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Abstract

The concept of Boolean filters in p-algebras is introduced. Some prop-
erties of Boolean filters are studied. It is proved that the class of all
Boolean filters BF (L) of a quasi-modular p-algebra L is a bounded dis-
tributive lattice. The Glivenko congruence Φ on a p-algebra L is defined
by (x, y) ∈ Φ iff x∗∗ = y∗∗. Boolean filters [Fa), a ∈ B(L), generated by
the Glivenko congruence classes Fa (where Fa is the congruence class [a]Φ)
are described in a quasi-modular p-algebra L. We observe that the set
FB(L) = {[Fa) : a ∈ B(L)} is a Boolean algebra on its own. A one-one
correspondence between the Boolean filters of a quasi-modular p-algebra L
and the congruences in [Φ,∇] is established. Also some properties of congru-
ences induced by the Boolean filters [Fa), a ∈ B(L) are derived. Finally, we
consider some properties of congruences with respect to the direct products
of Boolean filters.
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1. Introduction

The notion of pseudo-complements was introduced in semi-lattices and distribu-
tive lattices by O. Frink [7] and G. Birkhof [3]. The pseudo-complements in
Stone algebras were studied and discussed by R. Balbes [1], O. Frink [7] and G.
Grätzer [4] etc. Recently, the concept of Boolean filter of pseudo-complemented
distributive lattices was introduced by M. Sambasiva Rao and K.P. Shum in [9].

In this paper, we further study the Boolean filters in a p-algebra L and many
properties of Boolean filters are also given. We observe that every maximal filter
of L is a Boolean filter, however the converse of this statement is not true. It
is observed that a filter F of a p-algebra L is a prime Boolean filter if and only
if it is a maximal filter. We will give a characterization theorem of Boolean
filters of a quasi-modular p-algebra L. We also notice that the set of all Boolean
filters of a quasi-modular p-algebra forms a bounded distributive lattice. Then,
we introduce a Boolean filter [Fa) which is generated by the congruence class
Fa (notice that [x]Φ is denoted by Fa) of the Glivenko congruence relation Φ
on L, where a is a closed element of a quasi-modular p-algebra L. It is proved
that the set FB(L) = {[Fa) : a ∈ B(L)} forms a Boolean algebra on its own.
We also observe that FB(L) is isomorphic to B(L). The relationship between
the Boolean filters and the congruences in [Φ,∇] of a quasi-modular p-algebra L
is introduced. It is proved that there is a one-one correspondence between the
congruences in [Φ,∇] and the Boolean filters of L. We also prove that the Boolean
algebras FB(L) and ConB(L) = {θ[Fa) : a ∈ B(L)} are isomorphic, where θ[Fa) is
the congruence on L induced by a Boolean filter Fa for a closed element a of L.
Moreover, we show that the Boolean algebra ConB(L) can be embedded into the
interval [Φ,∇] of Con(L). It is proved that the lattice of all Boolean filters of a
finite quasi-modular p-algebra L is isomorphic to the sublattice [Φ,∇] of Con(L).
Finally, some properties of congruences with respect to the direct products of
Boolean filters are explored and investigated.

Several results of [9] are still possible for p-algebras or quasi-modular p-
algebras. Namely, Lemma 3.2, Lemma 3.3, Theorem 3.4, Theorem 3.6 and The-
orem 6.1 correspond respectively to Proposition 2.3, Corollary 2.4, Theorem 2.6,
Theorem 2.8 and Theorem 2.10 from [9].

2. Preliminaries

In this section, we cite some known definitions and basic results which can be
found in the papers [2, 5, 6, 7, 8] and [10].

A p-algebra is a universal algebra (L,∨,∧,∗ , 0, 1), where (L,∨,∧, 0, 1) is a
bounded lattice and the unary operation ∗ is defined by x ∧ a = 0 ⇔ x ≤ a∗.

It is well known that the class of all p-algebras is equational. We now call
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a p-algebra L distributive (modular) if the lattice (L,∨,∧, 0, 1) is distributive
(modular). The variety of modular p-algebras contains the variety of distributive
p-algebras. We call a p-algebra quasi-modular if ((x ∧ y) ∨ z∗∗) ∧ x = (x ∧ y) ∨
(z∗∗ ∧ x). Clearly, the class of all modular p-algebras is a subclass of the class of
quasi-modular p-algebras. If the Stone identity x∗ ∨x∗∗ = 1 holds in a p-algebra,
then we simply call this p-algebra an S-algebra. We usually call a distributive
S-algebra a Stone algebra.

An element a of a p-algebra L is called closed if a∗∗ = a. Then B(L) =
{a ∈ L : a = a∗∗} is the set of all closed elements of L. It is known that
(B(L),▽,∧, 0, 1), where a ▽ b = (a∗ ∧ b∗)∗, forms a Boolean algebra. The set
D(L) = {x ∈ L : x∗ = 0} = {x ∨ x∗ : x ∈ L} of all dense elements of L is a filter
of L. If L is an S-algebra, then (x∧ y)∗ = x∗ ∨ y∗ for all x, y ∈ L. It follows that
a▽ b = a ∨ b for all a, b ∈ B(L).

For an arbitrary lattice L, the set F (L) of all filters of L ordered by the set
inclusion forms a lattice. It is known that F (L) is modular (distributive) if and
only if L is a modular (distributive) lattice. Let a ∈ L and [a) be the principal
filter of L generated by a : [a) = {x ∈ L : x ≥ a}. A proper filter P of L is called
prime if x∨ y ∈ P implies x ∈ P or y ∈ P for all x, y ∈ L. We call a proper filter
M of L maximal if M ⊆ G for no proper filter G.

The following results on quasi-modular p-algebras may be found in [8].

Let L be a quasi-modular p-algebra. Then every element x ∈ L can be repre-
sented by x = x∗∗∧(x∨x∗), where x∗∗ ∈ B(L) and x∨x∗ ∈ D(L). The relation Φ
of a quasi-modular p-algebra L is defined by (x, y) ∈ Φ ⇔ x∗∗ = y∗∗ and is called
the Glivenko congruence relation. It is known that the Glivenko congruence is
indeed a congruence on L such that L/Φ ∼= B(L) holds. Every congruence class
of Φ contains exactly one element of B(L) which is the greatest element in the
congruence class, the greatest element of a congruence class [x]Φ is x∗∗. Hence
Φ partitions L into {Fa : a ∈ B(L)}, where Fa = {x ∈ L : x∗∗ = a} = [a]Φ. It is
clear that F0 = {0} and F1 = D(L).

We frequently use the following rules in the computations of p-algebras (see
[5, 10]):

(1) 0∗∗ = 0 and 1∗∗ = 1;

(2) a ∧ a∗ = 0;

(3) a ≤ b implies b∗ ≤ a∗;

(4) a ≤ a∗∗;

(5) a∗∗∗ = a∗;

(6) (a ∨ b)∗ = a∗ ∧ b∗;

(7) (a ∧ b)∗ ≥ a∗ ∨ b∗;

(8) (a ∧ b)∗∗ = a∗∗ ∧ b∗∗;

(9) (a ∨ b)∗∗ = (a∗ ∧ b∗)∗ = (a∗∗ ∨ b∗∗)∗∗.
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3. Boolean Filters of p-algebras

In this section, we introduce the concept of Boolean filter of a p-algebra. Some
properties of Boolean filters in a p-algebra are derived. We show that the maximal
filter and prime Boolean filter of a p-algebra are equivalent. A characterization
theorem of Boolean filters of a quasi-modular p-algebra will be given. Also we
will prove that the set of all Boolean filters of a quasi-modular p-algebra is a
bounded distributive lattice.

Definition 3.1. Let L be a p-algebra. Then, we call a filter F of L a Boolean

filter if x ∨ x∗ ∈ F for each x ∈ L.

We now give some examples of Boolean filters of a p-algebra L.

Example 3.2. (1) Let L be a p-algebra. Then the filter D(L) is a Boolean filter
of L as x∨x∗ ∈ D(L) for all x ∈ L. Moreover D(L) is the smallest Boolean filter
of L and L is the greatest Boolean filter of L;

(2) Let B be a Boolean algebra. Then any filter F of B is a principal Boolean
filter as x ∨ x∗ = 1 ∈ F for each x ∈ B;

(3) Let C4 = {0, a, b, c : 0 < a, b < c} be a four element Boolean lattice
and a pentagon N5 = {u, x, y, z, 1 : u < x < y < 1, u < z < 1, x ∧ z = y ∧
z = u, x ∨ z = y ∨ z = 1}.Clearly L = C4

⊕
N5 is a quasi-modular p-algebra

where
⊕

stands for ordinal sum. Then the set of all Boolean filters of L is
{{c, u, x, y, z, 1}, {a, c, u, x, y, z, 1}, {b, c, x, y, z, 1}, L};

We observe that the filters {x, y, 1}, {y, 1}, {z, 1}, {u, x, y, z, 1} and {1} are not
Boolean filters.

The results in Corollary 2.4, Theorem 2.6 and Theorem 2.8 from [9] are already
stated for the class of all bounded distributive pseudocomplemented lattices. Now
we have the following Lemma

Lemma 3.3. Every maximal filter of a p-algebra L is a Boolean filter.

Proof. Let M be a maximal filter of L. Suppose that x ∨ x∗ 6∈ M for some
x ∈ L. Then M ∨ [x ∨ x∗) = L. Hence a ∧ b = 0 for some a ∈ M, b ∈ [x ∨ x∗).
Now we have the following implications:

a ∧ b = 0 ⇒ 0 = a ∧ b ≥ a ∧ (x ∨ x∗) ≥ (a ∧ x) ∨ (a ∧ x∗)

⇒ a ∧ x = 0 and a ∧ x∗ = 0

⇒ a ≤ x∗ and a ≤ x∗∗

⇒ a ≤ x∗ ∧ x∗∗ = 0

This result leads to 0 = a ∈ M which is a contradiction. Hence x ∨ x∗ ∈ M for
all x ∈ L. Therefore, M is a Boolean filter of L.
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We note that it is not true that every Boolean filter of L is a maximal filter.
For, in Example 3.1(3), the filter {c, u, x, y, z, 1} of L is a Boolean filter but not
a maximal filter of L.

The proof of Corollary 2.4 of [9] is still appropriate for the following Lemma.

Lemma 3.4. A proper filter of a p-algebra L which contains either x or x∗ for

all x ∈ L is a Boolean filter.

Now, we characterize the maximal filters of a p-algebra.

Theorem 3.5. Let F be a proper filter of a p-algebra L. Then the following

conditions are equivalent

(1) F is a maximal of L,

(2) x 6∈ F implies x∗ ∈ F for all x ∈ L,

(3) F is prime Boolean.

Proof. The most proof of Theorem 2.6 in [9] is still appropriate for this Theorem,
we need only to prove that F is a prime filter of L without using distributivity
in (2) ⇒ (3). Suppose that F is not prime. Let x ∨ y ∈ F such that x 6∈ F and
y 6∈ F . By condition (2), we immediately see that x∗ ∈ F and y∗ ∈ F . Hence
(x ∨ y)∗ = x∗ ∧ y∗ ∈ F . Therefore 0 = (x ∨ y) ∧ (x ∨ y)∗ ∈ F , a contradiction (as
F is a proper filter of L). This shows that F is prime.

By Definition of Boolean filter, the following lemma is obvious.

Lemma 3.6. Let L be a p-algebra. Then the following statements hold.

(1) Any filter of L containing a Boolean filter is a Boolean filter,

(2) The class BF (L) of all Boolean filters of L is a {1}-sublattice of the lattice

F (L).

We now characterize the Boolean filters of a quasi-modular p-algebra L.

Theorem 3.7. Let F be a proper filter of a quasi-modular p-algebra L. Then the

following conditions are equivalent.

(1) F is a Boolean filter;

(2) x∗∗ ∈ F implies x ∈ F ;

(3) For x, y ∈ L, x∗ = y∗ and x ∈ F imply y ∈ F .

Proof. We prove only that (1) ⇒ (2) without using distributivity. Assume that
F is a Boolean filter of L. Suppose that x∗∗ ∈ F . Since F is a Boolean filter, we
have x∨ x∗ ∈ F and so x∗∗ ∧ (x∨ x∗) ∈ F . Since L is a quasi-modular p-algebra,
it follows that x = x∗∗ ∧ (x ∨ x∗) ∈ F and condition (2) hold.

The proofs (2) ⇒ (3) and (3) ⇒ (1) are given in Theorem 2.8 of [9].
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Theorem 3.8. The class of Boolean filters BF (L)of a quasi-modular p-algebra
L forms a bounded distributive lattice on its own.

Proof. Clearly (BF (L),∨,∧,D(L), L) is a bounded lattice. For any F,H,G ∈
BF (L), we have (F ∩G) ∨ (H ∩G) ⊆ (F ∨H) ∩G. Then we have to prove that
(F ∨H)∩G ⊆ (F ∩G)∨(H∩G). Let x ∈ (F ∨H)∩G. Then by the distributivity
of B(L) and the fact that (F ∩ G) ∨ (H ∩ G) is a Boolean filter we deduce the
following implications.

x ∈ (F ∨H) ∩G ⇒ x ∈ F ∨H and x ∈ G

⇒ x ≥ f ∧ h for some f ∈ F, h ∈ H

⇒ x∗∗ ≥ (f ∧ h)∗∗ = f∗∗ ∧ h∗∗

⇒ x∗∗ = x∗∗ ▽ (f∗∗ ∧ h∗∗)

⇒ x∗∗ = (x∗∗ ▽ f∗∗) ∧ (x∗∗ ▽ h∗∗)

⇒ x∗∗ = (x ∨ f)∗∗ ∧ (x ∨ h)∗∗ ∈ (F ∩G) ∨ (H ∩G)

⇒ x ∈ (F ∩G) ∨ (H ∩G) by Theorem 3.6 (2).

Notice that (x ∨ f)∗∗ ≥ (x ∨ f) ∈ F ∩ G and (x ∨ h)∗∗ ≥ (x ∨ h) ∈ H ∩ G. It
follows that (BF (L),∨,∧,D(L), L) is a bounded distributive lattice.

4. Boolean filters via Glivenko congruence classes

In this section, we will show that, for every closed element a of a quasi-modular
p-algebra L, the congruence class Fa = [a]Φ of the Glivenko congruence relation
Φ on L generates a Boolean filter [Fa). Many properties of the Boolean filters
[Fa) for all a ∈ B(L) are discovered. Also, we derive that the set FB(L) = {[Fa) :
a ∈ B(L)} forms a Boolean algebra. It is proved that FB(L) is isomorphic to
B(L). Also we express a Boolean filter as a union of certain elements of FB(L).

Theorem 4.1. Let L be a quasi-modular p-algebra. Then for any two closed

elements a, b of L, the following statements hold.

(1) [Fa) = {x ∈ L : x∗∗ ≥ a} = [a) ∨D(L),

(2) [Fa) is a Boolean filter of L,

(3) a ≤ b in B(L) if and only if [Fb) ⊆ [Fa) in FB(L),

(4) The set FB(L) forms a Boolean algebra on its own.

Moreover, B(L) ∼= FB(L),

(5) [Fa∧b) = [Fa) ∨ [Fb),

(6) [Fa▽b) = [Fa) ∩ [Fb),

(7) [Fa∨b) = [Fa) ∩ [Fb) whenever L is a quasi-modular S-algebra.
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Proof. (1) x ∈ [Fa) if and only if there exists a positive integer n and f1, f2, . . . ,
fn ∈ Fa such that x ≥ f1 ∧ f2 ∧ . . . ∧ fn. Then f∗∗

i = a, i = 1, . . . , n. Let
H = {x ∈ L : x∗∗ ≥ a}. Clearly H is a filter of L. Firstly we verify that
[Fa) = H. Let x ∈ [Fa). Now we have the following implications.

x ∈ [Fa) ⇒ x ≥ f1 ∧ f2 ∧ . . . ∧ fn for some f1, . . . , fn ∈ Fa

⇒ x∗∗ ≥ (f1 ∧ f2 ∧ . . . ∧ fn)
∗∗

⇒ x∗∗ ≥ f∗∗
1 ∧ f∗∗

2 ∧ . . . ∧ f∗∗
n

⇒ x∗∗ ≥ a as f∗∗
i = a

⇒ x ∈ H.

Then [Fa) ⊆ H. Conversely, suppose that H 6⊆ [Fa). Then there exists y ∈ [Fa)
with y 6∈ H. Hence y ≥ f1∧f2∧ . . . fn for some f1, f2, . . . , fn ∈ Fa. It follows that
y∗∗ ≥ (f1∧f2∧. . .∧fn)

∗∗ = f∗∗
1 ∧f∗∗

2 ∧. . .∧f∗∗
n = a as f∗∗

i = a. Then y∗∗ ≥ a, which
is a contradiction. Consequently H ⊆ [Fa). Therefore [Fa) = {x ∈ L : x∗∗ ≥ a}.

Now we prove that [Fa) = [a) ∨ D(L). Let x ∈ [Fa). Then we have the
following implications.

x ∈ [Fa) ⇒ x∗∗ ≥ a

⇒ x = x∗∗ ∧ (x ∨ x∗) ≥ a ∧ (x ∨ x∗)

⇒ x ∈ [a) ∨D(L) as x ∨ x∗ ∈ D(L).

Then [Fa) ⊆ [a)∨D(L). Conversely, let y ∈ [a)∨D(L). Then y ≥ a∧ z for some
z ∈ D(L). It follows that y∗∗ ≥ (a ∧ z)∗∗ = a∗∗ ∧ z∗∗ = a ∧ 1 = a as a∗∗ = a and
z is a dense element of L. Therefore y ∈ [Fa) and [a) ∨D(L) ⊆ [Fa).

(2) By (1) above, D(L) ⊆ [Fa) for all a ∈ B(L). Now, by Lemma 3.6(1), [Fa) is
a Boolean filter of L.

(3) Let a ≤ b in B(L). Let x ∈ [Fb). Then x∗∗ ≥ b ≥ a. Hence x ∈ [Fa) and
[Fb) ⊆ [Fa) Conversely, suppose that [Fb) ⊆ [Fa). Since b ∈ Fb ⊆ [Fb) ⊆ [Fa),
then b = b∗∗ ≥ a.

(4) Define the mapping g : B(L) → FB(L) by g(a) = [Fa). It follows easily
from (3) above that g is an order anti-isomorphism between B(L) and FB(L).
Then FB(L) is a Boolean algebra and g is a Boolean anti-isomorphism. It follows
that the mapping f : B(L) → FB(L) defined by f(a) = [Fa∗) is a Boolean
isomorphism. Therefore B(L) ∼= FB(L).

(5), (6) Since g : B(L) → FB(L) defined by g(a) = [Fa) is an anti-isomorphism
by(4) above between Boolean algebras B = (B,▽,∧,∗ , 0, 1) and FB(L) =
(FB(L),∨,∩,

− ,D(L), L), where [Fa) = [Fa∗), we get
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[Fa∧b) = g(a ∧ b)

= g(a) ∨ g(b)

= [Fa) ∨ [Fb)

and

[Fa▽b) = g(a▽ b)

= g(a) ∩ g(b)

= [Fa) ∩ [Fb)

(7) If L is a quasi-modular S-algebra, then (x ∧ y)∗ = x∗ ∨ y∗ for all x, y ∈ L.
Hence for all a, b ∈ B(L) we have a▽ b = (a∗∧ b∗)∗ = a∗∗∨ b∗∗ = a∨ b. Therefore
[Fa∨b) = [Fa) ∩ [Fb) immediately follows from (6).

Corollary 4.2. Let L be a finite quasi-modular p-algebra. Then we have.

(1) Every Boolean filter can be expressed as [Fa) for some a ∈ B(L);

(2) BF (L) ∼= FB(L).

Now, we are going to represent a Boolean filter of a quasi-modular p-algebra L
as a union of certain elements of FB(L). We have the following theorem.

Theorem 4.3. Let F be a Boolean filter of L. Then F =
⋃

x∈F [Fx∗∗).

Proof. Let x ∈ F . Then x∗∗ ∈ F and x ∨ x∗ ∈ D(L) ⊆ F . Thus x = x∗∗ ∧
(x ∨ x∗) ∈ [x∗∗) ∨ D(L) = [Fx∗∗). Then F ⊆

⋃
x∈F [Fx∗∗). Conversely, let y ∈⋃

x∈F [Fx∗∗). Then y ∈ [Fz∗∗) for some z ∈ F . Hence y∗∗ ≥ z∗∗ ∈ F . Then
y∗∗ ∈ F , which implies y ∈ F as F is Boolean. Therefore

⋃
x∈F [Fx∗∗) ⊆ F .

5. Boolean filters and congruences

In this section we investigate the relationships between the set of Boolean filters
of a quasi-modular p-algebra L and the set of congruences on the interval [Φ,∇],
where ∇ is the universal congruence on L.

We first state the following lemma.

Lemma 5.1. Let θ be a congruence relation on a quasi-modular p-algebra L such

that θ ∈ [Φ,∇]. Then Cokerθ is a Boolean filter of L.

Proof. Obviously Cokerθ = {x ∈ L : (x, 1) ∈ θ} is a filter of L. For every
x ∈ L, (x ∨ x∗)∗∗ = 1 = 1∗∗. Then (x ∨ x∗, 1) ∈ Φ ⊆ θ. Hence x ∨ x∗ ∈ Cokerθ.
Therefore, Cokerθ is a Boolean filter of L.
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For a Boolean filter F of a quasi-modular p-algebra L, define a relation θF on L
as follows :

(x, y) ∈ θF ⇔ x∗∗ ∧ a = y∗∗ ∧ a for some a ∈ F ∩B(L)

We now establish the following theorem for a Boolean filter of L.

Theorem 5.2. Let F be a Boolean filter of a quasi-modular p-algebra L. Then

the following statements hold.

(1) θF is a congruence on L such that Φ ⊆ θF ;

(2) [x∗∗]θF = [x]θF , for all x ∈ L;

(3) CokerθF = F ;

(4) θD(L) = Φ and θL = ∇ whenever F is identical with D(L), respectively, L;

(5) L/θF is a Boolean algebra.

Proof. (1) Clearly, θF is an equivalence relation on L. Now we prove that θF
is a lattice congruence on L. Let (x, y), (c, d) ∈ θF . Then x∗∗ ∧ a = y∗∗ ∧ a and
c∗∗ ∧ b = d∗∗ ∧ b for some a, b ∈ F ∩B(L). Now we have the following equalities.

(x ∧ c)∗∗ ∧ (a ∧ b) = x∗∗ ∧ c∗∗ ∧ a ∧ b

= y∗∗ ∧ d∗∗ ∧ a ∧ b

= (y ∧ d)∗∗ ∧ (a ∧ b).

Then (x ∧ c, y ∧ d) ∈ θF . Now by distributivity of B(L) we have

(x ∨ c)∗∗ ∧ (a ∧ b) = (x∗ ∧ c∗)∗ ∧ (a ∧ b)

= (x∗∗∗ ∧ c∗∗∗)∗ ∧ (a ∧ b)

= (x∗∗ ▽ c∗∗) ∧ (a ∧ b)

= (x∗∗ ∧ a ∧ b)▽ (c∗∗ ∧ a ∧ b)

= (y∗∗ ∧ a ∧ b)▽ (d∗∗ ∧ a ∧ b)

= (y∗∗ ▽ d∗∗) ∧ (a ∧ b)

= (y ∨ d)∗∗ ∧ (a ∧ b).

Then (x ∨ c, y ∨ d) ∈ θFa as a ∧ b ∈ F ∩ B(L). Now we show that θF preserves
the operation ∗. Let (x, y) ∈ θF . Then x∗∗ ∧ a = y∗∗ ∧ a for some a ∈ F ∩B(L).
Now by the distributivity of B(L) we have the following set of implications.

x∗∗ ∧ a = y∗∗ ∧ a ⇒ (x∗∗ ∧ a)▽ a∗ = (y∗∗ ∧ a)▽ a∗

⇒ (x∗∗ ▽ a∗) ∧ (a▽ a∗) = (y∗∗ ▽ a∗) ∧ (a▽ a∗)

⇒ x∗∗ ▽ a∗ = y∗∗ ▽ a∗



118 A. Badawy and K.P. Shum

⇒ (x∗∗∗ ∧ a∗∗)∗ = (y∗∗∗ ∧ a∗∗)∗

⇒ (x∗∗∗ ∧ a)∗∗ = (y∗∗∗ ∧ a)∗∗

⇒ x∗∗∗ ∧ a = y∗∗∗ ∧ a

⇒ (x∗, y∗) ∈ θF .

It is immediate that θF is a congruence on L. Let (x, y) ∈ Φ. Then x∗∗ = y∗∗.
Hence, x∗∗ ∧ a = y∗∗ ∧ a, for some a ∈ F ∩B(L). Thus (x, y) ∈ θF and Φ ⊆ θF .

(2) Since x∗∗∗∗ ∧ a = x∗∗ ∧ a, (x∗∗, x) ∈ θFa, and thereby [x∗∗]θF = [x]θF , ∀x ∈ L.

(3) It is known that CokerθF = [1]θFa . Let x ∈ CokerθF . Then we get the
following implications.

x ∈ CokerθF ⇒ (x, 1) ∈ θF

⇒ x∗∗ ∧ a = 1∗∗ ∧ a for some a ∈ F ∩B(L)

⇒ x∗∗ ∧ a = a as 1∗∗ = 1

⇒ x∗∗ ≥ a ∈ F

⇒ x∗∗ ∈ F

⇒ x ∈ F as F is a Boolean filter of L.

Then CokerθF ⊆ F . Conversely, let y ∈ F . Then

y ∈ F ⇒ y∗∗ ∧ y∗∗ = y∗∗ = 1∗∗ ∧ y∗∗

⇒ (y, 1) ∈ θF as y∗∗ ∈ F ∩B(L)

⇒ y ∈ CokerθF .

Then F ⊆ CokerθF .

(4) Since D(L) ∩ B(L) = {1} and L ∩ B(L) = B(L), we deduce the following
equalities:

θD(L) = {(x, y) ∈ L× L : x∗∗ ∧ 1 = y∗∗ ∧ 1} = {(x, y) ∈ L× L : x∗∗ = y∗∗} = Φ,

θL = {(x, y) ∈ L× L : x∗∗ ∧ 0 = y∗∗ ∧ 0} = {(x, y) ∈ L× L : x, y ∈ L}

= L× L = ∇.

(5) From (2) we have, L/θF = {[x]θF : x ∈ L} = {[x∗∗]θF : x ∈ L}. Let
[x]θF , [y]θF , [z]θF ∈ L/θF . Then

[x]θF ∧ ([y]θF ∨ [z]θF ) = [x ∧ (y ∨ z)]θF

= [(x ∧ (y ∨ z))∗∗]θF

= [x∗∗ ∧ (y ∨ z)∗∗]θF
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= [x∗∗ ∧ (y∗∗ ▽ z∗∗)]θF

= [(x∗∗ ∧ y∗∗)▽ (x∗∗ ∧ z∗∗)]θF

= [(x ∧ y)∗∗ ▽ (x ∧ z)∗∗]θF

= [((x ∧ y) ∨ (x ∧ z))∗∗]θF

= [(x ∧ y) ∨ (x ∧ z)]θF

= [x ∧ y]θF ∨ [x ∧ z]θF

= ([x]θF ∧ [y]θF ) ∨ ([x]θF ∧ [z]θF ).

This shows that L/θF is a distributive lattice. Clearly, [0]θF and [1]θF = F are
the zero and the unit elements of L/θF . This shows that L/θF is a bounded
distributive lattice. Now we proceed to show that every [x]θF of L/θF has a
complement. Since x ∧ x∗ = 0, [x]θF ∧ [x∗]θF = [x ∧ x∗]θF = [0]θF . Since F is a
Boolean filter, x∨x∗ ∈ F . Hence, we have [x]θF ∨ [x∗]θF = [x∨x∗]θF = F . Thus
we have proved that L/θF is a Boolean algebra.

Now, let F = [Fa) be a Boolean filter of L for some a ∈ B(L). Then a ∈ F ∩B(L).
For brevity, we write θFa instead of θ[Fa).

In the following Corollary, we state some congruence properties of a quasi-
modular p-algebra.

Corollary 5.3. Let L be a quasi-modular p-algebra. Then the following state-

ments hold.

(1) (x, y) ∈ θFa ⇔ x∗∗ ∧ a = y∗∗ ∧ a,

(2) CokerθFa = [Fa) and KerθFa = (a∗],

(3) θF1 = Φ and θF0 = ∇.

Proof. (1) Let (x, y) ∈ θFa. Then

(x, y) ∈ θFa ⇒ x∗∗ ∧ b = y∗∗ ∧ b for some b ∈ [Fa) ∩B(L)

⇒ x∗∗ ∧ b ∧ a = y∗∗ ∧ b ∧ a

⇒ x∗∗ ∧ a = y∗∗ ∧ a as b = b∗∗ ≥ a

Conversely, let x∗∗ ∧ a = y∗∗ ∧ a. Then (x, y) ∈ θFa as a ∈ [Fa) ∩B(L).

(2) By Theorem 5.2(3), we have CokerθFa = [Fa). Now we prove the second
equality in (2) as follows:

KerθFa = {x ∈ L : (x, 0) ∈ θFa}

= {x ∈ L : x∗∗ ∧ a = 0∗∗ ∧ a}

= {x ∈ L : x∗∗ ∧ a = 0} as 0∗∗ = 0

= {x ∈ L : x ≤ x∗∗ ≤ a∗}

= (a∗].
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(3) Using Theorem 5.2(4), we get θF1 = θD(L) = Φ and θF0 = θ[F0) = θL = ∇

By combining Lemma 5.1 and Theorem 5.2(1), (3) we establish the following
characterization theorem of a Boolean filter of L.

Theorem 5.4. A filter F of a quasi-modular p-algebra L is a cokernel of a

congruence θ ∈ [Φ,∇] if and only if F is a Boolean filter.

Consider ConB(L) = {θFa : a ∈ B(L)}, we observe that ConB(L) is a partially
ordered set under set inclusion. We now study properties of the elements in the
set ConB(L).

Theorem 5.5. Let L be a quasi-modular p-algebra. Then for every a, b ∈ B(L),
the following statement hold in ConB(L).

(1) a ≤ b if and only if θFb
⊆ θFa,

(2) The set ConB(L) is a Boolean algebra on its own. Moreover, FB(L) ∼=
ConB(L),

(3) θFa ⊔ θFb
= θFa∧b

and θFa ⊓ θFb
= θFa▽b

,

(4) θFa ⊓ θFa∗
= Φ and θFa ⊔ θFa∗

= ∇.

Proof. (1) Let a ≤ b and (x, y) ∈ θFb
. Then x∗∗∧b = y∗∗∧b. Hence x∗∗∧b∧a =

y∗∗ ∧ b ∧ a. This leads to x∗∗ ∧ a = y∗∗ ∧ a. Thus (x, y) ∈ θFa and θFb
⊆ θFa.

Conversely, let θFb
⊆ θFa. Then we have (b, 1) ∈ θFb

⊆ θFa. This implies that
b ∧ a = 1 ∧ a = a. Thus a ≤ b.

(2) Define the mapping Ψ : B(L) → ConB(L) as follows :

Ψ(a) = θFa for all a ∈ B(L).

By (1) above, Ψ is an order anti-isomorphism between B(L) and ConB(L). This
immediately implies that ConB(L) is a Boolean algebra. Now if we define the
mapping f : B(L) → ConB(L) by f(a) = θFa∗

, then f is an isomorphism between
Boolean algebras B(L) and ConB(L). ThenB(L) ∼= ConB(L) andB(L) ∼= FB(L)
imply FB(L) ∼= ConB(L).

(3) Since by (2) above Ψ is a anti-isomorphism, we have Ψ(a ∧ b) = Ψ(a) ⊔Ψ(b)
and Ψ(a▽ b) = Ψ(a)⊓Ψ(b), where ⊔ and ⊓ are the join and meet operations on
ConB(L). Now

θFa ⊔ θFb
= Ψ(a) ⊔Ψ(b) = Ψ(a ∧ b) = θFa∧b

and

θFa ⊓ θFb
= Ψ(a) ⊓Ψ(b) = Ψ(a▽ b) = θFa▽b

.
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(4) From (3) above we have

θFa ⊓ θFa∗
= θFa▽a∗

= θF1 = Φ

and

θFa ⊔ θFa∗
= θFa∧a∗

= θF0 = ∇.

Therefore ConB(L) = (ConB(L),⊔,⊓,
− ,Φ,∇), where θFa = θFa∗

is the com-
plement of θFa on ConB(L) and Φ,∇ are the smallest and greatest elements of
ConB(L) respectively.

In the following Corollary an isomorphism between the sublattice [Φ,∇] of Con(L)
and the lattice BF (L) of all Boolean filters of L is obtained.

Corollary 5.6. Let L be a finite quasi-modular p-algebra. Then [Φ,∇] ∼= BF (L).

Proof. Since L is finite, BF (L) = FB(L) and hence ConB(L) = [Φ,∇]. By the
above Theorem 5.5 (2), we deduce that BF (L) ∼= [Φ,∇].

6. Congruences and direct product of Boolean filters

Let L1 and L2 be two p-algebras. Then the direct product L1 × L2 is also a
p-algebra, where ∗ is defined on L1 × L2 by (a, b)∗ = (a∗, b∗). Now we study the
direct product of Boolean filters of p-algebras. Some properties of congruences
with respect to direct product are given.

We first consider the Boolean filters of the p-algebras in the following theorem.

Theorem 6.1. If F1 and F2 are Boolean filters of p-algebras L1 and L2 respec-

tively, then F1 × F2 is a Boolean filter of L1 × L2. Conversely, every Boolean

filter F of L1×L2 can be expressed as F = F1×F2 where F1 and F2 are Boolean

filters of L1 and L2 respectively.

Proof. Let F1 and F2 be Boolean filters of L1 and L2 respectively. Then, it is
clear that F1 ×F2 is a filter of L1×L2. Since F1 and F2 are Boolean filters of L1

and L2 respectively, we get a ∨ a∗ ∈ F1 for each a ∈ L1 and b ∨ b∗ ∈ F2 for each
b ∈ L2. Hence we have (a, b)∨ (a, b)∗ = (a, b)∨ (a∗, b∗) = (a∨a∗, b∨ b∗) ∈ F1×F2

This shows that F1 × F2 is a Boolean filter of L1 × L2. Conversely, if F is a
Boolean filter of L1 × L2, then we consider F1 and F2 as follows:

F1 = {x ∈ L1 : (x, 1) ∈ F} and F2 = {y ∈ L2 : (1, y) ∈ F}
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Clearly F1 and F2 are filters of L1 and L2 respectively. We now prove that F1

and F2 are Boolean filters of L1 and L2 respectively. For all x ∈ F1, we have
(x, 1) ∈ F . Since F is Boolean, (x ∨ x∗, 1) = (x, 1) ∨ (x, 1)∗ ∈ F . Hence, we have
x ∨ x∗ ∈ F1. Therefore, F1 is a Boolean filter of L1. Similarly, F2 is a Boolean
filter of L2. Now we prove that F = F1 ×F2. For this purpose, we let (x, y) ∈ F.
Then we have the following implications.

(x, y) ∈ F ⇒ (x, 1) ∈ F and (1, y) ∈ F

⇒ x ∈ F1 and y ∈ F2

⇒ (x, y) ∈ F1 × F2.

Hence, F ⊆ F1×F2. Conversely, if (x, y) ∈ F1×F2, then the following implications
hold.

(x, y) ∈ F1 × F2 ⇒ x ∈ F1 and y ∈ F2

⇒ (x, 1) ∈ F and (1, y) ∈ F

⇒ (x, y) = (x, 1) ∧ (1, y) ∈ F.

Consequently, we have F1 × F2 ⊆ F . This shows that F1 × F2 = F .

In closing this paper, we state two equalities concerning Boolean filters of quasi-
modular p-algebras.

Theorem 6.2. Let [Fa) and [Fb) be two Boolean filters of the quasi-modular

p-algebras L1 and L2, respectively. Then

(1) [Fa)× [Fb) = [F(a,b))

(2) θFa×Fb
= θF(a,b)

.

Proof. (1) From the above Theorem 6.1, we see immediately that [Fa)× [Fb) is
a Boolean filter of L1 × L2. Now, we have

(x, y) ∈ [Fa)× [Fb) ⇔ x ∈ [Fa) and y ∈ [Fb)

⇔ x∗∗ ≥ a and y∗∗ ≥ b

⇔ (x, y)∗∗ = (x∗∗, y∗∗) ≥ (a, b)

⇔ (x, y) ∈ [F(a,b)).

Therefore, [Fa)× [Fb) = [F(a,b)).

(2) By (1), we obtain θFa×Fb
= θ[Fa)×[Fb) = θ[F(a,b)) = θF(a,b)

.
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