ⊆ (N : M)M . Thus M is a multiplication
R-module.

Let M be an R-module. A submodule N of M is called prime if N 6= M
and whenever r ∈ R and m ∈ M satisfy rm ∈ N then rM ⊆ N or m ∈ N . Let
Spec(M) denote the collection of prime submodule of M . We define V (N) to be
the set of all prime submodules of M containing N (so V (M) = ∅ and V (0) =
Spec(M)). If ζ(M) denotes the collection of all subset V (N) of Spec(M), then
ζ(M) contains the empty set and Spec(M), and ζ(M) is closed under arbitrary
intersections. We shall say that M is a module with a Zariski topology, or a top
module for short, if ζ(M) is closed under finite unions, i.e. for any submodules
N and L of M there exists a submodule J of M such that V (N)∪V (L) = V (J),
for in this case ζ(M) satisfies the axioms for the closed subsets of a topological
space [13]. We recall that by [13, Theorem 3.5] every multiplication module is a
top module. Now by [4, Theorem 4.5] and Theorem 10 we obtain the following
theorem.

Theorem 11. Every L-fuzzy multiplication R-module is L-top module.

4. Radical of an L-fuzzy submodule

In [12], the notion of L-fuzzy radical of an L-fuzzy ideal and its properties are
given. We generalized their definition to any L-fuzzy submodule of an L-fuzzy
module over a commutative ring.

Definition. Let M be an R-module and µ ∈ L(M). Let Pµ be the family of all
L-fuzzy prime submodules of M containing µ. The L-radical of µ, denoted by
radM (µ), is defined by

(radM (µ))(x) =

{ ∧

ν∈Pµ
ν(x) if Pµ 6= ∅,

1 otherwise.

First, we have the following lemma.

Lemma 12. Let M be an R-module and µ ∈ L(M). If µ is an L-fuzzy submodule

of M , then radM (µ∗) ⊆ (radM (µ))∗.

Proof. If Pµ = ∅, then radM (µ) = χM , and hence (radM (µ))∗ = M . So we may
assume that Pµ 6= ∅. Let ν ∈ Pµ. Then ν∗ is a prime submodule of M by Lemma
3 and µ∗ ⊆ ν∗; hence radM (µ∗) ⊆

⋂

{ν∗ : ν ∈ Pµ}. Let m ∈
⋂

{ν∗ : ν ∈ Pµ}. So
m ∈ ν∗; thus ν(m) = 1 for every ν ∈ Pµ; hence (radM (µ))(m) = 1 by definition.
It follows that m ∈ (radM (µ))∗, so radM (µ∗) ⊆

⋂

{ν∗ : ν ∈ Pµ} ⊆ (radM (µ))∗.
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In view of Lemma 12 and [3, Theorem 3.6], we have the following theorem.

Theorem 13. Let µ be a nonconstant L-fuzzy submodule of M , and let
∧

{µ(x) :
x /∈ radM (µ∗)} = a. If a < 1 and a is a prime element of L, then radM (µ∗) =
(radM (µ))∗.

Proof. By Lemma 12, it suffices to show that (radM (µ))∗ ⊆ radM (µ∗). Let P
be a prime submodule of M containing µ∗. Then the mapping ν : M → L is
defined by

ν(x) =

{

1 if x ∈ P ,
a otherwise.

is an L-fuzzy prime submodule of M by [3, Theorem 3.6]. Now we show that
µ ⊆ ν. If x ∈ P , then µ(x) ≤ ν(x) = 1. If x /∈ P , then ν(x) = a, so x /∈ radM (µ∗).
Since by hypothesis µ(x) ≤ a, we must have µ(x) ≤ a = ν(x). Hence µ ⊆ ν. It
follows that ν is an L-fuzzy prime submodule of M containing µ and ν∗ = P .
Now, let x ∈ (radM (µ))∗. Then (radM (µ))(x) = 1, so ν(x) = 1 and x ∈ ν∗ = P ;
hence x ∈ radM (µ∗), and so we have the equality.

Definition. LetM be an R-module and µ ∈ L(M). Then µ is called a generalized

maximal L-fuzzy submodule of M , if for any L-fuzzy submodule ν of M , if µ ⊆ ν,
then either µ∗ = ν∗ or ν = χM .

In [7, Theorem 2.5], it was proved that every proper submodule of a non-zero
multiplication R-module is contained in a maximal submodule of M . Now we
have the following theorem for L-fuzzy multiplication R-modules.

Theorem 14. Let M be a non-zero L-fuzzy multiplication R-module. Then every

L-fuzzy submodule µ 6= χM of M is contained in a generalized maximal L-fuzzy
submodule of M .

Proof. Let µ be a non-constant L-fuzzy submodule of M . So µ∗ 6= M and there
exists a maximal submodule N of M such that µ∗ ⊆ N by [7, Theorem 2.5] and
Theorem 10. Let a = ∨{µ(x) : x ∈ M}. We define the mapping ν : M → L by

ν(x) =

{

1 if x ∈ N ,
a otherwise.

One can easily to see that ν is an L-fuzzy submodule of M and µ ⊆ ν. Now
we show that ν is a generalized maximal L-fuzzy submodule of M . Let ν ⊆ β
and β ∈ L(M). Therefore N = ν∗ ⊆ β∗. So either N = β∗ or β∗ = M since N is
a maximal submodule of M . Hence ν∗ = N = β∗ or β = χM .

Definition. Let M be an R-module. We define the L-fuzzy radical of M , de-
noted by Jac(χM ), to be the intersection of all the generalized maximal L-fuzzy
submodules of M if such exist, and χM otherwise.
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Proposition 15. Let µ be a non-constant L-fuzzy submodule of an L-fuzzy mul-

tiplication module M such that χM = µ+ Jac(χM ). Then χM = µ.

Proof. If χM 6= µ, then µ is contained in a generalized maximal L-fuzzy sub-
module ν of M . So χM = µ+ Jac(χM ) ⊆ ν, which is a contradiction.

Here we have the following proposition that is a generalization of [7, Lemma
2.10] for L-fuzzy multiplication R-modules.

Proposition 16. Assume that M is a faithful L-fuzzy multiplication R-module

and let ζ be a prime L-fuzzy ideal of R, a, b ∈ L and raxb ∈ ζχM for some r ∈ R
and x ∈ M . Then ra ∈ ζ or xb ∈ ζχM .

Proof. Let ζ be a prime L-fuzzy ideal of R. Then by [12, Theorem 3.5.5], for
each r ∈ R, there exist a prime ideal P of R and a prime element c ∈ L such that

ζ(r) =

{

1 if r ∈ P ,
c otherwise.

By assumption, ζχM (rx) ≥ a ∧ b. On the other hand, by definition, we have

ζχM (rx) = ∨{ζ(s) ∧ χM (y) : s ∈ R, y ∈ M, rx = sy}

= ∨{ζ(s) : s ∈ R, rx ∈ sM}.

Set K = {s ∈ P : rx ∈ sM}. First suppose that K = ∅. Then there is no s ∈ P
such that rx ∈ sM . Hence ζχM (rx) = c ≥ a ∧ b. It follows that either c ≥ a or
c ≥ b since c is a prime element of L. We split the proof into two cases:

Case 1. c ≥ a. Since ζ(r) ∈ {1, c}, we must have ζ(r) ≥ a, and so ra ∈ ζ.

Case 2. c ≥ b. Similarly, ζχM (x) = ∨{ζ(s′) : s′ ∈ R,x ∈ s′M}. So ζχM (x)
∈ {1, c}. Therefore, ζχM(x) ≥ b, and so xb ∈ ζχM . So we may assume that
K 6= ∅. Then there exists s′ ∈ P such that rx ∈ s′M . Therefore we have
ζχM (rx) = ∨{ζ(s) : s ∈ R, rx ∈ sM} = 1 and rx ∈ s′M ⊆ PM . It then follows
from [7, Lemma 2.10] and Theorem 10 that either r ∈ P or x ∈ PM . If r ∈ P ,
then ζ(r) = 1 ≥ a, and so ra ∈ ζ. If x ∈ PM , then x = r1x1 + · · · + rnxn for
some ri ∈ P and xi ∈ M such that i = 1, 2, . . . , n; hence

ζχM(x) = ζχM

( n
∑

i=1

rixi

)

≥ ζχM(r1x1) ∧ · · · ∧ ζχM(rnxn) ≥ 1 ∧ · · · ∧ 1 = 1.

Thus ζχM(x) = 1 ≥ b, so xb ∈ ζχM , and the proof is complete.

In view of Proposition 16 and [4, Theorem 3.6] we have the following theorem.
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Theorem 17. The following statements are equivalent for a non-constant L-fuzzy
submodule µ of an L-fuzzy multiplication module M .

(1) µ is an L-fuzzy prime submodule of M .

(2) µ = ζχM for some L-fuzzy prime ideal ζ of R.

Proposition 18. Assume that M is a faithful L-fuzzy multiplication R-module

and let ζ be a prime L-fuzzy ideal of R. If η is an L-fuzzy ideal of R such that

ηχM ⊆ ζχM and ζχM 6= χM , then η ⊆ ζ. In particular, (ζχM : χM ) = ζ.

Proof. Let r ∈ R and η(r) = a for some a ∈ L. Then ra ∈ η and there
exists m ∈ M such that ζχM(m) < 1, since ζχM 6= χM . So m{1} /∈ ζχM ;
hence ram{1} ∈ ηχM ⊆ ζχM . Therefore ra ∈ ζ by Proposition 16. Hence
ζ(r) ≥ a = η(r), and so η ⊆ ζ. The particular statement is clear.

Proposition 19. Let M be an R-module. If µ is an L-fuzzy submodule of M ,

then
√

(µ : χM )χM ⊆ radM (µ).

Proof. If radM (µ) = χM , the result is clear. Otherwise, if ν ∈ Pµ, then we
have (µ : χM ) ⊆ (ν : χM ). So

√

(µ : χM ) ⊆ (ν : χM ) by [4, Theorem 3.6];
hence

√

(µ : χM )χM ⊆ (ν : χM )χM ⊆ ν. Since ν is an arbitrary prime L-fuzzy
submodule of M containing µ, we have

√

(µ : χM )χM ⊆ radM (µ).

Lemma 20. Let µ, ν be L-fuzzy submodules of an R-module M . If η is an L-fuzzy
ideal of R, then the following hold:

(1) (µ∗ : M) ⊆ (µ : χM )∗.

(2) η∗µ∗ ⊆ (ηµ)∗.

Proof. (1) Let r ∈ (µ∗ : M). Then rM ⊆ µ∗ ⊆ µa for each a ∈ L. Therefore we
have

(µ : χM )(r) = ∨{sa(r) : s ∈ R, a ∈ L, s ∈ (µa : M)} ≥ ∨{ra(r) = a : a ∈ L} = 1.

Hence r ∈ (µ : χM )∗, and the proof is complete.

(2) Let m ∈ η∗µ∗. Then m =
∑n

i=1
rimi for some ri ∈ η∗ and mi ∈ µ∗ such

that i = 1, 2, . . . , n. Therefore,

ηµ(m) ≥ ηµ(r1m1) ∧ · · · ∧ ηµ(rnmn) = 1 ∧ · · · ∧ 1 = 1.

Thus m ∈ (ηµ)∗, as required.

Now, we have the following theorem that is a generalization of [7, Theorem
2.12].

Theorem 21. Let M be a faithful L-fuzzy multiplication R-module. If µ is an

L-fuzzy submodule of M , then radM (µ) =
√

(µ : χM )χM .
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Proof. By Proposition 19, it suffices to show that radM (µ) ⊆
√

(µ : χM )χM .
Since M is an L-fuzzy multiplication module, we must have

radM (µ) = (radM (µ) : χM )χM .

Now it is enough to show that (radM (µ) : χM ) ⊆
√

(µ : χM). Let η be a prime
L-fuzzy ideal of R containing (µ : χM ). Then η∗ is a prime ideal of R by [12,
Theorem 3.5.5], and we have

(0 : M) ⊆ (µ∗ : M) ⊆ (µ : χM )∗ ⊆ η∗

by Proposition 20. Hence η∗M is a prime submodule of M by [7, Corollary 2.11].
Therefore, η∗M 6= M , and Proposition 20 gives ηχM 6= χM . Then by Theorem
17, ηχM is a prime L-fuzzy submodule of M ; so µ = (µ : χM )χM ⊆ ηχM

and radM (µ) ⊆ ηχM . Hence (radM (µ) : χM )χM ⊆ ηχM . It then follows from
Proposition 18 that (radM (µ) : χM ) ⊆ η, and so we have equality.

5. Conclusion

Letting L− ζ(M) = {V (ηχM ) | η ∈ LI(R)}. R. Ameri and R. Mahjoob showed
that L − ζ(M) induces a topology which is called Zariski topology if and only
if M is an L-top module. By following them we define L-fuzzy multiplication
R-modules and we show that every L-fuzzy multiplication R-module is an L-top
module. Also we find a connection between the L-fuzzy multiplication R-modules
and the multiplication R-modules.
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