Discussiones Mathematicae General Algebra and Applications 34 (2014) 55–73 doi:10.7151/dmgaa.1217

CHARACTERIZATIONS OF ORDERED Γ-ABEL-GRASSMANN'S GROUPOIDS

MADAD KHAN, VENUS AMJID

Department of Mathematics
COMSATS Institute of Information Technology
Abbottabad, Pakistan

e-mail: madadmath@yahoo.com, venusmath@yahoo.com

Gul Zaman

Department of Mathematics
University of Malakand, Chakdara, Pakistan
e-mail: gzaman@uom.edu.pk

AND

NAVEED YAQOOB

Department of Mathematics
Quaid-i-Azam University, Islamabad, Pakistan
e-mail: nayaqoob@ymail.com

Abstract

In this paper, we introduced the concept of ordered Γ -AG-groupoids, Γ -ideals and some classes in ordered Γ -AG-groupoids. We have shown that every Γ -ideal in an ordered Γ -AG**-groupoid S is Γ -prime if and only if it is Γ -idempotent and the set of Γ -ideals of S is Γ -totally ordered under inclusion. We have proved that the set of Γ -ideals of S form a semilattice, also we have investigated some classes of ordered Γ -AG**-groupoid and it has shown that weakly regular, intra-regular, right regular, left regular, left quasi regular, completely regular and (2,2)-regular ordered Γ -AG**-groupoids coincide. Further we have proved that every intra-regular ordered Γ -AG**-groupoid is regular but the converse is not true in general. Furthermore we have shown that non-associative regular, weakly regular, intra-regular, right regular, left regular, left quasi regular, completely regular, (2,2)-regular and strongly regular Γ -AG*-groupoids do not exist.

Keywords: ordered Γ-AG-groupoids, Γ-ideals, regular Γ-AG**-groupoids. **2010 Mathematics Subject Classification:** 20M10, 20N99.

1. Introduction

The concept of a left almost semigroup (LA-semigroup) [10] was first introduced by Kazim and Naseeruddin in 1972. In [7], the same structure is called a left invertive groupoid. Protić and Stevanović called it an Abel-Grassmann's groupoid (AG-groupoid) [24].

An AG-groupoid is a groupoid S whose elements satisfy the left invertive law (ab)c = (cb)a, for all $a, b, c \in S$. In an AG-groupoid, the medial law [10] (ab)(cd) = (ac)(bd) holds for all $a, b, c, d \in S$. An AG-groupoid may or may not contains a left identity. In an AG-groupoid S with left identity, the paramedial law (ab)(cd) = (dc)(ba) holds for all $a, b, c, d \in S$. If an AG-groupoid contains a left identity, then by using medial law, we get a(bc) = b(ac), for all $a, b, c \in S$.

The concept of ordered Γ -semigroups has been studied by many mathematicians, for instance, Chinram *et al.* [1], Hila *et al.* [2, 3, 4, 5, 6], Iampan [8, 9] and Kwon *et al.* [15, 16, 17, 18]. Also see [25].

In this paper, we have introduced the notion of ordered Γ -AG**-groupoids. Here, we have explored all basic ordered Γ -ideals, which includes ordered Γ -ideals (left, right, two-sided) and some classes of ordered Γ -AG-groupoids.

Definition 1. Let S and Γ be two non-empty sets, then S is said to be a Γ -AG-groupoid if there exists a mapping $S \times \Gamma \times S \to S$, written (x, γ, y) as $x\gamma y$, such that S satisfies the left invertive law, that is

(1)
$$(x\gamma y) \delta z = (z\gamma y) \delta x$$
, for all $x, y, z \in S$ and $\gamma, \delta \in \Gamma$.

Definition 2. A Γ -AG-groupoid S is called a Γ -medial if it satisfies the medial law, that is

(2)
$$(x\alpha y)\beta(s\gamma t) = (x\alpha s)\beta(y\gamma t)$$
, for all $x, y, s, t \in S$ and $\alpha, \beta, \gamma \in \Gamma$.

Definition 3. A Γ -AG-groupoid S is called a Γ -AG**-groupoid if it satisfy the following law:

(3)
$$x\alpha(y\beta z) = y\alpha(x\beta z)$$
, for all $x, y, z \in S$ and $\alpha, \beta \in \Gamma$.

Definition 4. A Γ -AG**-groupoid S is called a Γ -paramedial if it satisfies the paramedial law, that is

(4)
$$(x\alpha y)\beta(s\gamma t) = (t\alpha s)\beta(y\gamma x)$$
, for all $x, y, s, t \in S$ and $\alpha, \beta, \gamma \in \Gamma$.

If an AG-groupoid (without left identity) satisfies medial law, then it is called an AG**-groupoid [20].

An AG-groupoid has been widely explored in [12, 13, 14, 21] and [24]. An AG-groupoid is a non-associative algebraic structure mid way between a groupoid and a commutative semigroup with wide applications in theory of flocks [23].

Definition 5. An AG-groupoid S is called a Γ -AG*-groupoid [20], if the following hold:

(5)
$$(a\beta b)\gamma c = b\beta(a\gamma c)$$
, for all $a, b, c \in S$ and $\beta, \gamma \in \Gamma$.

Definition 6. In an AG*-groupoid S, the following law holds (see [24])

(6)
$$(x_1 \alpha x_2)\beta(x_3 \gamma x_4) = (x_{p(1)}\alpha x_{p(2)})\beta(x_{p(3)}\gamma x_{p(4)})$$
 for all $\alpha, \beta, \gamma \in \Gamma$

where $\{p(1), p(2), p(3), p(4)\}$ means any permutation on the set $\{1, 2, 3, 4\}$. It is an easy consequence that if $S = S\Gamma S$, then S becomes a commutative Γ -semigroup.

An AG-groupoid may or may not contains a left identity. The left identity of an AG-groupoid allow us to introduce the inverses of elements in an AG-groupoid. If an AG-groupoid contains a left identity, then it is unique [21].

Definition 7. An ordered Γ -AG-groupoid (po- Γ -AG-groupoid) is a structure (S, Γ, \leq) in which the following conditions hold:

- (i) (S, Γ) is a Γ -AG-groupoid.
- (ii) (S, \leq) is a poset.
- (iii) For all a, b and $x \in S$, $a \le b$ implies $a\beta x \le b\beta x$ and $x\beta a \le x\beta b$ for all $\beta \in \Gamma$.

Let S be an ordered Γ -AG-groupoid. For $H \subseteq S$, we define

$$(H] = \{t \in S \mid t \leq h \text{ for some } h \in H\}.$$

For $H = \{a\}$, usually written as (a].

Definition 8. A non-empty subset A of an ordered Γ-AG-groupoid S is called a Γ-left (resp. Γ-right) ideal of S if

- (i) $S\Gamma A \subseteq A$ (resp. $A\Gamma S \subseteq A$), and
- (ii) If $a \in A$ and b is in S such that $b \leq a$, then $b \in A$.

Definition 9. A non-empty subset A of an ordered Γ -AG-groupoid S is called a $(\Gamma$ -two-sided) ideal of S if A is both Γ -left and Γ -right ideal of S.

Definition 10. A Γ-ideal P of an ordered Γ-AG-groupoid S is called Γ-prime if for any two Γ-ideals A and B of S such that $A\Gamma B \subseteq P$, then $A \subseteq P$ or $B \subseteq P$.

Definition 11. A Γ-ideal I of an ordered Γ-AG-groupoid S is called Γ-completely prime if for any two elements a and b of S and $\beta \in \Gamma$ such that $a\beta b \in I$, then $a \in I$ or $b \in I$.

Definition 12. A Γ-ideal P of an ordered Γ-AG-groupoid S is said to be Γ-semiprime if $I^2 \subseteq P$ implies that $I \subseteq P$, for any Γ-ideal I of S.

Definition 13. A Γ-AG-groupoid S is said to be Γ-fully semiprime if every Γ-ideal of S is Γ-semiprime. An ordered Γ-AG-groupoid S is called Γ-fully prime if every Γ-ideal of S is Γ-prime.

Definition 14. The set of Γ-ideals of an ordered Γ-AG-groupoid S is called Γ-totally ordered under inclusion if for all Γ-ideals A, B of S, either $A \subseteq B$ or $B \subseteq A$ and is denoted by Γ-ideal(S).

2. Ideals in Ordered Γ-AG-Groupoid

In this section we developed some results on ideals in ordered AG-groupoid.

Lemma 1. Let S be an ordered Γ -AG-groupoid, then the following are true:

- (i) $A \subseteq (A]$, for all $A \subseteq S$,
- (ii) If $A \subseteq B \subseteq S$, then $(A] \subseteq (B]$,
- (iii) $(A]\Gamma(B] \subseteq (A\Gamma B]$ for all subsets A, B of S,
- (iv) (A] = ((A)] for all $A \subseteq S$,
- (v) For every Γ -left (resp. Γ -right) ideal or Γ -bi-ideal T of S, (T] = T,
- (vi) $((A|\Gamma(B)] = (A\Gamma B)$ for all subsets A, B of S.

Proof. It is same as in [11].

Lemma 2. $(S\Gamma a]$, $(a\Gamma S]$ and $(S\Gamma a\Gamma S]$ are a Γ -left, a Γ -right and a Γ -ideal of an ordered Γ - AG^{**} -groupoid S respectively, for all a in S such that $(S] = (S\Gamma S]$.

Proof. Let a be any element of S. Then it has to be shown that $(S\Gamma a]$ is the Γ -left ideal of S. For this consider an element x in $S\Gamma(S\Gamma a]$, then $x=y\gamma z$ for some y in S and z in $(S\Gamma a]$ where $z \leq s\beta a$ for some $s\beta a$ in $S\Gamma a$ and $\gamma, \beta \in \Gamma$. Since $S = S\Gamma S$ so let $y = y_1\delta y_2$ for some $\delta \in \Gamma$ and $y_1, y_2 \in S$, then by using (4) and (1), we have

$$x \leq y\gamma(s\beta a) = (y_1\delta y_2)\gamma(s\beta a) = (a\delta s)\gamma(y_2\beta y_1) = ((y_2\beta y_1)\delta s)\gamma a \subseteq S\Gamma a.$$

Which implies that x is in $(S\Gamma a]$. For the second condition of $(S\Gamma a]$ to be Γ -left ideal let x be any element in $(S\Gamma a]$, then $x \leq s\beta a$ for some $s\beta a$ in $S\Gamma a$. Let y be

any other element of S such that $y \leq x \leq s\beta a$, which implies that y is in $(S\Gamma a]$. Hence $(S\Gamma a]$ is the Γ -left ideal of S. It is to be noted that $(a\Gamma S]$ and $(S\Gamma a\Gamma S]$ can be shown Γ -right and Γ -two-sided ideal respectively with an analogy to the proof of $(S\Gamma a]$ to be Γ -left ideal of S.

Proposition 1. If S is an ordered Γ -AG-groupoid such that $S = S\Gamma S$, then every Γ -right ideal of S is a Γ -ideal.

Proof. Let I be a Γ -right ideal of an ordered Γ -AG-groupoid S. Let $x \in S\Gamma(I]$ which implies that $x = y\gamma z$ for some $y \in S$ and $z \in (I]$ where $z \leq i$ for some $i \in I$. Since $S = S\Gamma S$ so let $y = y_1\delta y_2$ for some $\delta \in \Gamma$ and $y_1, y_2 \in S$, then by (1), we get

$$x \le y\gamma i = (y_1\delta y_2)\gamma i = (i\delta y_2)\gamma y_1 \subseteq (I\Gamma S)\Gamma S \subseteq I.$$

Which implies that $x \in (I]$ and the second condition of (I] to be Γ -left ideal holds obviously. Hence I is a Γ -ideal of S.

Remark 1.

- (1) If $(S] = (S\Gamma S]$ then every Γ -right ideal is also a Γ -left ideal and $S\Gamma I \subseteq I\Gamma S$.
- (2) If I is a Γ -right ideal of S, then $S\Gamma I$ is a Γ -left and $I\Gamma S$ is a Γ -right ideal of S.

Lemma 3. If I is a Γ -left ideal of an ordered Γ -AG**-groupoid S, then $(a\Gamma I]$ is a Γ -left ideal of S.

Proof. Let I be a Γ -left ideal of an ordered Γ -AG**-groupoid S. Let $x \in S\Gamma(a\Gamma I]$ which implies that $x = y\beta z$ for some $y \in S$ and $z \in (a\Gamma I]$ where $z \leq a\gamma i$ for some $a\gamma i \in a\Gamma I$ and $\beta, \gamma \in \Gamma$. Then by using (3), we get

$$x \le y\beta(a\gamma i) = a\beta(y\gamma i) \subseteq a\Gamma(S\Gamma I) \subseteq a\Gamma I.$$

Which implies that $x \in (a\Gamma I]$ and for the second condition of $(a\Gamma I]$ to be Γ -left ideal let x be any element in $(a\Gamma I]$ then $x \leq a\gamma i$ for some $a\gamma i$ in $a\Gamma I$. Let y be any other element of S such that $y \leq x \leq a\gamma i$, which implies that y is in $(a\Gamma I]$. Hence $(a\Gamma I]$ is a Γ -left ideal of S.

Lemma 4. Intersection of two Γ -ideals of an ordered Γ -AG-groupoid S is a Γ -ideal.

Proof. Assume that P and Q are any two Γ -ideals of an ordered Γ -AG-groupoid S. Let $x \in S\Gamma(P \cap Q]$, then $x = y\beta z$ for some $\beta \in \Gamma$, $y \in S$ and $z \in (P \cap Q]$ where $z \in (P]$ which implies that $z \leq a$ for some $a \in P$ and also $z \in (Q]$ which

implies that $z \leq b$ for some $b \in Q$. Then by using (2), we have

$$x \leq y\beta a \subseteq S\Gamma P \subseteq P$$
 and $x \leq y\beta b \subseteq S\Gamma Q \subseteq Q$.

This shows that $x \in (P] \cap (Q] = (P \cap Q]$ and the second condition of $(P \cap Q]$ to be Γ -left ideal is obvious. Similarly $(P \cap Q]$ is a Γ -right ideal of S. Hence $(P \cap Q]$ is a Γ -ideal of S.

Lemma 5. If I is a Γ -left ideal of an ordered Γ -AG**-groupoid S, then $(I\Gamma I]$ is a Γ -ideal of S.

Proof. Let I be a Γ -left ideal of an ordered Γ -AG**-groupoid S. Let $x \in (I\Gamma I]\Gamma S$, then $x = k\alpha s$ for some k in $(I\Gamma I]$ and s in S, where $k \leq i\beta j$ for some $i\beta j \in I\Gamma I$ and $\alpha, \beta \in \Gamma$. Now by using (1), we get

$$x \le (i\beta j)\alpha s = (s\beta j)\alpha i \subseteq I\Gamma I.$$

Now let $x \in S\Gamma(I\Gamma I]$, then $x = s\alpha k$ for some s in S and k in $(I\Gamma I]$, where $k \le i\beta j$ for some $i\beta$ $j \in I\Gamma I$ and $\alpha, \beta \in \Gamma$. Now by using (3), we get

$$x \le s\alpha(i\beta j) = i\alpha(s\beta j) \subseteq I\Gamma I.$$

This implies that $x \in (I\Gamma I]$ and for the second condition of $(I\Gamma I]$ to be a Γ -ideal, let x be any element in $(I\Gamma I]$ then $x \leq i\beta j$ for some $i\beta j$ in $I\Gamma I$. Let y be any other element of S such that $y \leq x \leq i\beta j$, which implies that y is in $(I\Gamma I]$. Hence $(I\Gamma I]$ a Γ -ideal of S.

Remark 2. If I is a Γ -left ideal of S then $(I\Gamma I]$ is a Γ -ideal of S.

Proposition 2. A proper Γ -ideal (M] of an ordered Γ - AG^{**} -groupoid S is minimal if and only if $(M] = ((a\Gamma a)\Gamma M]$ for all $a \in S$.

Proof. Let (M] be the minimal Γ -ideal of S, as $(M\Gamma M]$ is a Γ -ideal so $(M] = (M\Gamma M]$. Now let $x \in ((a\Gamma a)\Gamma M]\Gamma S$ then $x = y\alpha z$ for some y in $((a\Gamma a)\Gamma M]$ and z in S, where $y \leq (a\gamma a)\beta m$ for some $(a\gamma a)\beta m$ in $(a\Gamma a)\Gamma M$ and $\alpha, \beta, \gamma \in \Gamma$. Now by using (1) and (4), we have

$$x \leq ((a\gamma a)\beta m)\alpha z = (z\beta m)\alpha(a\gamma a) = (a\beta a)\alpha(m\gamma z)$$

$$\subseteq (a\Gamma a)\Gamma(M\Gamma S) \subseteq (a\Gamma a)\Gamma M.$$

Which implies that $x \in ((a\Gamma a)\Gamma M]$.

Now let $x \in S((a\Gamma a)\Gamma M]$ then $x = s\alpha t$ for some s in S and t in $((a\Gamma a)\Gamma M]$, where $t \leq (a\gamma a)\beta m$ for some $(a\gamma a)\beta m$ in $(a\Gamma a)\Gamma M$ and $\alpha, \beta, \gamma \in \Gamma$, then by

using (3), we have

$$x \le s\alpha((a\gamma a)\beta m) = (a\gamma a)\alpha(s\beta m) \subseteq (a\Gamma a)\Gamma(S\Gamma M) \subseteq (a\Gamma a)\Gamma M.$$

Which implies that $x \in ((a\Gamma a)\Gamma M]$, and for the second condition of $((a\Gamma a)\Gamma M]$ to be a Γ -ideal let x be any element in $((a\Gamma a)\Gamma M]$ then $x \leq (a\gamma a)\beta m$ for some $(a\gamma a)\beta m$ in $(a\Gamma a)\Gamma M$. Let y be any other element of S such that $y \leq x \leq (a\gamma a)\beta m$, which implies that y is in $((a\Gamma a)\Gamma M]$. Hence $((a\Gamma a)\Gamma M]$ a Γ -ideal of S contain in (M] and as (M] is minimal so $(M] = ((a\Gamma a)\Gamma M]$.

Conversely, assume that $(M] = ((a\Gamma a)\Gamma M]$ for all $a \in S$. Let (A] be the minimal Γ -ideal properly contain in (M] containing a, then $(M] = ((a\Gamma a)\Gamma M] \subseteq (A]$, which is a contradiction. Hence (M] is a minimal Γ -ideal.

A Γ -ideal I of an ordered Γ -AG-groupoid S is called minimal if and only if it does not contain any Γ -ideal of S other than itself.

Theorem 6. If I is a minimal Γ -left ideal of an ordered Γ -AG**-groupoid S, then $((a\Gamma a)\Gamma(I\Gamma I)]$ is a minimal Γ -ideal of S.

Proof. Assume that I is a minimal Γ -left ideal of an ordered Γ -AG**-groupoid S. Now let $x \in ((a\Gamma a)\Gamma(I\Gamma I)]\Gamma S$ then $x = y\alpha z$ for some y in $((a\Gamma a)\Gamma(I\Gamma I)]$ and z in S where $y \leq (a\delta a)\beta(i\gamma j)$ for some i,j in I and $\alpha,\beta,\gamma,\delta\in\Gamma$, then by using (1) and (4), we have

$$x \leq ((a\delta a)\beta(i\gamma j))\alpha z = (z\beta(i\gamma j))\alpha(a\delta a) = (a\beta a)\alpha((i\gamma j)\delta z)$$
$$= (a\delta a)\alpha((z\gamma j)\delta i) \subseteq (a\Gamma a)\Gamma((S\Gamma I)\Gamma I) \subseteq (a\Gamma a)\Gamma(I\Gamma I).$$

Which implies that $x \in ((a\Gamma a)\Gamma(I\Gamma I)]$ and for the second condition of $((a\Gamma a)\Gamma(I\Gamma I)]$ to be a Γ -ideal let x be any element in $((a\Gamma a)\Gamma(I\Gamma I)]$ then $x \leq (a\delta a)\beta(i\gamma j)$ for some $(a\delta a)\beta(i\gamma j)$ in $((a\Gamma a)\Gamma(I\Gamma I)]$. Which shows that $((a\Gamma a)\Gamma(I\Gamma I)]$ is a Γ -right ideal of S. Similarly $((a\Gamma a)\Gamma(I\Gamma I)]$ is a Γ -left ideal so is Γ -ideal. Let H be a non-empty Γ -ideal of S properly contained in $((a\Gamma a)\Gamma(I\Gamma I)]$. Define $H' = \{r \in I : a\psi r \in H\}$. Then $a\psi(s\xi y) = s\psi(a\xi y) \in S\Gamma H \subseteq H$ imply that H' is a Γ -left ideal of S properly contained in I. But this is a contradiction to the minimality of I. Hence $((a\Gamma a)\Gamma(I\Gamma I)]$ is a minimal Γ -ideal of S.

Theorem 7. An ordered Γ -AG**-groupoid S is Γ -fully prime if and only if every Γ -ideal is Γ -ideapotent and Γ -ideal(S) is Γ -totally ordered under inclusion.

Proof. Assume that an ordered Γ -AG**-groupoid S is Γ -fully prime. Let I be the Γ -ideal of S. Then by Lemma 5, $(I\Gamma I]$ becomes a Γ -ideal of S and obviously $I\Gamma I \subseteq I$ and by Lemma 1, $(I\Gamma I] \subseteq (I]$. Now

$$(I\Gamma I] \subseteq (I\Gamma I]$$
 yields $(I] \subseteq (I\Gamma I]$ and hence

 $(I]=(I\Gamma I]$. Let $P,\ Q$ be Γ -ideals of S and $P\Gamma Q\subseteq P,\ P\Gamma Q\subseteq Q$ imply that $P\Gamma Q\subseteq P\cap Q$. Since $P\cap Q$ is Γ -prime, so $P\subseteq P\cap Q$ or $Q\subseteq P\cap Q$ which further imply that $P\subseteq Q$ or $Q\subseteq P$. Hence Γ -ideal(S) is Γ -totally ordered under inclusion.

Converse is same as in [19].

If S is an ordered Γ -AG**-groupoid then the principal Γ -left ideal generated by a is defined by $\langle a \rangle = S\Gamma a = \{s\gamma a : s \in S, \, \gamma \in \Gamma\}$, where a is any element of S. Let P be a Γ -left ideal of an ordered Γ -AG-groupoid S, P is called Γ -quasi-prime if for Γ -left ideals A, B of S such that $A\Gamma B \subseteq P$, we have $A \subseteq P$ or $B \subseteq P$. P is called Γ -quasi-semiprime if for any Γ -left ideal I of S such that $I\Gamma I \subseteq P$, we have $I \subseteq P$.

Theorem 8. If S is an ordered Γ -AG**-groupoid, then a Γ -left ideal P of S is Γ -quasi-prime if and only if $a\Gamma(S\Gamma b) \subseteq P$ implies that either $a \in P$ or $b \in P$, where $a, b \in S$.

Proof. The proof is same as in [19].

Corollary 1. If S is an ordered Γ -AG**-groupoid, then a Γ -left ideal P of S is Γ -quasi-semiprime if and only if $a\Gamma(S\Gamma a) \subseteq P$ implies $a \in P$, for all $a \in S$.

Proposition 3. A Γ -ideal I of an ordered Γ -AG-groupoid S is Γ -prime if and only if it is Γ -semiprime and Γ -strongly irreducible.

Proof. The proof is obvious.

Theorem 9. Let S be an ordered Γ -AG-groupoid and $\{P_i : i \in N\}$ be a family of Γ -prime ideals Γ -totally ordered under inclusion in S. Then $\cap P_i$ is a Γ -prime ideal.

Proof. The proof is same as in [19].

Theorem 10. For each Γ -ideal I there exists a minimal Γ -prime ideal of I in an ordered Γ -AG-groupoid S.

Proof. The proof is same as in [19].

Definition 15. An ordered Γ -AG-groupoid (S, Γ, \leq) is called regular if $a \in ((a\Gamma S)\Gamma a]$ for every $a \in S$, or

- (1) For every $a \in S$ there exist $x \in S$ and $\beta, \gamma \in \Gamma$ such that $a \leq (a\beta x)\gamma a$.
- (2) $A \subseteq ((A\Gamma S)\Gamma A]$ for every $A \subseteq S$.

Definition 16. An ordered Γ -AG-groupoid (S, Γ, \leq) is called weakly regular if $a \in ((a\Gamma S)\Gamma(a\Gamma S)]$ for every $a \in S$, or

- (1) For every $a \in S$ there exist $x, y \in S$ and $\beta, \gamma, \delta \in \Gamma$ such that $a \leq (a\beta x)\delta(a\gamma y)$.
- (2) $A \subseteq ((A\Gamma S)\Gamma(A\Gamma S)]$ for every $A \subseteq S$.

Definition 17. An ordered Γ -AG-groupoid (S, Γ, \leq) is called intra-regular if $a \in ((S\Gamma(a\delta a))\Gamma S]$ for every $a \in S$ and $\delta \in \Gamma$, or

- (1) For every $a \in S$ there exist $x, y \in S$ and $\beta, \gamma, \delta \in \Gamma$ such that $a \leq (x\beta(a\delta a))\gamma y$.
- (2) $A \subseteq ((S\Gamma(A\Gamma A))\Gamma S]$ for every $A \subseteq S$.

Definition 18. An ordered Γ -AG-groupoid (S, Γ, \leq) is called right regular if $a \in ((a\delta a)\Gamma S]$ for every $a \in S$ and $\delta \in \Gamma$, or

- (1) For every $a \in S$ there exist $x \in S$ and $\beta, \delta \in \Gamma$ such that $a \leq (a\delta a)\beta x$.
- (2) $A \subseteq ((A\Gamma A)\Gamma S]$ for every $A \subseteq S$.

Definition 19. An ordered Γ -AG-groupoid (S, Γ, \leq) is called left regular if $a \in (S\Gamma(a\delta a)]$ for every $a \in S$ and $\delta \in \Gamma$, or

- (1) For every $a \in S$ there exist $x \in S$ and $\beta, \delta \in \Gamma$ such that $a \leq x\beta(a\delta a)$.
- (2) $A \subseteq (S\Gamma(A\Gamma A)]$ for every $A \subseteq S$.

Definition 20. An ordered Γ -AG-groupoid (S, Γ, \leq) is called left quasi regular if $a \in ((S\Gamma a)\Gamma(S\Gamma a)]$ for every $a \in S$, or

- (1) For every $a \in S$ there exist $x, y \in S$ and $\beta, \gamma, \delta \in \Gamma$ such that $a \leq (x\beta a)\delta(y\gamma a)$.
- (2) $A \subseteq ((S\Gamma A)\Gamma(S\Gamma A)]$ for every $A \subseteq S$.

Definition 21. An ordered Γ -AG-groupoid (S, Γ, \leq) is called completely regular if S is regular, left regular and right regular.

Definition 22. An ordered Γ -AG-groupoid (S, Γ, \leq) is called (2, 2)-regular if $a \in (((a\delta a)\Gamma S)\Gamma(a\delta a)]$ for every $a \in S$ and $\delta \in \Gamma$, or

- (1) For every $a \in S$ there exist $x \in S$ and $\beta, \gamma, \delta \in \Gamma$ such that $a \leq ((a\delta a)\beta x)\gamma(a\delta a)$.
- (2) $A \subseteq (((A\Gamma A)\Gamma S)\Gamma(A\Gamma A)]$ for every $A \subseteq S$.

Definition 23. An ordered Γ-AG-groupoid (S, Γ, \leq) is called strongly regular if $a \in ((a\Gamma S)\Gamma a]$ and $a\beta x = x\beta a$ for every $a \in S$ and $\beta \in \Gamma$, or

- (1) For every $a \in S$ there exist $x \in S$ and $\beta, \gamma \in \Gamma$ such that $a \leq (a\beta x)\gamma a$ and $a\beta x = x\beta a$.
- (2) $A \subseteq ((A\Gamma S)\Gamma A]$ for every $A \subseteq S$.

Example 1. Let us consider an ordered AG-groupoid $S = \{1, 2, 3\}$ in the following multiplication table.

Let us define $\Gamma = \{\alpha, \beta, \gamma\}$ as follows.

α	1	2	3				2			1		
1				_	1	2	2	2	1			
2	1	1	1		2	2	2	2	2	2	2	2
3	1	1	1		3	2	2	2	3	2	2	3

Here S is a Γ -AG-groupoid because $(a\beta b)\gamma c = (c\beta b)\gamma a$ for all $a, b, c \in S$ and S is non-associative, because $(1\alpha 2)\beta 3 \neq 1\alpha(2\beta 3)$. We define order \leq as:

$$\leq := \{(1,1), (2,2), (3,3), (2,1), (2,3), (3,1)\}.$$

Clearly (S, \leq) is a poset and for all a, b and $x \in S$, $a \leq b$ implies $a\beta x \leq b\beta x$ and $x\beta a \leq x\beta b$ for some $\beta \in \Gamma$ so S is a ordered Γ -AG-groupoid.

Note that S is a Γ -ideal itself so by Lemma 1, $(S\Gamma S) \subseteq S$.

Lemma 11. If S is regular, weakly regular, intra-regular, right regular, left regular, left quasi regular, completely regular, (2,2)-regular and strongly regular ordered Γ -AG-groupoid, then $S = (S\Gamma S]$.

Proof. Assume that S is a regular ordered Γ -AG-groupoid, then $(S\Gamma S] \subseteq S$ is obvious. Let for any $a \in S$, $a \in ((a\Gamma S)\Gamma a]$, then there exists $x \in S$ and $\beta, \gamma \in \Gamma$ such that $a \leq (a\beta x)\gamma a$. Now $a \leq (a\beta x)\gamma a \in S\Gamma S$, thus $a \in (S\Gamma S]$. Similarly if S is weakly regular, intra-regular, right regular, left regular, left quasi regular, completely regular, (2, 2)-regular or strongly regular, then we can show that $S = (S\Gamma S]$.

The converse is not true in general, because in Example 2, $S = (S\Gamma S]$ holds but S is not regular, weakly regular, intra-regular, right regular, left regular, left quasi regular, completely regular, (2,2)-regular and strongly regular, because $1 \in S$ is not regular, weakly regular, intra-regular, right regular, left regular, left quasi regular, completely regular, (2,2)-regular and strongly regular.

Example 2. Let us consider an ordered Γ -AG-groupoid $S = \{1, 2, 3, 4\}$ in the following Cayley's table.

	1	2	3	4
1	4 4 1	4	2	4
2	4	4	1	4
3	1	4 2	3	4
4	4	4	4	4

Let us define $\Gamma = \{\alpha, \beta, \gamma\}$ as follows:

α					β	1	2	3	4		γ				
1	1	1	1	1	1	2	2	2	2	•'		2			
2	1	1	1	1			2					2			
3	1	1	1	1	3	2	2	2	2		3	2	2	2	2
4	1	1	1	1	4	2	2	2	3		4	2	2	2	4

Here S is a Γ -AG-groupoid because $(a\beta b)\gamma c = (c\beta b)\gamma a$ for all $a, b, c \in S$ and S is non-associative, because $(1\alpha 2)\beta 3 \neq 1\alpha(2\beta 3)$. We define the order \leq as:

$$\leq := \{(1,1), (2,2), (3,3), (4,4), (1,4), (2,4), (3,4)\}.$$

Clearly (S, \leq) is a poset and for all a, b and $x \in S$, $a \leq b$ implies $a\beta x \leq b\beta x$ and $x\beta a \leq x\beta b$ for some $\beta \in \Gamma$ so S is a ordered Γ -AG-groupoid. $A = \{1, 2, 4\}$ is an ideal of S as $A\Gamma S \subseteq A$ and $S\Gamma A \subseteq A$, also for every $1 \in A$ there exists $4 \in S$ such that $4 \leq 1 \in A$ implies that $4 \in A$, similarly for every $4 \in A$ there exists $2 \in S$ such that $2 \leq 4 \in A$ implies that $4 \in A$.

Theorem 12. If S is an ordered Γ -AG**-groupoid, then S is an intra-regular if and only if for all $a \in (S]$, $a \leq (x\beta a)\delta(a\gamma z)$ holds for some $x, z \in S$ and $\beta, \gamma, \delta \in \Gamma$.

Proof. Assume that S is an intra-regular ordered Γ -AG**-groupoid. Let $a \in ((S\Gamma(a\gamma a))\Gamma S]$ for any $a \in S$ and $\gamma \in \Gamma$, then there exist $x, y \in S$ and $\beta, \gamma, \delta \in \Gamma$ such that $a \leq (x\beta(a\gamma a))\delta y$. Now by using Lemma 11, $y \leq u\gamma v$ for some $u, v \in S$. Thus by using (2), (1) and (4), we have

$$a \leq (x\beta(a\gamma a))\delta y = (a\beta(x\gamma a))\delta y = (y\beta(x\gamma a))\delta a = (y\beta(x\gamma a))\delta((x\beta(a\gamma a))\delta y)$$

$$\leq ((u\gamma v)\beta(x\gamma a))\delta((x\beta(a\gamma a))\delta y) = ((a\gamma x)\beta(v\gamma u))\delta((x\beta(a\gamma a))\delta y)$$

$$\leq ((a\gamma x)\beta t)\delta((x\beta(a\gamma a))\delta y) = (((x\beta(a\gamma a))\delta y)\beta t)\delta(a\gamma x)$$

$$= ((t\delta y)\beta(x\beta(a\gamma a)))\delta(a\gamma x) = (((a\gamma a)\delta x)\beta(y\beta t))\delta(a\gamma x)$$

$$\leq (((a\gamma a)\delta x)\beta s)\delta(a\gamma x) = ((s\delta x)\beta(a\gamma a))\delta(a\gamma x) = ((a\delta a)\beta(x\gamma s))\delta(a\gamma x)$$

$$\leq ((a\delta a)\beta w)\delta(a\gamma x) = ((w\delta a)\beta a)\delta(a\gamma x) \leq (z\beta a)\delta(a\gamma x)$$

$$= (x\beta a)\delta(a\gamma z),$$

where $v\gamma u \leq t$, $y\beta t \leq s$, $x\gamma s \leq w$ and $w\delta a \leq z$ for some $t, s, w, z \in S$. Conversely, let for all $a \in (S]$, $a \leq (x\beta a)\delta(a\gamma z)$ holds for some $x, z \in S$.

Conversely, let for all $a \in (S]$, $a \le (x\beta a)\delta(a\gamma z)$ holds for some $x, z \in S$ and $\beta, \gamma, \delta \in \Gamma$. Now by using (3), (1), (2) and (4), we have

$$a \leq (x\beta a)\delta(a\gamma z) = a\delta((x\beta a)\gamma z) \leq ((x\beta a)\delta(a\gamma z))\delta((x\beta a)\gamma z)$$

$$= (a\delta((x\beta a)\gamma z))\delta((x\beta a)\gamma z) = (((x\beta a)\gamma z)\delta((x\beta a)\gamma z))\delta a$$

$$= (((x\beta a)\gamma(x\beta a))\delta(z\gamma z))\delta a = (((a\beta x)\gamma(a\beta x))\delta(z\gamma z))\delta a$$

$$= ((a\gamma((a\beta x)\beta x))\delta(z\gamma z))\delta a = (((z\gamma z)\delta((a\beta x)\beta x))\gamma a)\delta a$$

$$= (((a\beta x)\delta((z\gamma z)\beta x))\gamma a)\delta a = (((((z\gamma z)\beta x)\beta x)\beta x)\delta a)\gamma a)\delta a$$

$$= ((((x\beta x)\beta(z\gamma z))\delta a)\gamma a)\delta a = ((a\delta a)\gamma((x\beta x)\beta(z\gamma z)))\delta a$$

$$= (a\gamma((x\beta x)\beta(z\gamma z)))\delta(a\delta a)$$

$$\leq (a\gamma t)\delta(a\delta a), \text{ where } (x\beta x)\beta(z\gamma z) \leq t \text{ for some } t \in S.$$

Now by using (4) and (1), we have

$$a \leq (a\gamma t)\delta(a\delta a) \leq (((a\gamma t)\delta(a\delta a))\gamma t)\delta(a\delta a) = (((a\gamma a)\delta(t\delta a))\gamma t)\delta(a\delta a)$$
$$= (((a\gamma a)\delta(t\delta a))\gamma t)\delta(a\delta a) = ((t\delta(t\delta a))\gamma(a\gamma a))\delta(a\delta a)$$
$$\leq (u\gamma(a\gamma a))\delta v, \text{ where } t\delta(t\delta a) \leq u \text{ and } a\delta a \leq v \text{ for some } u, v \in S$$
$$\in (S\Gamma(a\gamma a))\Gamma S.$$

Which implies that $a \in ((S\Gamma(a\gamma a))\Gamma S]$, thus S is intra-regular.

Theorem 13. If S is an ordered Γ -AG**-groupoid, then the following are equivalent.

- (i) S is weakly regular.
- (ii) S is intra-regular.

Proof. (i) \Longrightarrow (ii) Assume that S is a weakly regular ordered Γ -AG**-groupoid. Let $a \in ((a\Gamma S)\Gamma(a\Gamma S)]$ for any $a \in S$, then there exist $x, y \in S$ and $\beta, \gamma, \delta \in \Gamma$

such that $a \leq (a\beta x)\delta(a\gamma y)$. Now by Lemma 11, let $x \leq s\psi t$ for some $s,t \in S$, $\psi \in \Gamma$ and $t\gamma s \leq u \in S$, then by using (4) and (1), we have

$$a \leq (a\beta x)\delta(a\gamma y) = (y\beta a)\delta(x\gamma a) = ((x\gamma a)\beta a)\delta y \leq (((s\psi t)\gamma a)\beta a)\delta y$$
$$= ((a\gamma a)\beta(s\psi t))\delta y = ((t\gamma s)\beta(a\psi a))\delta y = ((t\gamma s)\beta(a\psi a))\delta y \leq (u\beta(a\psi a))\delta y$$
$$\in (S\Gamma(a\psi a))\Gamma S.$$

Which implies that $a \in ((S\Gamma(a\psi a))\Gamma S]$, thus S is intra-regular.

$$(ii) \Longrightarrow (i)$$
 is the same as $(i) \Longrightarrow (ii)$.

Theorem 14. If S is an ordered Γ -AG**-groupoid, then the following are equivalent.

- (i) S is weakly regular.
- (ii) S is right regular.

Proof. (i) \Longrightarrow (ii) Assume that S is a weakly regular ordered Γ -AG**-groupoid. Let $a \in ((a\Gamma S)\Gamma(a\Gamma S)]$ for any $a \in S$, then there exist $x, y \in S$ and $\beta, \gamma, \delta \in \Gamma$ such that $a \leq (a\beta x)\delta(a\gamma y)$ and by using Lemma 11, let $x\gamma y \leq t$ for some $t \in S$. Now by using (2), we have

$$a \le (a\beta x)\delta(a\gamma y) = (a\beta a)\delta(x\gamma y) \le (a\beta a)\delta t \in (a\beta a)\Gamma S.$$

Which implies that $a \in ((a\beta a)\Gamma S]$, thus S is right regular.

$$(ii) \Longrightarrow (i)$$
 It follows from Lemma 11 and (2) .

Theorem 15. If S is an ordered Γ -AG**-groupoid, then the following are equivalent.

- (i) S is weakly regular.
- (ii) S is left regular.

Proof. (i) \Longrightarrow (ii) Assume that S is a weakly regular ordered Γ -AG**-groupoid. Let $a \in ((a\Gamma S)\Gamma(a\Gamma S)]$ for any $a \in S$, then there exist $x, y \in S$ and $\beta, \gamma, \delta \in \Gamma$ such that $a \leq (a\beta x)\delta(a\gamma y)$. Now let $y\beta x \leq t$ for some $t \in S$ then by (2) and (4), we have

$$a \le (a\beta x)\delta(a\gamma y) = (a\beta a)\delta(x\gamma y) = (y\beta x)\delta(a\gamma a) = (y\beta x)\delta(a\gamma a)$$

$$\le t\delta(a\gamma a) \in S\Gamma(a\gamma a).$$

Which implies that $a \in (S\Gamma(a\gamma a)]$, thus S is left regular.

 $(ii) \Longrightarrow (i)$ It follows from Lemma 11, (4) and (2).

Lemma 16. Every weakly regular ordered Γ -AG**-groupoid is regular.

Proof. Assume that S is a weakly regular ordered Γ -AG**-groupoid. Let $a \in ((a\Gamma S)\Gamma(a\Gamma S)]$ for any $a \in S$, then there exist $x, y \in S$ and $\beta, \gamma, \delta \in \Gamma$ such that $a \leq (a\beta x)\delta(a\gamma y)$. Let $x\gamma y \leq t \in S$ and by using (1), (2), (4) and (3), we have

$$a \leq (a\beta x)\delta(a\gamma y) = ((a\gamma y)\beta x)\delta a = ((x\gamma y)\beta a)\delta a \leq (t\beta a)\delta a$$

$$\leq (t\beta((a\beta x)\delta(a\gamma y)))\delta a = (t\beta((a\beta a)\delta(x\gamma y)))\delta a$$

$$= (t\beta((y\beta x)\delta(a\gamma a)))\delta a = (t\beta(a\delta((y\beta x)\gamma a)))\delta a$$

$$= (a\beta(t\delta((y\beta x)\gamma a)))\delta a \leq (a\beta u)\delta a, \text{ where } t\delta((y\beta x)\gamma a) \leq u \in S$$

$$\in (a\Gamma S)\Gamma a.$$

Which implies that $a \in ((a\Gamma S)\Gamma a]$, thus S is regular.

The converse of above Lemma is not true in general, as can be seen from the following example.

Example 3 [24]. Let us consider an AG-groupoid $S = \{1, 2, 3, 4\}$ in the following Cayley's table.

Let us define $\Gamma = \{\alpha, \beta, \gamma\}$ as follows:

α					β	1	2	3	4		,	1			
1	1	1	1	1	1	2	2	2	2	_	1	2	2	2	2
2	1	1	1	1	2	2	2	2	2		2	2	2	2	2
3	1	1	1	1	3	2	2	4	4		3	2	2	2	2
4	1	1	1	1	4	2	2	2	2		4	2	2	3	4

Here S is a Γ -AG-groupoid because $(a\beta b)\gamma c = (c\beta b)\gamma a$ for all $a,b,c\in S$. We define order \leq as:

$$\leq := \{(1,1), (2,2), (3,3), (4,4), (1,2), (4,2)\}.$$

Clearly (S, \leq) is a poset and for all a, b and $x \in S$, $a \leq b$ implies $a\beta x \leq b\beta x$ and $x\beta a \leq x\beta b$ for some $\beta \in \Gamma$ so S is a ordered Γ -AG-groupoid. Also S is regular, because $1 \leq (1\alpha 3)\alpha 1$, $2 \leq (2\beta 1)\gamma 2$, $3 \leq (3\beta 3)\gamma 3$ and $4 \leq (4\gamma 3)\beta 4$, but S is not weakly regular, because $1 \notin ((1\Gamma S)\Gamma(1\Gamma S)]$.

Theorem 17. If S is an ordered Γ -AG**-groupoid, then the following are equivalent.

- (i) S is weakly regular.
- (ii) S is completely regular.

Proof. (i) ⇒(ii) It follows from Theorems 14, 15 and Lemma 16.

 $(ii) \Longrightarrow (i)$ It follows from Theorem 15.

Theorem 18. If S is an ordered Γ -AG**-groupoid, then the following are equivalent.

- (i) S is weakly regular.
- (ii) S is left quasi regular.

Proof. The proof of this Lemma is straight forward.

Theorem 19. If S is an ordered Γ -AG**-groupoid, then the following are equivalent.

- (i) S is (2,2)-regular.
- (ii) S is completely regular.

Proof. (i) \Longrightarrow (ii) Assume that S is a (2,2)-regular ordered Γ -AG**-groupoid. Let $a \in (((a\delta a)\Gamma S)\Gamma(a\delta a)]$ for any $a \in S$ and $\delta \in$, then there exist $x \in S$ and $\beta, \gamma \in \Gamma$ such that $a \leq ((a\delta a)\beta x)\gamma(a\delta a)$. Now let $(a\delta a)\beta x \leq y \in S$, then we have

$$a \le ((a\delta a)\beta x)\gamma(a\delta a) \le y\gamma(a\delta a) \in S\Gamma(a\delta a).$$

Which implies that $a \in (S\Gamma(a\delta a)]$, thus S is left regular. Now by using (4), we have

$$\begin{split} a &\leq ((a\delta a)\beta x)\gamma(a\delta a) = (a\beta a)\gamma(x\delta(a\delta a)) \\ &\leq (a\delta a)\gamma z, \text{ where } x\delta(a\delta a) \leq z \in S \text{ and } \delta \in \Gamma \\ &\in (a\delta a)\Gamma S. \end{split}$$

Which implies that $a \in ((a\delta a)\Gamma S]$, thus S is right regular. Now let $x \leq u\psi v$ for some $u, v \in S$ and $\psi \in \Gamma$, then by using (4), (1) and (3), we have

$$a \leq ((a\delta a)\beta x)\gamma(a\delta a) = (a\beta a)\gamma(x\delta(a\delta a)) \leq (a\beta a)\gamma((u\psi v)\delta(a\delta a))$$
$$= (a\beta a)\gamma((a\psi a)\delta(v\delta u)) \leq (a\beta a)\gamma((a\psi a)\delta t), \text{ where } v\delta u \leq t \in S$$
$$= (((a\psi a)\delta t)\beta a)\gamma a = ((a\delta t)\beta(a\psi a))\gamma a = (a\beta((a\delta t)\psi a))\gamma a$$

$$\leq (a\beta y)\gamma a$$
, where $(a\delta t)\psi a \leq y \in S$
 $\in (a\Gamma S)\Gamma a$.

Which implies that $a \in ((a\Gamma S)\Gamma a]$, so S is regular. Thus S is completely regular. (ii) \Longrightarrow (i) Assume that S is a completely regular ordered Γ -AG**-groupoid . Let $a \in ((a\Gamma S)\Gamma a], \ a \in ((a\delta a)\Gamma S]$ and $a \in (S\Gamma(a\delta a)]$ for any $a \in S$, then there exist $x,y,z \in S$ and $\beta,\gamma,\psi,\xi,\delta \in \Gamma$ such that $a \leq (a\beta x)\gamma a, \ a \leq (a\delta a)\psi y$ and $a \leq z\xi(a\delta a)$. Now by using (4), (1) and (3), we have

$$a \leq (a\beta x)\gamma a \leq (a\beta x)\gamma(z\xi(a\delta a)) = ((a\delta a)\beta z)\gamma(x\xi a) = ((x\xi a)\beta z)\gamma(a\delta a)$$

$$\leq ((x\xi((a\delta a)\psi y))\beta z)\gamma(a\delta a) = (((a\delta a)\xi(x\psi y))\beta z)\gamma(a\delta a)$$

$$\leq (((a\delta a)\xi t)\beta z)\gamma(a\delta a), \text{ where } x\psi y \leq t \in S$$

$$= ((z\xi t)\beta(a\delta a))\gamma(a\delta a) = ((a\xi a)\beta(t\delta z))\gamma(a\delta a)$$

$$\leq ((a\xi a)\beta w)\gamma(a\delta a), \text{ where } t\delta z \leq w \in S$$

$$= ((a\xi a)\beta w)\gamma(a\delta a) \in ((a\xi a)\Gamma S)\Gamma(a\delta a).$$

Which implies that $a \in (((a\xi a)\Gamma S)\Gamma(a\delta a)]$, this shows that S is (2,2)-regular.

Lemma 20. Every strongly regular ordered Γ - AG^{**} -groupoid is completely regular.

Proof. Assume that S is a strongly regular ordered Γ -AG**-groupoid, then for any $a \in S$ there exists $x \in S$ and $\beta, \gamma \in \Gamma$ such that $a \leq (a\beta x)\gamma a$ and $a\beta x = x\beta a$. Now by using (1), we have

$$a \le (a\beta x)\gamma a = (x\beta a)\gamma a = (a\beta a)\gamma x \subseteq (a\beta a)\Gamma S.$$

Which implies that $a \in (a^2 \Gamma S]$, this shows that S is right regular and by Theorems 14 and 17, it is clear to see that S is completely regular.

Theorem 21. In an ordered Γ -AG**-groupoid S, the following are equivalent.

- (i) S is weakly regular,
- (ii) S is intra-regular,
- (iii) S is right regular,
- (iv) S is left regular,
- (v) S is left quasi regular,

- (vi) S is completely regular,
- (vii) For all $a \in S$, there exist $x, y \in S$ such that $a \leq (x\beta a)\delta(a\gamma z)$ holds for some $x, z \in S$ and $\beta, \gamma, \delta \in \Gamma$,
- (viii) S is (2,2)-regular.

Proof. (i) \iff (ii) It follows from Theorem 13.

- (ii) ⇐⇒(iii) It follows from Theorems 13 and 14.
- (iii) ⇐⇒(iv) It follows from Theorems 14 and 15.
- $(iv) \iff (v)$ It follows from Theorems 15 and 18.
- $(v) \iff (vi)$ It follows from Theorems 18 and 17.
- (vi) ⇐⇒(i) It follows from Theorem 17.
- (ii) ⇐⇒(vii) It follows from Theorem 12.
- (vi) ⇐⇒(viii) It follows from Theorem 19.

Remark 3. Every intra-regular, right regular, left regular, left quasi regular (2,2)-regular and completely regular ordered Γ -AG**-groupoids are regular.

The converse is not true in general, as can be seen from Example 3.

Theorem 22. Regular, weakly regular, intra-regular, right regular, left regular, left quasi regular, completely regular, (2,2)-regular and strongly regular Γ - AG^* -groupoids become a Γ -semigroups.

Proof. It follows from (6) and Lemma 11.

Acknowledgement

The authors are highly grateful to referee's for their valuable comments which were helpful in improvement of the paper.

References

- [1] R. Chinram and K. Tinpun, A note on minimal bi-ideals in ordered Γ -semigroups, International Math. Forum 4 (1) (2009) 1–5.
- [2] K. Hila, Filters in ordered Γ -semigroups, Rocky Mountain J. Math. 41 (1) (2011) 189–203. doi:10.1216/RMJ-2011-41-1-189
- [3] K. Hila, On quasi-prime, weakly quasi-prime left ideals in ordered Γ -semigroups, Math. Slovaca **60** (2) (2010) 195–212. doi:10.2478/s12175-010-0006-x
- [4] K. Hila and E. Pisha, On bi-ideals on ordered Γ-semigroups I, Hacettepe J. Math. and Stat. 40 (6) (2011) 793–804.
- [5] K. Hila and E. Pisha, On lattice-ordered rees matrix Γ -semigroups, Annals of the Alexandru Ioan Cuza University Mathematics **LIX** (1) (2013) 209–218. doi:10.2478/v10157-012-0033-8

- [6] K. Hila and E. Pisha, Characterizations on ordered Γ-semigroups, Inter. J. Pure and Appl. Math. 28 (3) (2006) 423–440.
- [7] P. Holgate, Groupoids satisfying a simple invertive law, The Math. Student 61 (1992) 101–106.
- [8] A. Iampan, Characterizing ordered bi-Ideals in ordered Γ-semigroups, Iranian J. Math. Sci. and Inf. 4 (1) (2009) 17–25.
- [9] A. Iampan, Characterizing ordered quasi-ideals of ordered Γ -semigroups, Kragujevac J. Math. **35** (1) (2011) 13–23.
- [10] M.A. Kazim and M. Naseeruddin, On almost semigroups, The Aligarh Bull. Math. 2 (1972) 1–7.
- [11] N. Kehayopulu and M. Tsingelis, Regular ordered semigroups in terms of fuzzy subsets, Inf. Sci. 176 (2006) 3675–3693. doi:10.1016/j.ins.2006.02.004
- [12] M. Khan, Some studies in AG*-groupoids, Ph.D., thesis (Quaid-i-Azam University, Islamabad, Pakistan, 2008).
- [13] M. Khan and N. Ahmad, Characterizations of left almost semigroups by their ideals, J. Adv. Res. Pure Math. 2 (2010) 61–73. doi:10.5373/jarpm.357.020210
- [14] M. Khan, T. Asif and Faisal, Intra-regular left almost semigroups characterized by their anti fuzzy ideals, J. Math. Res. 4 (2010) 100–110.
- [15] Y.I. Kwon and S.K. Lee, On weakly prime ideals of ordered Γ -semigroups, Comm. Korean Math. Society **13** (2) (1998) 251–256.
- [16] Y.I. Kwon, Characterizations of regular ordered Γ -semigroups II, Far East J. Math. Sci. 11 (3) (2003) 281–287.
- [17] Y.I. Kwon and S.K. Lee, Some special elements in ordered Γ -semigroups, Kyungpook Math. J. **35** (1996) 679–685.
- [18] Y.I. Kwon and S.K. Lee, The weakly semi-prime ideals of po-Γ-semigroups, Kangweon Kyungki Math. J. 5 (2) (1997) 135–139.
- [19] Q. Mushtaq and M. Khan, *Ideals in left almost semigroups*, Proceedings of 4th International Pure Mathematics Conference (2003) 65–77.
- [20] Q. Mushtaq and M.S. Kamran, On LA-semigroups with weak associative law, Scientific Khyber 1 (1989) 69–71.
- [21] Q. Mushtaq and S.M. Yousuf, On LA-semigroups, Aligarh Bull. Math. 8 (1978) 65–70.
- [22] Q. Mushtaq and S.M. Yousuf, On LA-semigroup defined by a commutative inverse semigroup, Math. Bech. 40 (1988) 59–62.
- [23] M. Naseeruddin, Some studies in almost semigroups and flocks, Ph.D., thesis (Aligarh Muslim University, Aligarh, India, 1970).
- [24] P.V. Protić and N. Stevanović, AG-test and some general properties of Abel-Grassmann's groupoids, Pure Math. and Appl. 4 (6) (1995) 371–383.

- [25] T. Shah and I. Rehman, On M-systems in Γ -AG-groupoids, Proceedings of the Pakistan Academy of Sciences 47 (1) (2010) 33–39.
- [26] N. Stevanović and P.V. Protić, Composition of Abel-Grassmann's 3-bands, Novi Sad J. Math. 2 (34) (2004) 175–182.

Received 9 August 2013 Revised 24 January 2014