Discussiones Mathematicae General Algebra and Applications 34 (2014) 75–84 doi:10.7151/dmgaa.1218

ON BALANCED ORDER RELATIONS AND THE NORMAL HULL OF COMPLETELY SIMPLE SEMIRINGS

SUNIL K. MAITY

Department of Mathematics, University of Burdwan Golapbag, Burdwan – 713104 West Bengal, India

e-mail: skmaity@math.buruniv.ac.in

Abstract

In [1] the authors proved that a semiring S is a completely simple semiring if and only if S is isomorphic to a Rees matrix semiring over a skew-ring R with sandwich matrix P and index sets I and Λ which are bands under multiplication. In this paper we characterize all the balanced order relations on completely simple semirings. Also we study the normal hull of a completely simple semiring.

Keywords: skew-ring, Rees matrix semiring, balanced order relation, essential extension, normal extension, normal ideal, normal hull.

2010 Mathematics Subject Classification: 16A78, 20M07, 20M10.

1. Introduction

Recall that a semiring $(S, +, \cdot)$ is a type (2, 2)-algebra whose semigroup reducts (S, +) and (S, \cdot) are connected by ring like distributivity, that is, a(b+c) = ab+ac and (b+c)a = ba+ca for all $a, b, c \in S$. A semiring $(S, +, \cdot)$ is called a skew-ring if its additive reduct (S, +) is a group. In a skew-ring $(R, +, \cdot)$, a normal subgroup K of (R, +) is called a skew-ideal of R if $a \in K$ implies $ca, ac \in K$ for all $c \in R$.

A semigroup (S, \cdot) is said to be a regular semigroup if for each element $a \in S$, there exists an element $x \in S$ such that axa = a. A semigroup (S, \cdot) is called a completely regular semigroup if for each element $a \in S$, there exists an element $x \in S$ such that axa = a and ax = xa. We call a semiring $(S, +, \cdot)$ additively regular if for every element $a \in S$ there exists an element $x \in S$ such that

a+x+a=a. If $(S,+,\cdot)$ is a semiring, we denote Green's relations on the semigroup (S,+) by \mathcal{L}^+ , \mathcal{R}^+ , \mathcal{J}^+ , \mathcal{D}^+ and \mathcal{H}^+ .

A semiring S is called a completely regular semiring [2] if for every element $a \in S$ there exists an element $x \in S$ such that the following conditions are satisfied:

(i)
$$a = a + x + a$$
, (ii) $a + x = x + a$ and (iii) $a(a + x) = a + x$.

In fact, conditions (i) and (ii) state that $a \in S$ is a completely regular element in the additive reduct (S,+) of the semiring $(S,+,\cdot)$. Condition (iii) is an extra condition which makes the element a in $(S,+,\cdot)$ to be completely regular. A completely regular semiring $(S,+,\cdot)$ is called completely simple if $\mathscr{J}^+ = S \times S$. Clearly, from definition it follows that every completely simple semiring $(S,+,\cdot)$ is a semiring with completely simple additive semigroup (S,+). Construction of a semiring $(S,+,\cdot)$ whose additive reduct (S,+) is a completely simple semigroup has been studied by M.P. Grillet [3]. We know that a semigroup (S,\cdot) is completely simple if and only if S is isomorphic to a Rees matrix semigroup over a group with sandwich matrix P and index sets I and Λ . In [1] we extended this important result from semigroups to semirings.

Theorem 1.1 [1]. Let R be skew-ring, (I, \cdot) and (Λ, \cdot) are bands such that $I \cap \Lambda = \{o\}$. Let $P = (p_{\lambda,i})$ be a matrix over $R, i \in I, \lambda \in \Lambda$ and assume

- (1.1) $p_{\lambda,o} = p_{o,i} = 0;$
- $(1.2) \ p_{\lambda\mu,kj} = p_{\lambda\mu,ij} p_{\nu\mu,ij} + p_{\nu\mu,kj};$
- (1.3) $p_{\mu\lambda,jk} = p_{\mu\lambda,ji} p_{\mu\nu,ji} + p_{\mu\nu,jk};$
- (1.4) $ap_{\lambda,i} = p_{\lambda,i}a = 0;$
- (1.5) $ab + p_{o\mu,io} = p_{o\mu,io} + ab;$
- (1.6) $ab + p_{\lambda a, ai} = p_{\lambda a, ai} + ab$ for all $i, j, k \in I; \lambda, \mu, \nu \in \Lambda$ and $a, b \in R$.

Let \mathscr{M} consist of the elements of $I \times R \times \Lambda$ and define operations '+' and $'\cdot'$ on \mathscr{M} by

$$(1.7) (i, a, \lambda) + (j, b, \mu) = (i, a + p_{\lambda, j} + b, \mu)$$

$$(1.8) \qquad (i,a,\lambda)\cdot(j,b,\mu) = (ij,-p_{\lambda\mu,ij} + ab,\lambda\mu).$$

Then $(\mathcal{M}, +, \cdot)$ is a completely simple semiring. Conversely every completely simple semiring is isomorphic to such a semiring.

The semiring constructed above is denoted by $\mathcal{M}(I, R, \Lambda; P)$ and is called Rees matrix semiring.

Corollary 1.2 [1]. Let $\mathcal{M}(I, R, \Lambda; P)$ be a Rees matrix semiring. Then $ab+p_{\lambda,i}=p_{\lambda,i}+ab$ for all $i \in I, \lambda \in \Lambda$ and $a,b \in R$.

In Section 2, we characterize all balanced order relations on a completely simple semiring. For a completely simple semiring, normal extension and essential extension are defined and their properties are studied in Section 3. The notion of normal hull $\Phi(S)$ of a completely simple semiring S is defined in Section 4. Finally, we show that $\Phi(S)$ admits a natural Rees matrix semigroup representation if S is given a Rees matrix semiring representation.

2. Balanced order relations on Rees matrix semirings

Let (G, +) be a group with identity 0, I and Λ be index sets such that $I \cap \Lambda = \{o\}$ and $P = (p_{\lambda,i})_{\lambda \in \Lambda, i \in I}$ be a matrix over G such that $p_{\lambda,o} = p_{o,i} = 0$ for all $\lambda \in \Lambda$ and $i \in I$. On $S = I \times R \times \Lambda$ define addition by

$$(i, a, \lambda) + (j, b, \mu) = (i, a + p_{\lambda, j} + b, \mu)$$
 for all $(i, a, \lambda), (j, b, \mu) \in S$.

Then straightforward calculations show that (S, +) is a semigroup and is denoted by $S = \mathcal{M}(I, G, \Lambda; P)$.

Definition 2.1. A relation ϱ on a semigroup (S, \cdot) is said to be stable if for $a, b \in S$; $a \varrho b$ implies $ac \varrho bc, ca \varrho cb$ for all $c \in S$; i.e., ϱ is stable under left and right multiplication. An order relation on a semigroup (S, \cdot) [a semiring $(S, +, \cdot)$] is a partial order relation on S which is stable in (S, \cdot) [as well as in $(S, +, \cdot)$].

Lemma 2.2. Let $S = \mathcal{M}(I, G, \Lambda; P)$ be a semigroup and ϱ be a stable relation on S. Then

- (i) $(i, a, \lambda) \varrho(j, b, \lambda)$ for some $\lambda \in \Lambda$ implies $(i, a, \mu) \varrho(j, b, \mu)$ for all $\mu \in \Lambda$.
- (ii) $(i, a, \lambda) \varrho(i, b, \mu)$ for some $i \in I$ implies $(j, a, \lambda) \varrho(j, b, \mu)$ for all $j \in I$.

Proof. (i) Since ϱ is a stable relation on S and $(i, a, \lambda) \varrho(j, b, \lambda)$, then we have $(i, a, \lambda) + (o, 0, \mu) \varrho(j, b, \lambda) + (o, 0, \mu)$, i.e., $(i, a, \mu) \varrho(j, b, \mu)$ for all $\mu \in \Lambda$.

(ii) This part follows in a similar way as (i) of this theorem.

Corollary 2.3. Let $S = \mathcal{M}(I, G, \Lambda; P)$ be a semigroup and ϱ be a stable relation on S. Then $(i, a, \lambda) \varrho(j, b, \lambda)$ if and only if $(o, a, o) \varrho(o, b, o)$ if and only if $(o, a - b, o) \varrho(o, 0, o)$.

Remark 2.4. Let $S = \mathcal{M}(I, G, \Lambda; P)$ be a semigroup and ϱ be a stable relation on S. Then $U_{\varrho} = \{a \in G : (o, a, o) \varrho (o, 0, o)\}$ satisfies

$$\begin{split} U_{\varrho} &= \{a \in G : (i,a,\lambda) \, \varrho \, (i,0,\lambda) \ \text{ for some } i \in I \ \text{ and for some } \lambda \in \Lambda \} \\ &= \{a \in G : (i,a,\lambda) \, \varrho \, (i,0,\lambda) \ \text{ for all } i \in I \ \text{ and for all } \lambda \in \Lambda \}. \end{split}$$

Now special properties of ϱ result in special properties of U_{ϱ} :

- (i) If ϱ is reflexive, then $0 \in U_{\varrho} \neq \emptyset$ and conversely.
- (ii) If ϱ is reflexive and transitive, then $(U_{\varrho},+)$ is a submonoid of G.
- (iii) If ϱ is an equivalence relation (and hence a congruence), then $(U_{\varrho},+)$ is a normal subgroup of (G,+).
- (iv) If ϱ is a partial order, then $U_{\varrho} \cap (-U_{\varrho}) = \{0\}$, i.e., U_{ϱ} is a positive cone of ϱ .

Remark 2.5. Let ϱ be a transitive and stable relation on $S = \mathcal{M}(I, G, \Lambda; P)$ and $(i, a, \lambda) \varrho(j, b, \mu)$. Then we get

$$\begin{split} &(i,-p_{_{\nu,j}},\nu)+(i,a,\lambda)+(k,-p_{_{\mu,k}},\lambda)\,\varrho\,(i,-p_{_{\nu,j}},\nu)+(j,b,\mu)+(k,-p_{_{\mu,k}},\lambda), \\ \\ &\text{i.e.,} \qquad \qquad (i,-p_{_{\nu,j}}+p_{_{\nu,i}}+a+p_{_{\lambda,k}}-p_{_{\mu,k}}-b,\lambda)\,\varrho\,(i,0,\lambda) \end{split}$$

$$\text{ and hence } -p_{\nu,j}+p_{\nu,i}+a+p_{\lambda,k}-p_{\mu,k}-b\in U_{\varrho} \text{ for all } k\in I \text{ and } \nu\in\Lambda.$$

Definition 2.6. Let ϱ be a stable relation on $S = \mathcal{M}(I, G, \Lambda; P)$. Define the relation ϱ_I on I by $i \varrho_I j$ if and only if $(i, a, \lambda) \varrho(j, b, \lambda)$ for some $a, b \in G$ and $\lambda \in \Lambda$ and likewise the relation ϱ_{Λ} on Λ by $\lambda \varrho_{\Lambda} \mu$ if and only if $(i, a, \lambda) \varrho(i, b, \mu)$ for some $a, b \in G$ and $i \in I$.

The relation ϱ is called balanced if $i\,\varrho_I\,j$ implies $(i,-p_{\lambda,i},\lambda)\,\varrho\,(j,-p_{\lambda,j},\lambda)$ for all $\lambda\in\Lambda$ and if $\lambda\,\varrho_\Lambda\,\mu$ implies $(i,-p_{\lambda,i},\lambda)\,\varrho\,(i,-p_{\mu,i},\mu)$ for all $i\in I$.

Remark 2.7. Let ϱ be a stable relation on $S=\mathcal{M}(I,G,\Lambda;P)$. Then it is interesting to note that if ϱ is reflexive, then ϱ_I and ϱ_Λ are reflexive. Also, if ϱ is balanced and antisymmetric, then $i\,\varrho_I\,j$ and $j\,\varrho_I\,i$ imply in particular $(i,0,o)\,\varrho\,(j,0,o)$ and $(j,0,o)\,\varrho\,(i,0,o)$; hence (i,0,o)=(j,0,o) and ϱ_I is antisymmetric, too. In the similar way it follows that ϱ_Λ is antisymmetric. Again, if ϱ is balanced and transitive, then $i\,\varrho_I\,j$ and $j\,\varrho_I\,k$ imply $(i,0,o)\,\varrho\,(j,0,o)$ and $(j,0,o)\,\varrho\,(k,0,o)$. Hence $(i,0,o)\,\varrho\,(k,0,o)$, which shows that $i\,\varrho_I\,k$, i.e., ϱ_I is transitive. A similar argument shows that ϱ_Λ is transitive. Moreover, from Remark 2.5, it follows that $i\,\varrho_I\,j$ implies $-p_{\nu,j}+p_{\nu,i}-p_{\lambda,i}+p_{\lambda,j}\in U_\varrho$ for all $\lambda,\nu\in\Lambda$. Likewise $\lambda\,\varrho_\Lambda\,\mu$ implies $-p_{\lambda,i}+p_{\lambda,j}-p_{\mu,j}+p_{\mu,i}\in U_\varrho$ for all $i,j\in I$.

Now, we characterize all balanced order relations on a Rees matrix semiring $\mathcal{M}(I, R, \Lambda; P)$ in terms of the parameters I, R, Λ and P.

Definition 2.8. Let U be a positive cone of an order relation on (R,+) of a skewring R satisfying $ac, ca \in U$ for all $a \in U$ and for all $c \in R$, ξ an order relation on I and η an order relation on Λ . The triple (ξ, U, η) is said to be an admissible triple of orders of I, R and Λ respectively if $(i,j) \in \xi$ implies $-p_{\mu,i} + p_{\mu,j} - p_{\lambda,j} + p_{\lambda,i} \in U$ for all $\lambda, \mu \in \Lambda$ and $(\lambda, \mu) \in \eta$ implies $-p_{\mu,i} + p_{\mu,j} - p_{\lambda,j} + p_{\lambda,i} \in U$ for all $i, j \in I$.

First we state the following Theorem.

Theorem 2.9 [5]. Let $S = \mathcal{M}(I, G, \Lambda; P)$ be a completely simple semigroup and let $\pi(\varrho) = (\varrho_I, U_\varrho, \varrho_\Lambda)$ for any balanced order relation ϱ on S. Then π is an order preserving bijection from the set of all balanced orders on S onto the set of all admissible triples of orders on I, G and Λ , respectively.

We now extend Theorem 2.9 from completely simple semigroup to completely simple semiring. In fact this is the main theorem in this section.

Theorem 2.10. Let $S = \mathcal{M}(I, R, \Lambda; P)$ be a completely simple semiring. Then there is an order preserving one-one correspondence between the set of all balanced order relations on S onto the set of all admissible triples of orders of I, R and Λ respectively.

Proof. Let $\mathscr{B}(S)$ denote the set of all balanced order relations on a completely simple semiring $S = \mathscr{M}(I, R, \Lambda; P)$ and $\mathscr{AT}(S)$ denote the set of all admissible triples of orders of I, R and Λ , respectively. Then $\mathscr{B}(S)$ and $\mathscr{AT}(S)$ are both lattices with respect to set inclusion.

We define $\rho:\mathscr{B}(S)\longrightarrow\mathscr{AT}(S)$ by $\rho(\varrho)=(\varrho_{\scriptscriptstyle I},U_{\scriptscriptstyle \varrho},\varrho_{\scriptscriptstyle \Lambda})$ for all $\varrho\in\mathscr{B}(S).$

Since (S, +) is a completely simple semigroup, we find from Theorem 2.9, that ρ is order preserving and injective.

To complete the proof it suffices to show that ρ is onto. For this let, (ξ, U, η) be an admissible triple of orders of I, R and Λ respectively. We define a relation ϱ on S by (i, a, λ) $\varrho(j, b, \mu)$ if and only if $(i, j) \in \xi, (\lambda, \mu) \in \eta$ and $-p_{\nu,i} + p_{\nu,j} + b + p_{\mu,k} - p_{\lambda,k} - a \in U$ for some $\nu \in \Lambda$ and $k \in I$. Then by Theorem 2.9, stated above ϱ is a balanced order relation on (S, +). Moreover, by Theorem 2.9, we have $\varrho_I = \xi, \ \varrho_{\Lambda} = \eta$ and $U_{\varrho} = U$.

We now show that ϱ is stable under multiplication. For this let (i,a,λ) , $(j,b,\mu),(k,c,\nu)\in S$ and $(i,a,\lambda)\varrho(j,b,\mu)$. Then $(i,j)\in \xi,(\lambda,\mu)\in \eta$ and $-p_{\nu',i}+p_{\nu',j}+b+p_{\mu,k'}-p_{\lambda,k'}-a\in U$ for some $\nu'\in \Lambda$ and $k'\in I$. Now, $(i,j)\in \xi$ implies $(ik,jk)\in \xi$. Similarly, $(\lambda\nu,\mu\nu)\in \eta$.

Again,
$$-p_{\nu',i}+p_{\nu',j}+b+p_{\mu,k'}-p_{\lambda,k'}-a\in U \text{ implies}$$

$$(-p_{\nu,i}+p_{\nu,j}+b+p_{\mu,k}-p_{\lambda,k}-a)c\in U,$$

i.e., $bc - ac \in U$ [by (1.4) of Theorem 1.1]. This leads to,

$$-p_{\lambda\nu,ik} + p_{\lambda\nu,jk} + (-p_{\mu\nu,jk} + bc) + p_{\mu\nu,jk} - p_{\lambda\nu,jk} - (-p_{\lambda\nu,ik} + ac) \in U.$$

Hence $(ik, -p_{\lambda\nu,ik} + ac, \lambda\nu) \varrho (jk, -p_{\mu\nu,jk} + bc, \mu\nu)$. This implies

$$(i, a, \lambda)(k, c, \nu) \varrho(j, b, \mu)(k, c, \nu).$$

Similarly, we can show that $(k,c,\nu)(i,a,\lambda)\,\varrho\,(k,c,\nu)(j,b,\mu)$ and the proof is completed.

3. Normal extensions

For the remaining part of this paper, let $E^+(S)$ denote the set of all additive idempotents of the semiring S and by $[E^+(S)]$ we mean the subsemiring of S generated by $E^+(S)$.

Definition 3.1. An ideal K of a completely simple semiring S is said to be a normal ideal of S, and S is said to be a normal extension of K, if (i) K is a completely simple semiring and (ii) $x' + K + x \subseteq K$ for all $x \in S$.

Here it is interesting to mention that the requirement that $x' + K + x \subseteq K$ for all $x \in S$, ensures that K has non-null intersection with every \mathcal{H}^+ -class of S and so is full, i.e., $E^+(S) \subseteq K$.

Notation 3.2. For $S = \mathcal{M}(I, R, \Lambda; P)$, we will write

 \overline{P} = subskew-ring of R generated by the entries of P,

 $\mathcal{K} = \text{set of normal ideals of } S$,

 $\mathcal{N} = \text{set of skew-ideals of } R \text{ containing } \overline{P}$

where \mathcal{K} and \mathcal{N} are both lattices with respect to set inclusion.

Similar to Rees matrix semigroup, one can easily show the following lemma.

Lemma 3.3. If
$$S = \mathcal{M}(I, R, \Lambda; P)$$
, then $[E^+(S)] = \mathcal{M}(I, \overline{P}, \Lambda; P)$.

Definition 3.4. A completely simple semiring S is said to be an essential extension of a normal ideal K if the restriction to K of any non-trivial congruences on S is non-trivial.

Theorem 3.5. Let $S = \mathcal{M}(I, R, \Lambda; P)$.

(i) The mappings

$$K \longrightarrow K^* = \{a \in R : (o, a, o) \in K\},\$$

 $N \longrightarrow N^* = \{(i, a, \lambda) \in S : a \in N\}.$

are mutually inverse lattice isomorphisms of \mathcal{K} and \mathcal{N} .

(ii) S is an essential extension of $K \in \mathcal{K}$ if and only if R is an essential extension of K^* .

Proof. (i) By Theorem 2.7 (i) [4], we see that $(K^*, +)$ is a normal subgroup of R containing \overline{P} . To show K^* is a skew-ideal of R, let $a \in K^*$ and $r \in R$. Then $(o, a, o) \in K$. Now, $(o, r, o) \in S$. Since K is an ideal of S, so it follows that $(o, a, o)(o, r, o) \in K$, i.e., $(o, ar, o) \in K$. This implies $ar \in K^*$. Similarly, we can show that $ra \in K^*$. Hence K^* is a skew-ideal of R containing \overline{P} .

Again, if N is a skew-ideal of R then by Theorem 2.7 (i) [4], N^* is a normal subsemigroup of (S, +). To show N^* is a normal ideal of S, let $(i, a, \lambda) \in N^*$ and $(j, r, \mu) \in S$. Then $(i, a, \lambda)(j, r, \mu) = (ij, -p_{\lambda\mu,ij} + ar, \lambda\mu) \in N^*$, since $-p_{\lambda\mu,ij} + ar \in N$. Similarly, we can show that $(j, r, \mu)(i, a, \lambda) \in N^*$. Consequently, N^* is a normal ideal of S.

From Theorem 2.7 (i) [4], it follows that $(K^*)^* = K$ and $(N^*)^* = N$. Hence the theorem.

(ii) This part follows from Theorem 2.7 (ii) [4].

From Theorem 3.5 (i) we can conclude that any normal ideal is completely determined by its intersection with H_e^+ , e = (o, 0, o). Since the concept of a normal ideal is quite independent of any particular representation as a Rees matrix semiring, we have

Corollary 3.6. Let K be a normal ideal of a completely simple semiring S. Then K is determined by its intersection with any \mathcal{H}^+ -class of S.

4. The normal hull

In this section we define the normal hull of a completely simple semiring. In this regard, we point out that if S is a completely simple semiring and $e \in E^+(S)$, then e + S + e is a subskew-ring of S and conversely for any subskew-ring R of S there exists $f \in E^+(S)$ such that R = f + S + f.

Lemma 4.1. Let S be a completely simple semiring and $a, b \in S$. Then $(a+b)' = (a+b)^0 + b' + (b+a)^0 + a' + (a+b)^0$.

Proof. This follows from Lemma 3.2 [4].

In the next lemma we define two mappings which will be useful in the remaining part of this paper.

Lemma 4.2. Let S be a completely simple semiring and $e, f \in E^+(S)$. Then the mapping

$$\phi_{e,f}: x \to (f+e)^0 + x + f \qquad (x \in H_e^+)$$

is an isomorphism of H_e^+ onto H_f^+ with inverse

(4.1)
$$\phi_{e,f}^{-1}: z \to e + z + (f+e)^0 \qquad (z \in H_f^+).$$

Proof. Clearly, $\phi_{e,f}$ is a mapping from H_e^+ to H_f^+ . By Theorem 3.3 [4], we at once have the mapping in (4.1) is the inverse of $\phi_{e,f}$ and $\phi_{e,f}$ is an isomorphism from $(H_e^+,+)$ onto $(H_f^+,+)$.

To show $\phi_{e,f}$ is a homomorphism under multiplication, let $x,y\in H_e^+$. Now,

$$\begin{split} &(x\phi_{e,f})(y\phi_{e,f}) \\ &= \Big((f+e)^0 + x + f \Big) \Big((f+e)^0 + y + f \Big) \\ &= \Big((f+e)^0 + x \Big) \Big((f+e)^0 + y \Big) + \Big((f+e)^0 + x \Big) f + f \Big((f+e)^0 + y \Big) + f^2 \\ &= (f+e)^0 + (f+e)^0 e + e(f+e)^0 + xy + f + ef + ef + f + fe + fe + f \\ &= (f+e)^0 + fe + e + ef + e + xy + f + ef + f + fe + f \\ &= (f+e)^0 + xy + f \\ &= (xy)\phi_{e,f}. \end{split}$$

Consequently, the mapping $\phi_{e,f}$ is an isomorphism.

Notation 4.3. Let $S=\mathcal{M}(I,R,\Lambda;P)$ be a completely simple semiring. Then for all $i\in I$ and $\lambda\in\Lambda$, we define $\theta_{p_{\lambda,i}}:R\longrightarrow R$ by $x\theta_{p_{\lambda,i}}=-p_{\lambda,i}+x+p_{\lambda,i}$, for all $x\in R$. Then it is easy to verify that $\theta_{p_{\lambda,i}}$ is an automorphism of R. For any skew-ring R, we will denote by $\mathcal{A}(R)$, the automorphism group of R.

Lemma 4.4. Let S be a completely simple semiring. Then for any three elements $e, f, g \in E^+(S)$, $\phi_{e,g}\theta_{p_{(g+e)^0,(f+g)^0}}\phi_{g,f} = \phi_{e,f}$. Moreover, if $e \mathcal{L}^+ g$ or $g \mathcal{R}^+ f$, then $\phi_{e,g}\phi_{g,f} = \phi_{e,f}$.

Proof. Follows from Lemma 3.5 [4].

Notation 4.5. For any completely simple semiring S, let

$$\Phi(S) = \bigcup \left\{ \mathscr{A}(H_e^+) : e \in E^+(S) \right\}.$$

We define a binary operation \star on $\Phi(S)$ by

$$(4.2) \alpha \star \beta = \phi_{(e+f)^0, e} \alpha \phi_{e, f} \beta \phi_{f, (e+f)^0}$$

for all $\alpha \in \mathscr{A}(H_e^+)$, $\beta \in \mathscr{A}(H_f^+)$. Here we note that $\alpha \star \beta \in \mathscr{A}(H_{(e+f)^0}^+)$ and thus $\Phi(S)$ forms a semigroup.

We now prove that $\Phi(S)$ is a completely simple semigroup with respect to the operation defined in (4.2) by establishing an isomorphism with a Rees matrix semigroup of the following form.

Definition 4.6. For a completely simple semiring $S = \mathcal{M}(I, R, \Lambda; P)$, the completely simple semigroup $\mathcal{M}(I, \mathcal{A}(R), \Lambda; P^*)$ where $p_{\lambda,i}^* = \theta_{p_{\lambda,i}}$ is defined to be the automorphism semigroup of the semiring S and it is denoted by $\mathcal{A}(S)$.

Lemma 4.7. Let S be a completely simple semiring. Then the mapping

$$\psi: \alpha \to ((e+g)^0, \phi_{g,e} \, \alpha \, \phi_{e,g}, (g+e)^0) \ \Big(\alpha \in \mathscr{A}(H_e^+) \subseteq \Phi(S); \, e, g \in E^+(S)\Big),$$

is an isomorphism of $\Phi(S)$ onto $\mathscr{A}(S)$.

Proof. The proof follows from Theorem 3.10 [4].

Definition 4.8. For any completely simple semiring S, the (completely simple) semigroup $\Phi(S)$ is called the normal hull of S.

Corollary 4.9. Let $S = \mathcal{M}(I, R, \Lambda; P)$, $S' = \mathcal{M}(I', R', \Lambda'; P')$ be two isomorphic completely simple semirings. Then $\mathcal{A}(S) \cong \mathcal{A}(S')$.

Proof. Since the definition of $\Phi(S)$ is independent of the matrix representation of S, $\Phi(S)$ and $\Phi(S')$ are isomorphic. Hence, by Lemma 4.7, $\mathscr{A}(S) \cong \Phi(S) \cong \Phi(S') \cong \mathscr{A}(S')$.

Acknowledgement

The author is grateful to the anonymous referee for his valuable suggestions which definitely improved the presentation of this paper.

References

- [1] M.K. Sen, S.K. Maity and H.J. Weinert, *Completely simple semirings*, Bull. Cal. Math. Soc **97** (2005) 163–172.
- [2] M.K. Sen, S.K. Maity and K.P. Shum, On completely regular semirings, Bull. Cal. Math. Soc 98 (2006) 319–328.
- [3] M.P. Grillet, Semirings with a completely simple additive semigroup, J. Austral. Math. Soc.(Series A) 20 (1975) 257–267. doi:10.1017/S1446788700020607
- [4] M. Petrich and N. Reilly, The normal hull of a completely simple semigroup, J. Algebra 81 (1983) 232–257. doi:10.1016/0021-8693(83)90218-1
- [5] S.M. Goberstein, Balanced order relations on completely simple semigroups, Semigroup Forum **30** (1984) 121–124. doi:10.1007/BF02573443

Received 22 August 2013 Revised 30 October 2013