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Abstract

Let R be a prime ring with extended centroid C, F a generalized deriva-
tion of R and n ≥ 1, m ≥ 1 fixed integers. In this paper we study the
situations:

1. (F (x ◦ y))m = (x ◦ y)n for all x, y ∈ I, where I is a nonzero ideal of R;

2. (F (x ◦ y))n = (x ◦ y)n for all x, y ∈ I, where I is a nonzero right ideal
of R.

Moreover, we also investigate the situation in semiprime rings and Banach
algebras.
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1. Introduction

Throughout this paper, R always denotes an associative prime ring with center
Z(R) and with extended centroid C, U the Utumi quotient ring of R. For given
x, y ∈ R, the symbol [x, y] and x◦y stand for the Lie product xy−yx and Jordan
product xy + yx respectively. Also [x1, x2, . . . , xn] = [[x1, x2, . . . , xn−1], xn] for
all x1, x2, . . . , xn ∈ R, for every positive integer n ≥ 2. In particular, when
x1 = x and x2 = x3 = · · · = xn = y, we use the notation to define the engel
type polynomial [x, y]n+1 = [[x, y]n, y] instead of [x, y, y, . . . , y] for n ≥ 1 and
[x, y]1 = [x, y].

An additive mapping d : R → R is called a derivation, if d(xy) = d(x)y+xd(y)
holds for all x, y ∈ R. In particular, d is an inner derivation induced by an element
a ∈ R, if d(x) = [a, x] for all x ∈ R. In [5], Brešar introduced the definition of
generalized derivation. An additive mapping F : R → R is called a generalized
derivation, if there exists a derivation d : R → R such that F (xy) = F (x)y+xd(y)
holds for all x, y ∈ R. Hence, the concept of generalized derivations covers
both the concepts of a derivation and a left multplier (i.e. an additive mapping
satisfying f(xy) = f(x)y for all x, y ∈ R).

In [8], Daif and Bell proved that if R is a semiprime ring with a nonzero
ideal I and d is a derivation of R such that d([x, y]) = [x, y] for all x, y ∈ I,
then I ⊆ Z(R). In particular, if R is prime ring, then R must be commutative.
In [25], Quadri et al. proved that if R is a prime ring, I a nonzero ideal of R
and F a generalized derivation associated with a nonzero derivation d such that
F ([x, y]) = [x, y] for all x, y ∈ I, then R is commutative. Further, this result
of Quadri et al. is studied in semiprime ring by Dhara in [10]. Recently in [9],
De Filippis and Huang studied the situation (F ([x, y]))n = [x, y] for all x, y ∈ I,
where I is a nonzero ideal in a prime ring R, F a generalized derivation of R and
n ≥ 1 fixed integer. In this case they conclude that either R is commutative or
n = 1 and F (x) = x for all x ∈ R. More recently in [14], Huang and Davvaz
consider the situation (F ([x, y]))m = [x, y]n for all x, y ∈ R. More precisely, they
proved the following:

Let R be a prime ring and m,n fixed positive integers. If R admits a general-

ized derivation F associated with a nonzero derivation d such that (F ([x, y]))m =
[x, y]n for all x, y ∈ R, then R is commutative.

Note that in this result, the assumption d 6= 0 exists.

There is also ongoing interest to study the above identities replacing Lie prod-
uct [x, y] by Jordan product x◦y, for x, y ∈ R. In this line of investigation, in [2],
Ashraf and Rehman proved that if R is a prime ring, I a nonzero ideal of R and d
is a derivation of R such that d(x ◦ y) = (x ◦ y) for all x, y ∈ I, then R is commu-
tative. Then Argac and Inceboz [1] generalized the above result by considering
some power values. They proved that if R is a prime ring, I a nonzero ideal of R,
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n a fixed positive integer and d a derivation of R such that (d(x ◦ y))n = (x ◦ y)
for all x, y ∈ I, then R is commutative. Quadri et al. [25] proved that if R is
a prime ring, I a nonzero ideal of R and F a generalized derivation associated
with a nonzero derivation d such that F (x ◦ y) = x ◦ y for all x, y ∈ I, then R is
commutative. Recently, Huang [15] proved the following:

Let R be a prime ring, I a nonzero ideal of R and n a fixed positive integer. If

R admits a generalized derivation F associated with a nonzero derivation d such

that (F (x ◦ y))n = x ◦ y for all x, y ∈ I, then R is commutative.

Note that in this result again the assumption of d 6= 0 is existing. It is natural
to ask what will happen in case d = 0.

Our present paper is motivated by above results. In the present paper, we
will investigate the situation when a prime ring R satisfies (F (x ◦ y))m = (x ◦ y)n

for all x, y in some suitable subsets of R, where F is a generalized derivation of
R associated with a derivation d. Note that in our result the hypothesis d 6= 0 is
deleted.

More precisely, we shall prove the following results:

Theorem 1. Let R be a prime ring, F a generalized derivation of R and I a

nonzero ideal of R. Suppose that (F (x ◦ y))m = (x ◦ y)n for all x, y ∈ I, where
m ≥ 1 and n ≥ 1 are fixed integers. Then one of the following holds:

1. R is commutative;

2. there exists a ∈ C such that F (x) = ax for all x ∈ R with am = 1. Moreover,

in this case if m 6= n, then either char (R) = 2 or char (R) = 2|m−n| − 1.

Theorem 2. Let R be a prime ring, I a nonzero right ideal of R and F a

generalized derivation of R. If (F (x◦y))n = (x◦y)n for all x, y ∈ I, where n ≥ 1
is fixed integer, then one of the following holds:

1. [I, I]I = 0;

2. there exists a ∈ U and α ∈ C such that F (x) = ax for all x ∈ R, with

(a− α)I = 0 and αn = 1.

Theorem 3. Let R be a semiprime ring and F a generalized derivation of R. If

(F (x ◦ y))m = (x ◦ y)n for all x, y ∈ R, where m ≥ 1 and n ≥ 1 are fixed integers,

then R is commutative or F (x) = ax+ d(x) for all x ∈ R, where a ∈ C and d is

a derivation of R such that d(R) ⊆ Z(R).

In the last section we apply above results to Banach algebras. Here A will denote
a complex non-commutative Banach algebras. By a Banach algebra we shall
mean a complex normed algebra A whose underlying vector space is a Banach
space. By rad(A) we denote the Jacobson radical of A, which is the intersection
of all primitive ideals of A. A is said to be semisimple, if rad(A) = 0.
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In 1955, Singer and Wermer [27] gave an interesting result. They proved that
every continuous derivation on a commutative Banach algebra maps the algebra
into its radical. After thirty years, Thomas [28] proved the same result of Singer
and Wermer without considering continuity of derivation. It is clear that the
same result of Singer and Wermer does not hold in noncommutative Banach
algebras because of inner derivations. It is still an open question whether the
above result of Singer and Wermer is true or not in the noncommutative Banach
algebra. Some partial solutions of this open question have been obtained by a
number of authors.

Let A be a noncommutative Banach algebra and D be a continuous derivation
on A. Brešar and Vukman [4] proved that if [D(x), x] ∈ rad(A) for all x ∈ A,
then D maps A into rad(A). In [24], Mathieu proved the same conclusion if
[D(x), x]D(x) ∈ rad(A) for all x ∈ A. Vukman [29] proved also that the same
conclusion holds if [D(x), x]3 ∈ rad(A) for all x ∈ A.

Continuing on this line, in [19] Kim proved that if d is a continuous linear Jor-
dan derivation in a Banach algebra A, such that [d(x), x]d(x)[d(x), x] ∈ rad(A),
for all x ∈ A, then d maps A into rad(A). In [14], Huang and Davvaz proved the
following result:

Let A be a non-commutative Banach algebra with Jacobson radical rad(A).
Let F = La + d be a continuous generalized derivation of R, where La denotes

the left multiplication by some element a ∈ A and d is a derivation of A. If

(F ([x, y]))m − ([x, y])n ∈ rad(A) for all x, y ∈ A, then d(A) ⊆ rad(A).

In the last section, finally we provide a result about continuous generalized
derivations on Banach algebras which is as follows:

Theorem 4. Let A be a noncommutative Banach algebra. Let F = La + d be a

continuous generalized derivation of A, where La denotes the left multiplication by

some element a ∈ A and d is a derivation on A. If (F (x◦y))m−(x◦y)n ∈ rad(A)
for all x, y ∈ A, then d(A) ⊆ rad(A).

2. Generalized Derivations on Ideals

We begin with the following:

Lemma 5. Let R be a prime ring with extended centroid C, I a nonzero ideal

of R and a, b ∈ R. Suppose that (a(x ◦ y) + (x ◦ y)b)m = (x ◦ y)n for all x, y ∈ I,
where m ≥ 1, n ≥ 1 are fixed integers. Then one of the following holds:

1. R is commutative;

2. a, b ∈ C with (a + b)m = 1. (In this case if m 6= n and m + n is odd, then

char (R) = 2 and if m 6= n and m+ n is even, then char (R) = 2|m−n| − 1).
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Proof. If R is commutative, the conclusion (1) is obtained. So, we assume that
R is noncommutative. Then by assumption, I satisfies the generalized polynomial
identity

F (x, y) = (a(x ◦ y) + (x ◦ y)b)m − (x ◦ y)n.

By Chuang [7, Theorem 2], this generalized polynomial identity (GPI) is also
satisfied by U . We assume either a /∈ C or b /∈ C and prove that a number of
contradictions follows. In this case F (x, y) = 0 is a nontrivial GPI for U . In case
C is infinite, we have F (x, y) = 0 for all x, y ∈ U

⊗

C C where C is the algebraic
closure of C. Since both U and U

⊗

C C are prime and centrally closed [11], we
may replace R by U or U

⊗

C C according to C is finite or infinite. Thus we may
assume that R is centrally closed over C which is either finite or algebraically
closed and F (x, y) = 0 for all x, y ∈ R. By Martindale’s Theorem [23], R is
then a primitive ring having nonzero soc(R) with C as the associated division
ring. Hence by Jacobson’s Theorem [16], R is isomorphic to a dense ring of linear
transformations of a vector space V over C. Assume first that dimCV = k, then
the density of R on V implies that R ∼= Mk(C). Since R is noncommutative,
k ≥ 2.

In this case assuming x = eij and y = ejj , i 6= j, so that x ◦ y = eij , we obtain
that

(aeij + eijb)
m = (eij)

n.

Left and right multiplying by eij respectively, above relation yields 0 = eij(aeij)
m

= amjieij implying aji = 0 and 0 = (eijb)
meij = bmjieij implying bji = 0. Thus both

a and b are diagonal matrices in Mk(C). Let a =
∑k

i=1
aiieii and b =

∑k
i=1

biieii.
Now since for any automorphism ϕ of R, (aϕ(x◦y)+(x◦y)bϕ)m = (x◦y)n holds for
all x, y ∈ Mk(C), we can write by above arguments that aϕ and bϕ are diagonal.
Hence for each j 6= 1, we have (1+e1j)a(1−e1j) =

∑k
i=1

aiieii+(ajj−a11)e1j and

(1+e1j)b(1−e1j) =
∑k

i=1
biieii+(bjj−b11)e1j both diagonal. Therefore, ajj = a11

and bjj = b11 that is, a, b ∈ F.Ik. Thus we have a, b ∈ C, a contradiction.

Next assume that dimCV = ∞. Since a /∈ C or b /∈ C, they do not centralize
the nonzero ideal H = soc(R) and hence there exist h, h′ ∈ H such that [a, h] 6= 0
or [b, h′] 6= 0. Moreover, because of the infinite dimensionality, H does not
satisfy the polynomial [x, y], that is, there exist h1, h2 ∈ H such that [h1, h2] 6=
0. By Litoff’s theorem [12], there exists idempotent e2 = e ∈ H such that
ah, ha, bh′, h′b, h, h′, h1, h2 ∈ eRe, moreover eRe is a central simple algebra finite
dimensional over its center. Since R satisfies (a(x ◦ y) + (x ◦ y)b)m = (x ◦ y)n,
replacing x with e and y with ex(1−e) we have that R satisfies (aex(1−e)+ex(1−
e)b)m = (ex(1−e))n. Left multiplying by (1−e), we get (1−e)(aex(1−e))m = 0
for all x ∈ R, that is ((1−e)aex)m+1 = 0 for all x ∈ R. Then by Levitzki’s lemma
[13, Lemma 1.1], we conclude that (1−e)aex = 0 for all x ∈ R and so (1−e)ae = 0.
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Since R satisfies generalized identity e{(a(exe ◦ eye) + (exe ◦ eye)b)m − (exe ◦
eye)n}e = 0, the subring eRe satisfies (eae(x ◦ y) + (x ◦ y)ebe)m − (x ◦ y)n = 0.
Since [h1, h2] 6= 0, eRe is not commutative and so eRe ∼= Mk(C) for k ≥ 2. Then
by the above finite dimensional case, eae and ebe are central element of eRe.
Thus ah = eaeh = heae = ha and bh′ = ebeh′ = h′ebe = h′b, which contradicts
our assumption.

In light of previous argument, we have that both a, b ∈ C and then our identity
reduces to (a+b)m(x◦y)m = (x◦y)n for all x, y ∈ R. This is a polynomial identity.
Then by [20, Lemma 1], there exists a field F such that R ⊆ Mk(F ), k ≥ 2, such
that Mk(F ) satisfies the identity (a + b)m(x ◦ y)m = (x ◦ y)n. But by choosing
x = e12, y = e21, above identity yields (a + b)m(e11 + e22) = (e11 + e22). This
implies that (a+b)m = 1. Hence our identity reduces to (x◦y)m = (x◦y)n for all
x, y ∈ Mk(F ). If m = n, then the identity is trivial and then the proof is done.

Now we assume that m 6= n. Then we consider the following two cases:

(i) Let m+ n be odd. We have (x ◦ y)m − (x ◦ y)n = 0 for all x, y ∈ Mk(F ).
In this case replacing y with −y, we have (x ◦ y)m + (x ◦ y)n = 0 for all x, y ∈
Mk(F ). By addition of above two identities, we get 2(x ◦ y)m = 0 for all x, y ∈
Mk(F ). Replacing x = y = Ik, we have 0 = 2(Ik ◦ Ik)

m = 2m+1Ik. This leads a
contradiction, unless char (R) = 2.

(ii) Let m+ n be even. Replacing x = y = e11, we obtain 0 = (x ◦ y)m − (x ◦
y)n = (2m − 2n)e11. This gives a contradiction, unless char (R) = 2|m−n| − 1.

Proof of Theorem 1. If F = 0, then (x◦y)n = 0. Note that this is a polynomial
identity and hence there exists a field F such that R ⊆ Mk(F ), the ring of k × k
matrices over a field F , where k ≥ 1. If k = 1, then R must be commutative,
and then we obtain our conclusion (1). So let k ≥ 2. Moreover, R and Mk(F )
satisfy the same polynomial identity [20, Lemma 1] that is (x ◦ y)m = 0 for all
x, y ∈ Mk(F ). But by choosing x = e12, y = e21 we get

0 = (x ◦ y)m = e11 + e22

which is a contradiction. If F 6= 0, then by hypothesis we have, I satisfies the
differential identity

(F (x ◦ y))m = (x ◦ y)n for all x, y ∈ I.(1)

Since I and U satisfy the same differential identities [21], we may assume that
(F (x ◦ y))m = (x ◦ y)n for all x, y ∈ U . By Lee [22], we may assume that for
all x ∈ U , F (x) = bx + d(x) for some b ∈ U and a derivation d of U . Hence U
satisfies

(b(x ◦ y) + d(x ◦ y))m = (x ◦ y)n.(2)
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Assume first that d is inner derivation of U , i.e., there exists p ∈ U such that
d(x) = [p, x] for all x ∈ U . Then

(b(x ◦ y) + [p, x ◦ y])m = (x ◦ y)n,

for all x, y ∈ U that is

((b+ p)(x ◦ y)− (x ◦ y)p)m = (x ◦ y)n,

for all x, y ∈ U . By Lemma 5, one of the following holds:
(i) R is commutative and so conclusion (1) is obtained.
(ii) b+ p, p ∈ C and bm = 1. Moreover, in this case if m 6= n, then either char

(R) = 2 or char (R) = 2|m−n| − 1. Thus F (x) = bx for all x ∈ R with bm = 1,
which is our conclusion (2).

Next assume that d is not U -inner. From (2), we have U satisfies

(b(x ◦ y) + (d(x) ◦ y) + (x ◦ d(y)))m = (x ◦ y)n.(3)

Then by Kharchenko’s theorem [18], we have

(b(x ◦ y) + (z ◦ y) + (x ◦ t))m = (x ◦ y)n(4)

for all x, y, z, t ∈ U . In particular, for y = 0, we have (x ◦ t)m = 0 for all x, t ∈ U .
Repeating by the same argument as above we get that R is commutative. Hence
the theorem is proved.

Corollary 6. Let R be a prime ring, F a generalized derivation of R associated to

a nonzero derivation d of R and I a nonzero ideal of R. Suppose that (F (x◦y))m

= (x ◦ y)n for all x ∈ I, where m ≥ 1, n ≥ 1 are fixed integers. Then R is

commutative.

Corollary 7. Let R be a prime ring, d a nonzero derivation of R and I a nonzero

ideal of R. Suppose that (d(x)y+xd(y)+d(y)x+yd(x))m = (x◦y)n for all x, y ∈ I,
where m ≥ 1, n ≥ 1 are fixed integers. Then R must be commutative.

Example. Let S be any ring and R =

{(

a b
0 0

)

| a, b ∈ S

}

. Note that R is

not prime ring, since

(

0 a
0 0

)

R

(

a b
0 0

)

= 0. Let I =

{(

0 a
0 0

)

| a ∈ S

}

be a nonzero ideal of R. Define a map F : R −→ R by F (x) = 2e11x−xe11. Then
F is a generalized derivation with associated nonzero derivation d(x) = [e11, x]
satisfies the property (F (x ◦ y))m = (x ◦ y)n for all x, y ∈ I. Since R is not
commutative, we conclude that the primeness hypothesis in Theorem 1 is not
superfluous.
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3. Generalized Derivations on Right Ideals

In this section we will prove our next Theorem for right sided ideals.

To prove this theorem, we need the following:

Lemma 8. Let R be a prime ring with extended centroid C and I a nonzero right

ideal of R. If for some a, b ∈ R, (a(x◦y)+(x◦y)b)n−(x◦y)n = 0 for all x, y ∈ I,
where n ≥ 1 is fixed integer, then R satisfies a non-trivial generalized polynomial

identity or there exists α ∈ C such that (a− α)I = 0, b ∈ C with (b+ α)n = 1.

Proof. By our hypothesis, for any x0 ∈ I, R satisfies the following generalized
identity

(a(x0x ◦ x0y) + (x0x ◦ x0y)b)
n − (x0x ◦ x0y)

n = 0.(5)

We assume that this is a trivial GPI for R, for otherwise we are done. If there
exists x0 ∈ I such that {x0, ax0} is linearly C-independent, then from above we
have that R satisfies

a(x0x ◦ x0y)(a(x0x ◦ x0y) + (x0x ◦ x0y)b)
n−1 = 0.(6)

Again, since {x0, ax0} is linearly C-independent, we have from above relation
that R satisfies

(a(x0x ◦ x0y))
2(a(x0x ◦ x0y) + (x0x ◦ x0y)b)

n−2 = 0(7)

and hence (a(x0x◦x0y))
n = 0, which is nontrivial, a contradiction. Thus {x0, ax0}

is linearly dependent over C for all x0 ∈ I, that is (a− α)I = 0 for some α ∈ C.
Then (5) becomes

((x0x ◦ x0y)(b+ α))n − (x0x ◦ x0y)
n = 0.(8)

Since this is trivial GPI for R, we have that b + α ∈ C, that is b ∈ C. Thus
identity reduces to

((b+ α)n − 1)(x0x ◦ x0y)
n = 0.(9)

Since this is trivial identity for R, we conclude (b+ α)n = 1.

Lemma 9. Let R be a prime ring with extended centroid C, I be a right ideal of

R and F be an inner generalized derivation of R. If (F (x ◦ y))n = (x ◦ y)n for all

x, y ∈ I, where n ≥ 1 is a fixed integer, then one of the following holds:
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1. [I, I]I = 0;

2. there exists a ∈ U and α ∈ C such that F (x) = ax for all x ∈ R, with

(a− α)I = 0 and αn = 1.

Proof. Since F is inner, there exist a, b ∈ U such that F (x) = ax + xb for all
x ∈ R. If R does not satisfy any non-trivial (GPI), then by Lemma 8, we conclude
that there exists α ∈ C such that (a − α)I = 0, b ∈ C, (b + α)n = 1. In this
case F (x) = ax + xb = (a + b)x for all x ∈ R, where (a − α)I = 0, b ∈ C with
(b+α)n = 1. Assuming a′ = a+b and β = b+α, we can write that F (x) = a′x for
all x ∈ R, with (a′ − β)I = 0 for some β ∈ C and βn = 1. This is our conclusion
(2).

So we assume that R satisfies a non-trivial GPI. If I = R, then by Lemma
5, either R is commutative or a, b ∈ C with (a + b)m = 1. In the last case we
have F (x) = λx for all x ∈ R, with λm = 1. Thus conclusions (1) and (2) are
obtained.

Now let I 6= R. In this case we want to prove that either [I, I]I = 0 or there
exist α, β ∈ C such that (a − α)I = 0 and (b − β)I = 0. To prove this, by
contradiction, we suppose that there exist c1, c2, . . . , c5 ∈ I such that

• [c1, c2]c3 6= 0;

• (a− α)c4 6= 0 for all α ∈ C or (b− β)c5 6= 0 for all β ∈ C.

Now we show that this assumption leads a number of contradictions. Since R
satisfies nontrivial GPI, by [23], RC is a primitive ring having a nonzero socle
H with a nonzero right ideal J = IH. Notice that H is simple, J = JH and J
satisfies the same basic conditions as I. Thus we replace R by H and I by J .

Then since R is a regular ring, for c1, c2, . . . , c5 ∈ I there exists e2 = e ∈ R
such that

eR = c1R+ c2R+ c3R+ c4R+ c5R.

Then e ∈ I and eci = ci for i = 1, . . . , 5. Let x ∈ R. Then by our hypothesis we
have

(a(e ◦ ex(1− e)) + (e ◦ ex(1− e))b)n = (e ◦ ex(1− e))n(10)

Left multiplying by (1 − e) we have ((1 − e)aex)n(1 − e) = 0, that is ((1 −
e)aex)n+1 = 0 for all x ∈ R. By Levitzki’s lemma [13, Lemma 1.1], we have
(1 − e)aeR = 0 implying (1 − e)ae = 0. Analogously, right multiplying by e, we
get (1− e)be = 0. Therefore ae = eae and be = ebe. Moreover, since R satisfies

e{(a(x ◦ y) + (x ◦ y)b)n − (x ◦ y)n}e = 0,
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eRe satisfies

(eae(x ◦ y) + (x ◦ y)ebe)n − (x ◦ y)n = 0.

Then by Lemma 5, one of the following holds: (1) [eRe, eRe] = 0, (2) eae, ebe ∈
Ce. Now [eRe, eRe] = 0 implies [eR, eR]eR = 0 which contradicts with the
choices of c1, c2, c3. Thus eae = ae ∈ Ce and ebe = be ∈ Ce. Therefore, there
exist α, β ∈ C such that (a−α)e = 0 and (b−β)e = 0. This gives (a−α)eR = 0
and (b− β)eR = 0. In any case this contradicts with the choices of c4 and c5.

In case [I, I]I = 0, conclusion (1) is obtained. Let (a−α)I = 0 and (b−β)I = 0
for some α, β ∈ C. Then our hypothesis

(a(x ◦ y) + (x ◦ y)b)n − (x ◦ y)n = 0(11)

for all x, y ∈ I gives

((x ◦ y)(b+ α))n − (x ◦ y)n = 0(12)

for all x, y ∈ I and so

(x ◦ y)n(β + α)n−1(b+ α)− (x ◦ y)n = 0(13)

for all x, y ∈ I. Right multiplying by x ◦ y, (13) reduces to

(x ◦ y)n+1(β + α)n − (x ◦ y)n+1 = 0(14)

and hence {(β + α)n − 1}(x ◦ y)n+1 = 0 for all x, y ∈ I. This implies either
(β+α)n = 1 or (x ◦ y)n = 0 for all x, y ∈ I. The last relation implies (x ◦ y)z = 0
for all x, y, z ∈ I (see [6, Lemma 2 (II)]). Now we assume first that (β +α)n = 1.
Then multiplying β + α in (13), we have

(x ◦ y)n(b+ α)− (β + α)(x ◦ y)n = 0(15)

for all x, y ∈ I, that is (x ◦ y)n(b − β) = 0 for all x, y ∈ I. Then again by [6],
this relation yields either b − β = 0 that is b = β ∈ C or (x ◦ y)z = 0 for all
x, y, z ∈ I. In case (a − α)I = 0, b = β ∈ C and (β + α)n = 1, we can write
F (x) = ax + xb = (a + β)x for all x ∈ R, with (a − α)I = 0 and (β + α)n = 1.
This gives our conclusion (2).

On the other hand, if (x ◦ y)z = 0 i.e., xyz = −yxz for all x, y, z ∈ I, then we
have for all x, y, z, u ∈ I that uxyz = −xuyz = xyuz. This implies 0 = [u, xy]z.
Replacing y = yt, it gives 0 = [u, xyt]z = xy[u, t]z + [u, xy]tz = xy[u, t]z for all
x, y, z, u, t ∈ I. Since R is prime and I is a nonzero right ideal of R, this relation
gives [u, t]z = 0 for all z, u, t ∈ I, i.e., [I, I]I = 0, which is our conclusion (1).
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Now we are in a position to prove our main theorem for right ideals.

Proof of Theorem 2. If F is inner generalized derivation of R, then by Lemma
9, we are done. Now let F be not inner. By Lee [22], we have F (x) = ax+ d(x)
for some a ∈ U and a derivation d on U . Let x, y ∈ I. Then by [21], U satisfies

(a(xX ◦ yY ) + d(xX ◦ yY ))n − (xX ◦ yY )n = 0

that is

(a(xX◦yY )+(d(x)X+xd(X))◦yY )+(xX◦(d(y)Y +yd(Y ))))n−(xX◦yY )n = 0.

Since F is not inner, d is also not inner derivation. Then by Kharchenko’s The-
orem [18], U satisfies

(a(xX ◦ yY ) + (d(x)X + xZ1) ◦ yY ) + (xX ◦ (d(y)Y + yZ2)))
n − (xX ◦ yY )n = 0.

In particular for X = 0, we have (xZ1 ◦ yY )n = 0 for all Z1, Y ∈ U. In particular,
(x ◦ y)n = 0 for all x, y ∈ I. Then by [6, Lemma 2 (II)], (x ◦ y)z = 0 for all
x, y, z ∈ I. Then by same argument as in Lemma 9, we conclude [I, I]I = 0,
which is our conclusion (1).

Example. Let R =

(

GF (2) GF (2)
0 GF (2)

)

. We define maps F, d : R → R, by

F

(

a b
0 c

)

=

(

a 0
0 0

)

and d

(

a b
0 c

)

=

(

0 b
0 0

)

. Then F is a generalized

derivation associated with the derivation d of R. Note that R is not prime for
(

0 1
0 0

)

R

(

0 1
0 0

)

= 0.We see that for n = 2 and I = R, (F (x◦y))n = (x◦y)n

for all x, y ∈ I. Since [I, I]I 6= 0 and F (x) 6= ±x for all x ∈ R, we conclude that
the primeness hypothesis in Theorem 2 is not superfluous.

4. Generalized Derivations on Semiprime Rings and Banach

Algebras

Now we prove our rest theorems in semiprime ring and Banach algebras.

Let R be a semiprime ring and U be its right Utumi quotient ring. It is well
known that any derivation of a semiprime ring R can be uniquely extended to a
derivation of U and so any derivation of R can be defined on the whole of U [21,
Lemma 2].

By the standard theory of orthogonal completions for semiprime rings, we
have the following lemma.
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Lemma 10 ([3, Lemma 1 and Theorem 1] or [21, p. 31–32]). Let R be a 2-torsion
free semiprime ring and P a maximal ideal of C. Then PU is a prime ideal of

U invariant under all derivations of U . Moreover,
⋂

{PU | P is a maximal ideal

of C with U/PU 2-torsion free } = 0.

Proof of Theorem 3. We known the fact that any derivation of a semiprime
ring R can be uniquely extended to a derivation of its right Utumi quotient ring
U and so any derivation of R can be defined on the whole of U [21, Lemma 2].
Moreover R and U satisfy the same GPIs (see [7]) as well as same differential
identities (see [21]). Thus by [22], we have F (x) = ax + d(x) for some a ∈ U , a
derivation d on U and hence (a(x ◦ y) + d(x ◦ y))m = (x ◦ y)n for all x, y ∈ U .

Let M(C) be the set of all maximal ideals of C and P ∈ M(C). Now by the
standard theory of orthogonal completions for semiprime rings (see [21, p.31-32]),
we have PU is a prime ideal of U invariant under all derivations of U . Moreover,
⋂

{PU | P ∈ M(C) } = 0. Set U = U/PU. Then derivation d canonically induces
a derivation d on U defined by d(x) = d(x) for all x ∈ U . Therefore,

(a(x ◦ y) + d(x ◦ y))m = (x ◦ y)n

for all x, y ∈ U . By Theorem 1 for prime ring case, we have for each P ∈
M(C), either [U,U ] ⊆ PU or [a, U ] ⊆ PU and d(U) ⊆ PU . This gives that
[a, U ][U,U ] ⊆ PU for all P ∈ M(C) and d(U)[U,U ] ⊆ PU for all P ∈ M(C).
Since

⋂

{PU | P ∈ M(C) } = 0, [a, U ][U,U ] = 0 and d(U)[U,U ] = 0. In
particular, [a,R][R,R] = 0 and d(R)[R,R] = 0. First case implies a ∈ C and
second case implies d(R) ⊆ Z(R). Hence F (x) = ax+ d(x) for all x ∈ R, where
a ∈ C and d is a derivation of R such that d(R) ⊆ Z(R).

By a Banach algebra, we shall mean a complex normed algebra A whose under-
lying vector space is Banach space. The Jacobson radical of A is the intersection
of all primitive ideals of A and is denoted by rad(A). Now we prove our theorem
for Banach algebras.

Proof of Theorem 4. By hypothesis F is continuous generalized derivation.
Since we know that left multiplication map is continuous, we get that d is contin-
uous. In [26], Sinclair proved that any continuous derivation of a Banach algebra
leaves the primitive ideals invariant. Hence, for any primitive ideal P of A, it
is obvious that F (P ) ⊆ aP + d(P ) ⊆ P . It means that continuous generalized
derivation F leaves the primitive ideals invariant. Denote A/P = Ā for any
primitive ideal P . Thus we can define the generalized derivation Fp : Ā → Ā by
Fp(x̄) = Fp(x+P ) = F (x)+P = ax+d(x)+P for all x̄ ∈ Ā, where A/P = Ā is a
factor Banach algebra. Since P is primitive ideal, the factor algebra Ā is primitive
and so it is prime and semisimple. The hypothesis (F (x◦y))m−(x◦y)n ∈ rad(A)
yields that (Fp(x̄ ◦ ȳ))m − (x̄ ◦ ȳ)n = 0̄ for all x̄, ȳ ∈ Ā. By Theorem 1, we have
either Ā is commutative or d̄ = 0̄.
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Assume first that Ā is commutative. By a result of Johnson and Sinclair [17]
every linear derivation on a semisimple Banach algebra is continuous. Thus d̄ is
continuous in Ā. In [27], Singer and Werner proved that any continuous linear
derivation on a commutative Banach algebra maps the algebra into the radical.
Hence d̄ = 0̄ in Ā.

Therefore, in any case we have that d̄ = 0̄ in Ā, that is d(A) ⊆ P for any
primitive ideal P of A and hence we get d(A) ⊆ rad(A).
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