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Abstract

The concept of Boolean filters in p-algebras is introduced. Some prop-
erties of Boolean filters are studied. It is proved that the class of all
Boolean filters BF (L) of a quasi-modular p-algebra L is a bounded dis-
tributive lattice. The Glivenko congruence ® on a p-algebra L is defined
by (z,y) € @ iff #** = y**. Boolean filters [F,),a € B(L), generated by
the Glivenko congruence classes F,, (where F, is the congruence class [a]®)
are described in a quasi-modular p-algebra L. We observe that the set
Fp(L) = {[F,) : a € B(L)} is a Boolean algebra on its own. A one-one
correspondence between the Boolean filters of a quasi-modular p-algebra L
and the congruences in [®, V] is established. Also some properties of congru-
ences induced by the Boolean filters [F,),a € B(L) are derived. Finally, we
consider some properties of congruences with respect to the direct products
of Boolean filters.
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1. INTRODUCTION

The notion of pseudo-complements was introduced in semi-lattices and distribu-
tive lattices by O. Frink [7] and G. Birkhof [3]. The pseudo-complements in
Stone algebras were studied and discussed by R. Balbes [1], O. Frink [7] and G.
Grétzer [4] etc. Recently, the concept of Boolean filter of pseudo-complemented
distributive lattices was introduced by M. Sambasiva Rao and K.P. Shum in [9].

In this paper, we further study the Boolean filters in a p-algebra L and many
properties of Boolean filters are also given. We observe that every maximal filter
of L is a Boolean filter, however the converse of this statement is not true. It
is observed that a filter F' of a p-algebra L is a prime Boolean filter if and only
if it is a maximal filter. We will give a characterization theorem of Boolean
filters of a quasi-modular p-algebra L. We also notice that the set of all Boolean
filters of a quasi-modular p-algebra forms a bounded distributive lattice. Then,
we introduce a Boolean filter [F}) which is generated by the congruence class
F, (notice that [z]® is denoted by F,) of the Glivenko congruence relation ®
on L, where a is a closed element of a quasi-modular p-algebra L. It is proved
that the set Fp(L) = {[F,) : a € B(L)} forms a Boolean algebra on its own.
We also observe that Fp(L) is isomorphic to B(L). The relationship between
the Boolean filters and the congruences in [®, V] of a quasi-modular p-algebra L
is introduced. It is proved that there is a one-one correspondence between the
congruences in [®, V] and the Boolean filters of L. We also prove that the Boolean
algebras Fpp(L) and Conp(L) = {0|f,) : a € B(L)} are isomorphic, where 0, is
the congruence on L induced by a Boolean filter F, for a closed element a of L.
Moreover, we show that the Boolean algebra Conpg(L) can be embedded into the
interval [®, V] of Con(L). It is proved that the lattice of all Boolean filters of a
finite quasi-modular p-algebra L is isomorphic to the sublattice [®, V] of Con(L).
Finally, some properties of congruences with respect to the direct products of
Boolean filters are explored and investigated.

Several results of [9] are still possible for p-algebras or quasi-modular p-
algebras. Namely, Lemma 3.2, Lemma 3.3, Theorem 3.4, Theorem 3.6 and The-
orem 6.1 correspond respectively to Proposition 2.3, Corollary 2.4, Theorem 2.6,
Theorem 2.8 and Theorem 2.10 from [9].

2. PRELIMINARIES

In this section, we cite some known definitions and basic results which can be
found in the papers [2, 5, 6, 7, 8] and [10].

A p-algebra is a universal algebra (L,V,A,*,0,1), where (L,V,A,0,1) is a
bounded lattice and the unary operation * is defined by xt Aa =0 < = < a*.

It is well known that the class of all p-algebras is equational. We now call
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a p-algebra L distributive (modular) if the lattice (L,V,A,0,1) is distributive
(modular). The variety of modular p-algebras contains the variety of distributive
p-algebras. We call a p-algebra quasi-modular if ((x Ay)V 2z*) Az = (x Ay) V
(z** Ax). Clearly, the class of all modular p-algebras is a subclass of the class of
quasi-modular p-algebras. If the Stone identity z* V ** = 1 holds in a p-algebra,
then we simply call this p-algebra an S-algebra. We usually call a distributive
S-algebra a Stone algebra.

An element a of a p-algebra L is called closed if a** = a. Then B(L) =
{a € L : a = a™} is the set of all closed elements of L. It is known that
(B(L),/,N,0,1), where a7 b = (a* A b*)*, forms a Boolean algebra. The set
D(L)={x € L:x*=0}={xVa*:z e L} of all dense elements of L is a filter
of L. If L is an S-algebra, then (z Ay)* = 2* vV y* for all z,y € L. It follows that
asxyb=aVbforall a,be B(L).

For an arbitrary lattice L, the set F'(L) of all filters of L ordered by the set
inclusion forms a lattice. It is known that F'(L) is modular (distributive) if and
only if L is a modular (distributive) lattice. Let a € L and [a) be the principal
filter of L generated by a : [a) ={x € L : x > a}. A proper filter P of L is called
prime if x Vy € P implies x € P or y € P for all x,y € L. We call a proper filter
M of L maximal if M C G for no proper filter G.

The following results on quasi-modular p-algebras may be found in [8].

Let L be a quasi-modular p-algebra. Then every element z € L can be repre-
sented by x = ™ A (x Vz*), where z** € B(L) and xVa* € D(L). The relation ®
of a quasi-modular p-algebra L is defined by (z,y) € ® < 2™ = y*™* and is called
the Glivenko congruence relation. It is known that the Glivenko congruence is
indeed a congruence on L such that L/® = B(L) holds. Every congruence class
of ® contains exactly one element of B(L) which is the greatest element in the
congruence class, the greatest element of a congruence class [z]® is **. Hence
& partitions L into {F}, : a € B(L)}, where F,, = {x € L : 2™ = a} = [a]®. It is
clear that Fy = {0} and F; = D(L).

We frequently use the following rules in the computations of p-algebras (see
[5, 10]):

(1) 0* =0and 1™ =1;

(2) ana* =0

(3) a < b implies b* < a*;

(4) a<a*

(5) a™* = a*;

(6) (aVb)* =a* Ab*;

(7) (aND)* > a* Vb

(8) (aAb)™ =a* Ab*;

(9) (aVb)y™ = (a* Ab*)* = (a* Vv b*)
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3. BOOLEAN FILTERS OF p-ALGEBRAS

In this section, we introduce the concept of Boolean filter of a p-algebra. Some
properties of Boolean filters in a p-algebra are derived. We show that the maximal
filter and prime Boolean filter of a p-algebra are equivalent. A characterization
theorem of Boolean filters of a quasi-modular p-algebra will be given. Also we
will prove that the set of all Boolean filters of a quasi-modular p-algebra is a
bounded distributive lattice.

Definition 3.1. Let L be a p-algebra. Then, we call a filter F' of L a Boolean
filter if x vV x* € F for each x € L.

We now give some examples of Boolean filters of a p-algebra L.

Example 3.2. (1) Let L be a p-algebra. Then the filter D(L) is a Boolean filter
of Las xVa* € D(L) for all x € L. Moreover D(L) is the smallest Boolean filter
of L and L is the greatest Boolean filter of L;

(2) Let B be a Boolean algebra. Then any filter F' of B is a principal Boolean
filter as x Va* =1 € F for each x € B;

(3) Let Cy = {0,a,b,c : 0 < a,b < ¢} be a four element Boolean lattice
and a pentagon N5 = {u,z,y,2,l tu <z <y< lL,u<z<l,zAz=yA
z=wu,xVz=yVz=1}Clearly L = Cy& N5 is a quasi-modular p-algebra
where @ stands for ordinal sum. Then the set of all Boolean filters of L is
He,u, 2,9, 2,1} {a, c,u, z,y, 2,1}, {b, ¢, x,y, 2,1}, L};

We observe that the filters {z,y, 1}, {y, 1}, {2, 1}, {u, z,y, 2,1} and {1} are not
Boolean filters.

The results in Corollary 2.4, Theorem 2.6 and Theorem 2.8 from [9] are already
stated for the class of all bounded distributive pseudocomplemented lattices. Now
we have the following Lemma

Lemma 3.3. Every maximal filter of a p-algebra L is a Boolean filter.

Proof. Let M be a maximal filter of L. Suppose that x V z* € M for some
x € L. Then MV [xVa*) = L. Hence a Ab = 0 for some a € M,b € [xV x*).
Now we have the following implications:

anNb=0 = 0=aAb>aAN(xzVz")>(aAx)V(aAz")
= aNzxz=0andaAz*=0
= a<z"and a<z™
= a<z*ANz™¥ =0

This result leads to 0 = ¢ € M which is a contradiction. Hence z V 2* € M for
all x € L. Therefore, M is a Boolean filter of L. [ |
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We note that it is not true that every Boolean filter of L is a maximal filter.
For, in Example 3.1(3), the filter {c,u,z,y, 2,1} of L is a Boolean filter but not
a maximal filter of L.

The proof of Corollary 2.4 of [9] is still appropriate for the following Lemma.

Lemma 3.4. A proper filter of a p-algebra L which contains either x or x* for
all x € L is a Boolean filter.

Now, we characterize the maximal filters of a p-algebra.

Theorem 3.5. Let F' be a proper filter of a p-algebra L. Then the following
conditions are equivalent

(1) F is a maximal of L,
(2) « & F implies x* € F for all x € L,
(3) F is prime Boolean.

Proof. The most proof of Theorem 2.6 in [9] is still appropriate for this Theorem,
we need only to prove that F' is a prime filter of L without using distributivity
in (2) = (3). Suppose that F is not prime. Let z Vy € F such that = ¢ F and
y ¢ F. By condition (2), we immediately see that * € F and y* € F. Hence
(xVy)* =a* Ay* € F. Therefore 0 = (zVy) A (xVy)* € F, a contradiction (as
F is a proper filter of L). This shows that F' is prime. [ |

By Definition of Boolean filter, the following lemma is obvious.

Lemma 3.6. Let L be a p-algebra. Then the following statements hold.

(1) Any filter of L containing a Boolean filter is a Boolean filter,

(2) The class BF(L) of all Boolean filters of L is a {1}-sublattice of the lattice
F(L).

We now characterize the Boolean filters of a quasi-modular p-algebra L.

Theorem 3.7. Let F be a proper filter of a quasi-modular p-algebra L. Then the
following conditions are equivalent.

(1) F is a Boolean filter;

(2) «** € F implies x € F;

(3) Forxz,y € Lyx* =y* and x € F imply y € F.

Proof. We prove only that (1) = (2) without using distributivity. Assume that
F' is a Boolean filter of L. Suppose that ** € F. Since F' is a Boolean filter, we

have x Vx* € F and so 2** A (z Va*) € F. Since L is a quasi-modular p-algebra,
it follows that x = ™ A (z V 2*) € F and condition (2) hold.

The proofs (2) = (3) and (3) = (1) are given in Theorem 2.8 of [9]. |
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Theorem 3.8. The class of Boolean filters BF(L)of a quasi-modular p-algebra
L forms a bounded distributive lattice on its own.

Proof. Clearly (BF(L),V,A,D(L),L) is a bounded lattice. For any F, H,G €
BF(L), we have (FNG)V (HNG) C (FV H)NG. Then we have to prove that
(FVH)NG C (FNG)V(HNG). Let x € (FVH)NG. Then by the distributivity
of B(L) and the fact that (FNG)V (H NG) is a Boolean filter we deduce the
following implications.

€e(FVH)NG = z€eFVHandzed

= x> fAhforsome fe FFhe H
z* (m\/f)** (xvh)**e(FmG)\/(HmG)
z € (FNG)V (HNG) by Theorem 3.6 (2).

Ll

Notice that (zV f)*™* > (zVv f) € FNG and (xVh)™ > (xVh) € HNG. It
follows that (BF(L),V,A,D(L), L) is a bounded distributive lattice. ]

4. BOOLEAN FILTERS VIA GLIVENKO CONGRUENCE CLASSES

In this section, we will show that, for every closed element a of a quasi-modular
p-algebra L, the congruence class F, = [a]® of the Glivenko congruence relation
® on L generates a Boolean filter [F,). Many properties of the Boolean filters
[F,) for all a € B(L) are discovered. Also, we derive that the set Fp(L) = {[F,) :
a € B(L)} forms a Boolean algebra. It is proved that Fp(L) is isomorphic to
B(L). Also we express a Boolean filter as a union of certain elements of F(L).

Theorem 4.1. Let L be a quasi-modular p-algebra. Then for any two closed
elements a,b of L, the following statements hold.

(1) [Fo) ={z € L:a2™ > a} = [a) vV D(L),
(2) [Fy) is a Boolean filter of L,

(3) a <bin B(L) if and only if [Fy) C [F,) in Fp(L),
(4) The set Fg(L) forms a Boolean algebra on its own.
Moreover, B(L) = Fg(L),

(5) [Fans) = [Fa) V [Fb),

(6) [Fags) = [Fa) N [Fb),

(7) [Favp) = [Fa) N

[Fy) whenever L is a quasi-modular S-algebra.
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Proof. (1) x € [F,) if and only if there exists a positive integer n and f1, fa,...,
fn € Fy such that x > fi A fo A... A fr. Then f = a,i = 1,...,n. Let

={z € L: 2" > a}. Clearly H is a filter of L. Firstly we verify that
[F,) = H. Let x € [F,). Now we have the following implications.

x € [Fy) > fiNfaN...A fp for some f1,..., fn € F,

( 1/\f2/\.../\fn)**
TN N N
a

i

Then [F,) C H. Conversely, suppose that H ¢ [F,). Then there exists y € [Fy)
with y € H. Hencey > fiAfoA... f for some fi, fo,..., fn € Fy. It follows that
v > (finfa Af) = [ENFSN A = aas f7* = a. Theny™ > a, which
is a contradiction. Consequently H C [F,). Therefore [F,) ={z € L: x™ > a}.

Now we prove that [F,) = [a) V D(L). Let = € [F,). Then we have the
following implications.

ze[F,) = ™>a
= z=x"N@Vz")>aN(zVz")
= x€la)VD(L)aszVz" e D).

Then [F,) C [a)V D(L). Conversely, let y € [a)V D(L). Then y > a A z for some
z € D(L). It follows that y** > (a A 2)" =a*™* A z" =aAl=aasa™ =a and
z is a dense element of L. Therefore y € [F,) and [a) V D(L) C [Fy).

(

(2) By (1) above, D(L) C [F,) for all @ € B(L). Now, by Lemma 3.6(1), [F}) is
a Boolean filter of L.

(3) Let @ < bin B(L). Let x € [Fp). Then z** > b > a. Hence = € [F,) and
[Fp) C [F,) Conversely, suppose that [F) C [F,). Since b € Fy, C [F},) C [Fy),
then b = b** > q.

(4) Define the mapping g : B(L) — Fp(L) by g(a) = [F,). It follows easily
from (3) above that g is an order anti-isomorphism between B(L) and Fp(L).
Then Fp(L) is a Boolean algebra and g is a Boolean anti-isomorphism. It follows
that the mapping f : B(L) — Fp(L) defined by f(a) = [F,+) is a Boolean
isomorphism. Therefore B(L) = Fp(L).

(5), (6) Since g : B(L) — Fp(L) defined by g(a) = [F,) is an anti-isomorphism
by(4) above between Boolean algebras B = (B,s7,A,*,0,1) and Fp(L) =
(Fp(L),V,Nn,”,D(L), L), where [F,) = [Fy), we get
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[Fare) = g(aADb)
= g(a) vV g(b)
= [Fa) v [Fb)

and

[Fup) = g(a 7 b)
= g(a) N g(b)
- [Fa) N [Fb)

(7) If L is a quasi-modular S-algebra, then (z A y)* = z* V y* for all z,y € L.
Hence for all a,b € B(L) we have a7 b = (a* Ab*)* = a™ V™ = aVb. Therefore
[Favp) = [Fa) N [Fp) immediately follows from (6). ]

Corollary 4.2. Let L be a finite quasi-modular p-algebra. Then we have.
(1) Ewvery Boolean filter can be expressed as [Fy) for some a € B(L);
(2) BF(L) = Fp(L).

Now, we are going to represent a Boolean filter of a quasi-modular p-algebra L
as a union of certain elements of Fp(L). We have the following theorem.

Theorem 4.3. Let F' be a Boolean filter of L. Then F =, p[Fup*)-

Proof. Let x € F. Then ™ € F and z V z* € D(L) C F. Thus z = =™ A
(xVa*) e [z)V D(L) = [Fp+). Then F C |J,cp[Fr+). Conversely, let y €
UzepFo=). Then y € [F.«) for some z € F. Hence y** > z** € F. Then
y** € F, which implies y € I' as I' is Boolean. Therefore | J,p[Fy+) C F. ]

zeF

5. BOOLEAN FILTERS AND CONGRUENCES

In this section we investigate the relationships between the set of Boolean filters
of a quasi-modular p-algebra L and the set of congruences on the interval [®, V],
where V is the universal congruence on L.

We first state the following lemma.

Lemma 5.1. Let 0 be a congruence relation on a quasi-modular p-algebra L such
that 0 € [®,V]. Then Coker6 is a Boolean filter of L.

Proof. Obviously Cokerf = {x € L : (x,1) € 6} is a filter of L. For every
ze L, (xVva*)* =1=1%. Then (x Vz*,1) € & C 0. Hence z V z* € Cokerf.
Therefore, Coker6 is a Boolean filter of L. [ |
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For a Boolean filter F' of a quasi-modular p-algebra L, define a relation 6 on L
as follows :

(x,y) € 0p & ™ Na=y*™* Aa for some a € FNB(L)
We now establish the following theorem for a Boolean filter of L.

Theorem 5.2. Let F' be a Boolean filter of a quasi-modular p-algebra L. Then

the following statements hold.

(1) OF is a congruence on L such that ® C Op;

) [**]0F = [x]0F, for all x € L;

) Cokerfp = F

4) Op(r) = ® and 0, =V whenever I is identical with D(L), respectively, L;
)

Proof. (1) Clearly, 0 is an equivalence relation on L. Now we prove that 0p
is a lattice congruence on L. Let (z,y), (¢,d) € Op. Then z** Aa = y™* A a and
& ANb=d* Ab for some a,b € FFN B(L). Now we have the following equalities.

(xAS)" A(aNb) = 2 AN NaAb
=y ANd"ANaAND
= (yANd)™ A (aADb).

Then (z Ac,y Ad) € Or. Now by distributivity of B(L) we have

(xVe) " ANaNnb) = (2" ANc)" A(aADb)
(@™ v ™) A(anbd)
= (™ /\a/\b)v(c**/\a/\b)
(Y*ANaAb)s7 (d* ANaAbd)
(Y™ 7 d™) A (anb)
(yVd)™ A(aAb).

Then (z Ve,yVd) € 0p, asaANbe FNB(L). Now we show that §r preserves
the operation *. Let (z,y) € 0. Then 2** A a = y** A a for some a € FN B(L).
Now by the distributivity of B(L) we have the following set of implications.

*Na=y" Na = (@ Na)yva =Uy"Na)va
= (@7 va)n(eva)=(y" vad)Ar(eva)
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= 2" Na=y""Na
= (2%, y") €bp

It is immediate that 6p is a congruence on L. Let (z,y) € ®. Then ™ = y**.
Hence, z** A a = y** A a, for some a € F N B(L). Thus (z,y) € 0 and ® C 6.

(2) Since z**** Na = x** ANa, (x**,z) € 0F,, and thereby [x**|0r = [z]0F, Vx € L.

(3) It is known that Cokerfp = [1]0p,. Let x € Cokerfp. Then we get the
following implications.

x € Cokerfp = (z,1) € 0p
= ™ ANa=1" Aa for some a € FNB(L)
= ™ ANa=aas1™ =1
= ™ >aqcF
= el
= 1z € F as F'is a Boolean filter of L.

Then Cokerfr C F. Conversely, let y € F. Then

= (y,1) €bpasy™ e FNB(L)

= y € Cokerfp.
Then F' C Cokerfp.
(4) Since D(L) N B(L) = {1} and LN B(L) = B(L), we deduce the following
equalities:
Oy = {(x,y) eLxL:a"" ANl =y A1} ={(z,y) EL x L: 2" =y} =,

0 = {(z,y) eLXL: 2™ N0O=y"* A0} ={(z,y) e LXx L:xz,y€ L}
=LxL=V.

(5) From (2) we have, L/0p = {[z]0p : = € L} = {[2*]0p : x € L}. Let
[w]@F, [y]HF, [Z]HF S L/QF Then

[2]0F A ([Y)0F V [2]0F) = [z A (yV 2)|0F
= [(xA(yV2)"0F
= [ AN (yV2)"0F
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Kok

= [ Ay v 27)]0F
2 AY™) Y (@7 A 20r
x Ay 7 (A 2)"0F
(z A y) (@ A Z))**]QF
x A\ ]GF Viz A Z]HF

= ([l0r A [yl0r) v ([2]0F A [2]0F).
This shows that L/6p is a distributive lattice. Clearly, [0]0F and [1]0Fp = F are
the zero and the unit elements of L/0p. This shows that L/0r is a bounded
distributive lattice. Now we proceed to show that every [z|0p of L/0r has a
complement. Since xz A x* =0, [z]0F A [z¥]0F = [z A 2¥]0F = [0]0F. Since F is a
Boolean filter, z V2* € F. Hence, we have [z|0F V [2*]0p = [V 2*]0p = F. Thus
we have proved that L/0 is a Boolean algebra. [ |

[(2”
[(
= [
[(z A
[

Now, let F' = [F,) be a Boolean filter of L for some a € B(L). Thena € FNB(L).
For brevity, we write 0, instead of 0r,).

In the following Corollary, we state some congruence properties of a quasi-
modular p-algebra.

Corollary 5.3. Let L be a quasi-modular p-algebra. Then the following state-
ments hold.

(1) (z,y) €0p, & 2™ Na=y" Aa,

(2) Cokerfp, = [F,) and Kerfp, = (a*],
(3) O, =® and O, = V.

Proof. (1) Let (x,y) € 0p,. Then

(z,y) €0p, = 2 ANb=y"™ Abfor some b e [F,) N B(L)

= 2AbANa=y" ANbAa

= 2" Na=y"Naasb=b">a
Conversely, let 2** Aa = y™ Aa. Then (z,y) € 0, as a € [F,) N B(L).
(2) By Theorem 5.2(3), we have Cokerfr, = [F,). Now we prove the second
equality in (2) as follows:

Kerfp, = {re€L:(z,0)€bp,}

{zel:x™Na=0" Na}
{reL:2™Na=0}as0™ =0
={rel:z<z™<a}

= (a”].
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(3) Using Theorem 5.2(4), we get 0 = 0p)y = ® and O, =Op) =0, =V =

By combining Lemma 5.1 and Theorem 5.2(1), (3) we establish the following
characterization theorem of a Boolean filter of L.

Theorem 5.4. A filter F' of a quasi-modular p-algebra L is a cokernel of a
congruence 0 € [®,V] if and only if F' is a Boolean filter.

Consider Cong(L) = {0F, : a € B(L)}, we observe that Conpg(L) is a partially
ordered set under set inclusion. We now study properties of the elements in the
set Conp(L).

Theorem 5.5. Let L be a quasi-modular p-algebra. Then for every a,b € B(L),
the following statement hold in Conpg(L).
(1) a <bif and only if OF, C OF,,

(2) The set Cong(L) is a Boolean algebra on its own. Moreover, Fp(L)
Conp(L),

(3) QFa LJ@Fb = 0Fa/\b and QFa M an = aFavlﬂ
(4) QFa I_IHFa* =& and QFa U QFG* = V.

~

Proof. (1) Let a < b and (z,y) € 0F,. Then 2™ Ab = y** Ab. Hence z** AbAa =
y*™* Ab A a. This leads to 2** Aa = y** Aa. Thus (z,y) € 0p, and 0, C 0F,.
Conversely, let 65, C 0fp,. Then we have (b,1) € 0, C 0p,. This implies that
bANa=1ANa=a. Thusa <b.

(2) Define the mapping ¥ : B(L) — Conpg(L) as follows :
U(a) = 0F, for all a € B(L).

By (1) above, ¥ is an order anti-isomorphism between B(L) and Conp(L). This
immediately implies that Conpg(L) is a Boolean algebra. Now if we define the
mapping [ : B(L) = Cong(L) by f(a) = 0F,., then f is an isomorphism between
Boolean algebras B(L) and Conpg(L). Then B(L) = Conpg(L) and B(L) = Fp(L)
imply Fp(L) = Conpg(L).

(3) Since by (2) above V¥ is a anti-isomorphism, we have W(a A b) = ¥(a) L U(b)
and U(a<7b) = ¥(a) M¥(b), where Ll and M are the join and meet operations on
Conpg(L). Now

QFa (] HFb = \I/(a) (] \I/(b) = \I/(a VAN b) = QFaAb
and

HFa |_|0Fb = \If(a) M \If(b) = \If(av b) = Hpavb.
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(4) From (3) above we have

aFal—IaFa* :HFava* :HFI :(b
and
HFa ] HFa* = HFa/\a* = HFO =V.

Therefore Cong(L) = (Cong(L),U,M,~,®,V), where 0, = 0r,. is the com-
plement of 0z, on Cong(L) and @,V are the smallest and greatest elements of
Conpg(L) respectively. |

In the following Corollary an isomorphism between the sublattice [®, V] of Con(L)
and the lattice BF (L) of all Boolean filters of L is obtained.

Corollary 5.6. Let L be a finite quasi-modular p-algebra. Then [®,V] = BF(L).

Proof. Since L is finite, BF(L) = Fp(L) and hence Cong(L) = [®,V]. By the
above Theorem 5.5 (2), we deduce that BF(L) = [®, V]. |

6. CONGRUENCES AND DIRECT PRODUCT OF BOOLEAN FILTERS

Let L1 and Lo be two p-algebras. Then the direct product L X Lo is also a
p-algebra, where * is defined on Ly x Ly by (a,b)* = (a*,b*). Now we study the
direct product of Boolean filters of p-algebras. Some properties of congruences
with respect to direct product are given.

We first consider the Boolean filters of the p-algebras in the following theorem.

Theorem 6.1. If Fy and F5 are Boolean filters of p-algebras L1 and Lo respec-
tively, then Fy X Fy is a Boolean filter of L1 x Lo. Conversely, every Boolean
filter F of L1 X Lo can be expressed as F' = Fy X Fy where Fy and Fy are Boolean
filters of L1 and Ly respectively.

Proof. Let Fy and F5 be Boolean filters of Ly and Lo respectively. Then, it is
clear that F; x Fj is a filter of L1 X Lg. Since F; and F5 are Boolean filters of Ly
and Lo respectively, we get a V a* € I} for each a € L; and bV b* € F5 for each
b € Ly. Hence we have (a,b)V (a,b)* = (a,b) V (a*,b*) = (aVa*,bVb*) € F| x Fy
This shows that F; x F5 is a Boolean filter of L x Lo. Conversely, if F is a
Boolean filter of L1 x Lo, then we consider F} and F5 as follows:

Fir={zeli:(z,1)eF}and F, ={y€ Ly :(1,y) € F}



122 A. Bapawy AND K.P. SHUM

Clearly Fy; and F; are filters of Ly and Lo respectively. We now prove that Fj
and F5 are Boolean filters of L; and Lo respectively. For all x € Fj, we have
(xz,1) € F. Since F is Boolean, (z Vz* 1) = (z,1) V (x,1)* € F. Hence, we have
x VvV z* € Fy. Therefore, F} is a Boolean filter of Li. Similarly, F5 is a Boolean
filter of Ly. Now we prove that F' = Fy x F,. For this purpose, we let (x,y) € F.
Then we have the following implications.
(z,y) e F = (z,1)€ Fand (1,y) € F
= x€Fandye€rl
= (x,y) € F x Fy.
Hence, F' C F} x F,. Conversely, if (z,y) € F} x Fy, then the following implications
hold.
(x,y) e i xFy, = xze€FandyekF
= (x,1) € Fand (1,y) € F
= (z,y)=(2,1)A(ly) €F.
Consequently, we have I} x Iy C F. This shows that F} x Fb = F. [ |

In closing this paper, we state two equalities concerning Boolean filters of quasi-
modular p-algebras.

Theorem 6.2. Let [F,) and [Fy) be two Boolean filters of the quasi-modular
p-algebras Ly and Lo, respectively. Then

(1) [Fa) % [Fy) = [Flap))
(2) Or.xF, = QF(a,b)'

Proof. (1) From the above Theorem 6.1, we see immediately that [F},) x [Fp) is
a Boolean filter of Ly x Lo. Now, we have

(x,y) € [F,) x [F) & xz€[F,) andy € [F})
& 2 >aand Yyt > b
& (z,9)" =" y") 2 (a,b)
& (2,y) € [Flap)-
Therefore, [Fy) % [Fy) = [Flqp))-

(2) By (1), we obtain Or,xF, = H[Fa)X[Fb) = H[F(a,b)) = HF(a,b)' [ ]
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