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Abstract

Let A and B be M -matrices satisfying A ≤ B and J = [A,B] be the set
of all matrices C such that A ≤ C ≤ B, where the order is component wise.
It is rather well known that if A is an M -matrix and B is an invertible M -
matrix and A ≤ B, then aA+ bB is an invertible M -matrix for all a, b > 0.
In this article, we present an elementary proof of a stronger version of this
result and study corresponding results for certain other classes as well.
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1. Introduction and Preliminaries

Let Rm×n denote the set of all m× n matrices over the reals. T ∈ R
m×n is said

to be nonnegative denoted T ≥ 0, if each entry of T is nonnegative. A ∈ R
n×n

is called a Z-matrix if all the off-diagonal entries of A are nonpositive. Let Z

denote the set of all Z-matrices. It follows that a Z-matrix A can be written as
A = sI −B, where s ≥ 0 and B ≥ 0.

Let A be Z-matrix with a decomposition as above. Then

(a) A is called anM -matrix, if s ≥ ρ(B), where ρ(.) denotes the spectral radius.
Let A be an M -matrix. Then A is invertible if s > ρ(B) and singular if
s = ρ(B). It is a well known result that if s > ρ(B), then A−1 ≥ 0 [1].
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(b) A is called an N -matrix, if ρn−1(B) < s < ρ(B), where ρn−1(.) denotes the
maximum of the spectral radii of all the principal submatrices of B of order
n− 1 [4].

(c) A is called an N0-matrix, if ρn−1(B) ≤ s < ρ(B) [4].

Let M,Minv,Msing,N and N0 denote the set of all M -matrices, invertible M -
matrices, singular M -matrices, N -matrices and N0-matrices, respectively.

For A,B ∈ R
n×n with A ≤ B, define J = [A,B] = {C ∈ R

n×n : cij =
tijaij + (1− tij)bij , tij ∈ [0, 1] for all i, j ∈ {1, . . . , n}} and int(J) = {C ∈ R

n×n :
cij = tijaij + (1− tij)bij , tij ∈ (0, 1) for all i, j ∈ {1, . . . , n}}.

It is well known that certain classes of Z-matrices (for example, M -matrices
and N0-matrices) are closed under positive scalar multiplication, but are not
closed under addition. In [5], Ky Fan showed that if A and B are nonsingular
M -matrices with A ≤ B, then A + B is also a nonsingular M -matrix. In [8],
Smith and Hu proved that if A is an M -matrix and B is a nonsingular M -matrix
with A ≤ B, then aA+bB is a nonsingular M -matrix for all a, b > 0. Their proof
was based on the existence of a certain semi-positive vector and the principle of
mathematical induction. In this paper we extend this result and give a new linear
algebraic proof using elementary arguments. More generally, the objective of the
present work is to address the following problem: Let K1,K2 denote any of the
classes Minv,Msing,N,N0. Suppose that A ∈ K1 and B ∈ K2 with A ≤ B. Does
it follow that J ⊆ K1 or K2? If the answer is in the affirmative, we demonstrate
that with a proof. If the inclusion is not true, in general, we illustrate this fact
by means of an example and then consider the inclusion int(J) ⊆ K1 or K2.

The subsets of Z-matrices considered in this article arise in many problems of
optimization. Let us only mention that N -matrices have been studied by many
authors in connection with the linear complementarity problem, for instance [7].
One of the most widely considered classes of Z-matrices is the subclass Minv.
These matrices arise not only with reference to linear complementarity problems
([2], for a survey on many of these matrix classes in the context of the linear
complementarity problem) but also in other classical areas such as finite differ-
ence methods in elliptic partial differential equations. Our work reported here
is expected to have applications in perturbation considerations in the nature of
solutions of linear complementarity problems defined in terms of these matrix
classes.

The paper is organized as follows. In the rest of this introductory section,
we collect certain preliminary results that will used in the sequel. In the next
section, we prove the main results. In Theorem 2.3, we show that if A is a
singular M -matrix and B is an invertible M -matrix, then any matrix in int(J)
is an invertible M -matrix. Theorem 2.4 shows that if A and B are both singular
M -matrices then any matrix in J must also be a singular M -matrix. If A is an
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N0-matrix and B is a singular M -matrix, then any matrix in int(J) must also be
an N0-matrix. This is proved in Theorem 2.5. Theorem 2.6 presents a result for
N0-matrices, analogous to Theorem 2.4. Theorem 2.7 shows that if A ∈ N0, B is
an invertible M -matrix and if C ∈ int(J) then C is either an invertible M -matrix
or a singular M -matrix or an N0-matrix depending on the sign of its determinant.
In Theorem 2.8, a similar result is proved when A ∈ N and B is an invertible
M -matrix. Theorem 2.10 shows that if A ∈ N0 and B ∈ N, then int(J) ⊆ N.
The concluding result shows that if A ∈ N, B ∈ N0 and A ≤ B, then B ∈ N.

Let us recall that a permutation matrix is a square matrix in which each row
and each column has one entry unity, all others being zero. It follows that, A ∈ M

if and only if QAQt ∈ M, for any permutation matrix Q [1].

A matrix A ∈ R
n×n is said to be reducible if there exist an n×n permutation

matrix Q such that QAQt =

(

A11 A12

0 A22

)

, where A11 is an r× r sub matrix and

A22 is an (n − r) × (n − r) sub matrix with 1 ≤ r < n. If no such permutation
matrix Q exists, then A is said to be irreducible.

The following block representation for a reducible matrix will be crucially used
in the first main result.

Theorem 1.1 (Page 51, [9]). Let A ∈ R
n×n be reducible. Then there exists a

permutation matrix Q such that

QAQt =











A11 A12 · · · A1m

0 A22 · · · A2m

...
...

. . .
...

0 0 · · · Amm











,

where each square submatrix Aii, 1 ≤ i ≤ m, is either irreducible or a 1 × 1
zero matrix and the eigenvalues of A are precisely the eigenvalues of the square

submatrices Aii.

The following two results collect important properties of the spectral radius.

Theorem 1.2 (Theorem 2.20, [9]). Let A,B ∈ Rn×n with 0 ≤ A ≤ B. Then

ρ(A) ≤ ρ(B).

Theorem 1.3 (Theorem 2.1, [9]). Let A ≥ 0 be an irreducible matrix. Then

ρ(A) strictly increases when any entry of A increases.

Finally, let us state a result for N0-matrices.

Theorem 1.4 (Lemma 2.1, [4]). Let A ∈ R
n×n. Then A ∈ N0 if and only if all

principal submatrices of A belong to M and A has negative determinant.
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2. Main Results

We begin with the following fundamental result.

Lemma 2.1. Let A be an invertible M -matrix and A = tI − C, with t > ρ(C).
Then for any s ≥ t, we have A = sI −D with D ≥ 0 and s > ρ(D).

Proof. Let A = tI − C with t > ρ(C). Then A = sI −D = sI − ((s − t)I + C)
and ρ(D) = ρ((s− t)I + C) = s− t+ ρ(C) < s. Hence the proof.

Next, we prove a simple well known result concerning invertible M -matrices.

Theorem 2.1 (Fact 4, page 9–19, [3]). Let A ∈ Minv, B ∈ Z and A ≤ B. Then

B ∈ Minv.

Proof. Let A ∈ Minv, B ∈ Z and A ≤ B. Set s = max bii + 1. Then A =
sI −D,B = sI − E for some D ≥ E ≥ 0 and s > ρ(D). Also ρ(E) ≤ ρ(D), so
that ρ(E) < s. Thus B ∈ Minv.

Before proceeding to the main result, let us show that a rather well known result
of [6] can be obtained as a corollary to Theorem 2.1. Let us reiterate the fact
that if A ≤ C ≤ B, where A,B are Z-matrices, then C is also a Z-matrix.

Theorem 2.2 (Part of Theorem 3.6.5, [6]). Let J = [A,B]. Then J ⊆ Minv if

and only if A,B ∈ Minv.

Proof. If J ⊆ Minv, then (obviously), A,B ∈ Minv. Conversely, suppose that
A,B ∈ Minv and C ∈ J . Now, A ≤ C ≤ B with A ∈ Minv and C ∈ Z. Again, by
Theorem 2.1, it follows that C ∈ Minv. So J ⊆ Minv.

Let us recall the result mentioned earlier. If a, b > 0 and if A,B are invertible
M -matrices, then aA+bB is an invertible M -matrix. In the next result, we show
that there are many more invertible M -matrices of which aA + bB is just one
type. Our approach is much simpler than the proof of [8]. This is our main result.

Theorem 2.3. Let A,B ∈ Z and A ≤ B. If A ∈ Msing and B ∈ Minv, then

int(J) ⊆ Minv.

Proof. Let C ∈ int(J). Then cij = tijaij + (1 − tij)bij with tij ∈ (0, 1). Since
aij ≤ cij ≤ bij ≤ 0, so aij = 0 if and only if cij = 0, for i 6= j. By Lemma
2.1, there exists an s such that A = sI −D,B = sI − E,C = sI − F for some
D ≥ F ≥ E ≥ 0 and s = ρ(D), s > ρ(E) (Such a common s could be chosen by
Lemma 2.1).

Let A be irreducible. Then D is irreducible. So ρ(F ) < ρ(D) = s and hence
C ∈ Minv, as was required to prove.
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Suppose that A is reducible. Then there exists a permutation matrix Q such that

QAQt =











A11 A12 · · · A1m

0 A22 · · · A2m

...
...

. . .
...

0 0 · · · Amm











,

where each Aii is either irreducible or it is a 1×1 zero matrix. Now, applying the

same permutation to B and C, we obtain QBQt =











B11 B12 · · · B1m

0 B22 · · · B2m

...
...

. . .
...

0 0 · · · Bmm











and QCQt =











C11 C12 · · · C1m

0 C22 · · · C2m

...
...

. . .
...

0 0 · · · Cmm











. Also, if Aii is irreducible, then Cii

is irreducible, for each i. Let QAQt = sI − L,QBQt = sI − M,QCQt =
sI − N for some L ≥ N ≥ M ≥ 0 and s = ρ(L), s > ρ(M). Then L =










L11 L12 · · · L1m

0 L22 · · · L2m

...
...

. . .
...

0 0 · · · Lmm











,M =











M11 M12 · · · M1m

0 M22 · · · M2m

...
...

. . .
...

0 0 · · · Mmm











and

N =











N11 N12 · · · N1m

0 N22 · · · N2m

...
...

. . .
...

0 0 · · · Nmm











. Also, σ(L) =
⋃

σ(Lii) and σ(N) =
⋃

σ(Nii),

where σ(.) denotes the spectrum of the matrix. Suppose that Aii is an irreducible
M -matrix for some i. Then, arguing as above, we have that Cii ∈ Minv. Since
QCQT = sI −N , it now follows that sI − Nii is invertible. Already, s ≥ 0 and
Nii ≥ 0. Hence s > ρ(Nii). This argument can be applied for all i such that Aii

is irreducible. Since ρ(N) = max ρ(Nii), it follows that QCQt is an invertible
M -matrix. Thus C ∈ Minv.

Corollary 2.1 (Theorem 3.5, [8]). Let A,B ∈ Z and A ≤ B. If A ∈ Msing and
B ∈ Minv, then aA+ bB ∈ Minv, for all a, b > 0.

Proof. Let λ ∈ (0, 1). We then have λA+ (1− λ)B ∈ int(J). By Theorem 2.3,
aA+ bB = (a+ b)(λA+ (1− λ)B) ∈ Minv, with λ = a

a+b
.

Remark 2.1. The following example shows that the conclusion in Theorem 2.3

is stronger then the conclusion in Corollary 2.1. Let A =

(

1 −1
−1 1

)

and
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B =

(

2 0
0 2

)

. Then A ∈ Msing, B ∈ Minv. Let C =

(

3

2
−1

2

−1

3

3

2

)

, then

C ∈ Minv and C ∈ int(J). It is easy to verify that C is not of the form aA+ bB

for some a, b > 0. Let F =

(

1 −1
−1 1

)

. Then F ∈ J but F /∈ int(J). So the

result is not true for the interval J , in general.

In the following theorem, we give a condition on the matrices A and B so that
all the matrices in the interval J are M -matrices. This generalizes Theorem 3.6,
[8].

Theorem 2.4. Let A,B ∈ Msing and A ≤ B. Then J ⊆ Msing.

Proof. Let C ∈ J and s = max bii+1. Then A = sI−D,B = sI−E,C = sI−F
for some D ≥ F ≥ E ≥ 0 and s = ρ(D) = ρ(E). Also ρ(E) ≤ ρ(F ) ≤ ρ(D), so
that ρ(F ) = s. Thus C ∈ Msing.

Corollary 2.2 (Theorem 3.6, [8]). Let A,B ∈ Msing and A ≤ B. Then aA+bB ∈
Msing for all a, b > 0.

In the following theorem, we give a condition on the matrices A and B so that
all the matrices in the set int(J) are N0-matrices. This generalizes Theorem 3.7,
[8].

Theorem 2.5. Let A ∈ N0, B ∈ Msing and A ≤ B. Then int(J) ⊆ N0.

Proof. Let C ∈ int(J) and s = max bii+1. Then A = sI −D,B = sI−E,C =
sI − F for some D ≥ F ≥ E ≥ 0 and ρn−1(D) ≤ s < ρ(D), s = ρ(E). Since
A ∈ N0 implies that A is irreducible it follows that C is also irreducible. There fore
ρ(F ) > ρ(E) = s. Since F ≤ D, we have ρn−1(F ) ≤ ρn−1(D) and ρn−1(D) ≤ s,
so that ρn−1(F ) ≤ s < ρ(F ). Thus C ∈ N0.

Corollary 2.3 (Theorem 3.7, [8]). Let A ∈ N0, B ∈ Msing and A ≤ B. Then
aA+ bB ∈ N0 for all a, b > 0.

Remark 2.2. The following example shows that the conclusion of Theorem 2.5

is stronger then the conclusion of Corollary 2.3. Let A =

(

1

2
−3

−3 1

2

)

and

B =

(

2 −2
−2 2

)

. By appealing to Theorem 1.4, it follows that A ∈ N0. Clearly,

B ∈ Msing. Let C =

(

1 −5

2
−9

4
1

)

. Then C ∈ int(J). Once again, by Theorem

1.4, it follows that C ∈ N0. C is not of the form aA+ bB for any a, b > 0.

In the following theorem we give a condition on the matrices A and B so that all
the matrices in the set J are N0-matrices. This generalizes Theorem 3.10, [8].
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Theorem 2.6. Let A,B ∈ N0 with A ≤ B. Then J ⊆ N0.

Proof. Let C ∈ J and set s = max bii + 1. Then A = sI −D,B = sI −E,C =
sI − F for some D ≥ F ≥ E ≥ 0 and ρn−1(D) ≤ s < ρ(D), ρn−1(E) ≤ s < ρ(E).
Since A and B are irreducible it follows that C is irreducible and ρ(D) > ρ(F ) >
ρ(E). Hence s < ρ(F ) and ρn−1(F ) ≤ ρn−1(D) ≤ s. Thus C ∈ N0.

Corollary 2.4 (Theorem 3.10, [8]). Let A,B ∈ N0 with A ≤ B. Then aA+bB ∈
N0 for all a, b > 0.

In the following theorem we give some conditions on the matrices A and B
so that the matrices in the set int(J) belong to the class Minv,Msing and N0

provided det C > 0, det C = 0 and det C < 0 respectively. This generalizes
Theorem 3.9, [8].

Theorem 2.7. Let A ∈ N0 and B ∈ Minv, with A ≤ B,A 6= B and C ∈ int(J).
Then

(a) C ∈ Minv if and only if det C > 0,

(b) C ∈ Msing if and only if det C = 0,

(c) C ∈ N0 if and only if det C < 0.

Proof. By Theorem 1.4, all the principal sub matrices of A belong to M. Also,
all the principal submatrices of B belong to Minv and hence all the principal
submatrices of C belong to Minv (by Theorem 2.3). The result now follows.

Remark 2.3. In the above theorem, if we replace the condition B ∈ Minv by
B ∈ Msing, then the same conclusions hold.

Corollary 2.5 (Theorem 3.9, [8]). Let A ∈ N0 and B ∈ Minv, with A ≤ B.
Then, for all a, b > 0

(a) aA+ bB ∈ Minv if and only if det (aA+ bB) > 0,

(b) aA+ bB ∈ Msing if and only if det (aA+ bB) = 0,

(c) aA+ bB ∈ N0 if and only if det (aA+ bB) < 0.

Remark 2.4. Let A =

(

1

2
−3

−3 1

2

)

and B =

(

2 0
0 2

)

. Then A ∈ N0 and

B ∈ Minv. Now, consider the matrix C1 =

(

3

2
−1

−2 3

2

)

. Then C1 ∈ int(J) and

det(C1) > 0, so that C1 ∈ Minv. C1 is not of the form aA+bB for any a, b > 0. If
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C2 =

(

3

2
−1

−3

2
1

)

and C3 =

(

3

2
−2

−3 3

2

)

, then C2 ∈ int(J), and det(C2) = 0

so that C2 ∈ Msing. Also C3 ∈ int(J) and det(C3) < 0, so that C3 ∈ N0. Again,
both C2 and C3 are not of the form aA+ bB for any a, b > 0.

The following is a special case of Theorem 2.7 since N ⊆ N0.

Theorem 2.8. Let A ∈ N and B ∈ Minv, with A ≤ B and C ∈ int(J). Then

(a) C ∈ Minv if and only if det C > 0,

(b) C ∈ Msing if and only if det C = 0,

(c) C ∈ N if and only if det C < 0.

Remark 2.5. In the above theorem, if we replace the condition B ∈ Minv by
B ∈ Msing, then the same conclusions hold.

Remark 2.6. Suppose A ∈ Msing, B ∈ Z and A ≤ B. Set s = max bii+1. Then
A = sI −D,B = sI − E for some D ≥ E ≥ 0 and s = ρ(D). Also ρ(E) ≤ ρ(D),
so that ρ(E) ≤ s. Thus B /∈ N0.

The following result was proved by Ky Fan [5].

Theorem 2.9 (Lemma 3, [5]). Let A,B ∈ N such that A ≤ B. Then J ⊆ N.

In the following result, we show that if we replace the condition A ∈ N by A ∈ N0

then all the matrices in the set int(J) belong to N. Also, we give a counter
example to show that the result is not true for the interval J , in general.

Theorem 2.10. If A ∈ N0, B ∈ N and A ≤ B. Then int(J) ⊆ N.

Proof. Let C ∈ int(J) and set s = max bii + 1. Then A = sI − D,B =
sI−E,C = sI−F for some D ≥ F ≥ E ≥ 0 and ρn−1(D) ≤ s < ρ(D), ρn−1(E) <
s < ρ(E). Hence s < ρ(F ). Now, by Theorem 1.4, any principal submatrix of
A is an M -matrix and any principal submatrix of B is an invertible M -matrix.
So C ∈ int(J) implies that all the principal submatrices of C are invertible M -
matrices. Thus ρn−1(F ) < s < ρ(F ) and so C ∈ N.

Remark 2.7. The following example shows that the conclusion in Theorem 2.10

need not hold for the interval J . Let A =

(

1

4
−4

−4 0

)

and B =

(

1

2
−3

−3 1

2

)

.

Then A ∈ N0 and B ∈ N and A ≤ B. Consider C =

(

1

4

−7

2

−4 0

)

, then C ∈ J

but C /∈ N.
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In the concluding result of this article, we show that if A ∈ N and B ∈ N0, then
B must belong to N.

Theorem 2.11. Let A ∈ N, B ∈ N0 and A ≤ B. Then B ∈ N.

Proof. Let A ∈ N, B ∈ N0 and A ≤ B. Set s = max |bii| + 1. Then A =
sI −D,B = sI − E for some D ≥ E ≥ 0, ρn−1(D) < s < ρ(D) and ρn−1(E) ≤
s < ρ(E). Also ρn−1(E) ≤ ρn−1(D), so that ρn−1(E) < s. Thus B ∈ N.
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