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Abstract

We study unitary rings of characteristic 2 satisfying identity xp = x

for some natural number p. We characterize several infinite families of
these rings which are Boolean, i.e., every element is idempotent. For
example, it is in the case if p = 2n − 2 or p = 2n − 5 or p = 2n + 1
for a suitable natural number n. Some other (more general) cases are
solved for p expressed in the form 2q + 2m + 1 or 2q + 2m where q is
a natural number and m ∈ {1, 2, . . . , 2q − 1}.
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A ring R = (R; +, ·) is called Boolean if every its element is idempotent,
i.e., if R satisfies the identity x2 = x. Boolean rings play an important
role in propositional logic and in theoretical computer science as well as
in lattice theory, see e.g. [2]. In particular, every unitary Boolean ring
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can be converted into a Boolean algebra and vice versa. This motivated
us to classify Boolean rings among rings with restricted powers, i.e., rings
satisfying the identity xp = x for a natural number p > 2.

A sample result is the following.

Lemma 1. Let R = (R; +, ·) be a ring satisfying the identity xp = x for

some integer p ≥ 2. The following are equivalent:

(a) R is Boolean;

(b) R satisfies the identity xq+1 = xq for some natural number q ≤ p.

Proof. (a) ⇒ (b): It is evident, because x2 = x implies xq+1 = xq for every
natural number q.

(b) ⇒ (a): Then R satisfies also xp+1 = xp and hence

x2 = x · x = x · xp = xp+1 = xp = x,

thus R is Boolean.

It is an easy consequence of x2 = x that every Boolean ring is of character-
istic 2, i.e., it satisfies the identity x + x = 0. Due to this fact, we restrict
our treaty only to rings of characteristic 2.

A ring R = (R; +, ·) is called unitary if it contains a unit, i.e., an
element denoted by 1 such that x · 1 = x = 1 · x for each x ∈ R. For
further information and notation on rings, the reader is refered to basic
monographs [1, 4–6].

As a motivation, we can serve with the following two particular cases.

Lemma 2. Let R = (R; +, ·) be a unitary ring of characteristic 2 satisfying

the identity x3 = x. Then R is Boolean.

Proof. Every element of R can be written in the form x + 1 because x =
(x+1)+1, due to the fact that R is unitary and of characteristic 2. Hence,
we get

1 + x = (1 + x)3 = (1 + x) · (1 + x)2 = (1 + x) · (1 + x2)

= 1 + x+ x3 + x2 = 1 + x+ x+ x2 = 1 + x2

whence x = x2 proving that R is Boolean.
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On the contrary, we can show that there exists a unitary ring of characteristic
2 satisfying the identity x4 = x which is not Boolean. In fact, we can show
the whole infinite family of identities xp = x, i.e., an infinite set of natural
numbers p such that a unitary ring of characteristic 2 satisfying the identity
xp = x need not be Boolean, see the following.

Lemma 3. For each natural number k there exists a unitary commuta-

tive ring of characteristic 2 satisfying the identity x3k+1 = x which is not

Boolean.

Proof. Consider the four-element ring R whose operations + and · are
determined by the tables

+ 0 1 2 3

0 0 1 2 3
1 1 0 3 2
2 2 3 0 1
3 3 2 1 0

· 0 1 2 3

0 0 0 0 0
1 0 1 2 3
2 0 2 3 1
3 0 3 1 2

It is an immediate reflexion that R is unitary, commutative and of char-
acteristic 2. Moreover, R satisfies x3k+1 = x for every natural number k.
However, R is not Boolean because e.g. 2 · 2 = 3 6= 2.

Remark 4. Let us note that if R = (R; +, ·) is a unitary ring satisfying
the identity xp = x for some even p then we need not suppose that R is of
characteristic 2. In fact, in this case there exists an element −1 ∈ R and
from the identity xp = x for x = −1 we get 1 = (−1)p = −1. Then for each
x ∈ R we have −x = (−1) · x = 1 · x = x whence x+ x = x+ (−x) = 0.

Similarly as in Lemma 2, we can determine infinite sets of natural numbers
p for which xp = x implies that R is Boolean.

Theorem 5. Let R = (R; +, ·) be a unitary ring and n be a natural number.

(i) If R satisfies x2
n
−2 = x for n > 1 then R is Boolean.

(ii) If R is of characteristic 2 and satisfies x2
n
−5 = x for n > 3 then R is

Boolean.
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Proof. (i): As mentioned above, R is of charactic 2. IfR satisfies x2
n
−2 = x

then it satisfies also x2
n

= x3 thus by Lemma 3(a) from [3]

1 + x2
n

= (1 + x)2
n

= (1 + x)3 = 1 + 3× x+ 3× x2 + x3.

Since x2
n

= x3, we conclude 3× (x+ x2) = x+ x2 = 0, whence x = x2.

(ii): If R satisfies x2
n
−5 = x for some natural number n > 3 then it satisfies

also x2
n

= x6 and therefore, by [3], Lemma 3(a),

1 + x6 = 1 + x2
n

= (1 + x)2
n

= (1 + x)6 = (1 + x)4 · (1 + x)2

= (1 + x4) · (1 + x2) = 1 + x2 + x4 + x6

whence x2 = x4. This yields

x3 = x5 = x7 = · · · = x2
n
−5 = x

and, applying Lemma 2, we conclude that R is Boolean.

Similarly, we can also decide the following case.

Lemma 6. Let R = (R; +, ·) be a unitary ring of characteristic 2 satisfying

x2
q+1 = x for a natural number q. Then R is Boolean.

Proof. We compute

1 + x = (1 + x)2
q+1 = (1 + x) · (1 + x)2

q

= (1 + x) · (1 + x2
q

)

= 1 + x+ x2
q

+ x2
q+1 = 1 + x+ x2

q

+ x = 1 + x2
q

,

i.e., for p = 2q+1 we have xp = x = x2
q

= xp−1. By Lemma 1, R is Boolean.

Another relative large set of odd natural numbers p, for which a unitary ring
of characteristic 2 satisfying xp = x is Boolean, is discerned by the following
result.

Theorem 7. Let R = (R; +, ·) be a unitary ring of characteristic 2 sat-

isfying xp = x where p = 2q + 2m + 1 for some natural number q and

m ∈ {1, 2, . . . , 2q−1 − 1}. If 2q − 2m = 2a + 2b where a,b are integers such

that q > a > b ≥ 1 then R is Boolean provided 2a − 2b divides 2m.
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Proof. Assume p = 2q + 2m + 1 with 2q − 2m = 2a + 2b for some integers
q,m, a, b such that q > a > b ≥ 1 and m ∈ {1, 2, . . . , 2q−1 − 1}. If 2a −
2b divides 2m then 2m = r(2a − 2b) for some natural number r. Since
x2

q+2m+1 = x, we have

x2
q+1

= x2
q+2m+1 · x2

q
−2m−1 = x · x2

q
−2m−1 = x2

q
−2m.

Hence, using [3], Lemma 3(a),

1 + x2
q
−2m = 1 + x2

q+1

= (1 + x)2
q+1

= (1 + x)2
q
−2m = (1 + x)2

a+2b

= (1 + x)2
a

· (1 + x)2
b

= (1 + x2
a

) · (1 + x2
b

)

= 1 + x2
a

+ x2
b

+ x2
a+2b = 1 + x2

a

+ x2
b

+ x2
q
−2m

This yields 0 = x2
a

+ x2
b

, thus x2
a

= x2
b

. Since 2m = r · (2a − 2b) and
2q + 2m+ 1 > 2q + 1 > 2a, we conclude

x2
q+1 = x2

q+(2a−2b)+1 = · · · = x2
q+r·(2a−2b)+1

= x2
q+2m+1 = xp = x.

By Lemma 6, R is Boolean.

Corollary 8. Let R = (R; +, ·) be a unitary ring of characteristic 2 sat-

isfying xp = x where p = 2q + 2m + 1 for some natural number q and

m ∈ {1, 2, . . . , 2q−1 − 1}. If 2q − 2m = 2a+1 + 2a for some integer a such

that q − 1 > a ≥ 1 then R is Boolean.

Proof. If 2q − 2m = 2a+1 + 2a for some integers q,m, a such that q − 1 >

a ≥ 1, m ∈ {1, 2, . . . , 2q−1 − 1} then 2a+1 − 2a = 2a. Thus it divides

2m = 2q − 2a+1 − 2a = 2a · (2q−a − 3),

which, by Theorem 7, means that R is Boolean.

Hence, we get the sequence of numbers

p = 3, 5, 9, 17, 33, . . . , (S)
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by Lemma 6, for which a unitary ring of characteristic 2 satisfying the
identity xp = x is Boolean. In what follows, we will detect other natural
numbers p of this property.

Remark 9. We can recognize that (ii) of Theorem 5 can be included in the
cases treated in Theorem 7. Namely, if p = 2n − 5 for some integer n > 3
then we can compute

p = 2n−1 + (2n−1 − 5) = 2n−1 + (2n−1 − 6) + 1.

Using the notation from Theorem 7 we have

2q − 2m = 2n−1 − (2n−1 − 6) = 6 = 22 + 21.

Thus, applying Corollary 8, we obtain that R is Boolean. Hence, we can
extend our sequence (S) with numbers

p = 11, 27, 59, 123, . . . ,

Moreover, Corollary 8 enables us to insert also numbers of the form 2n − 11
(n > 4), i.e.,

p = 21, 53, 117, 245, . . . ,

further numbers of the form 2n − 23 (n > 5), i.e.,

p = 41, 105, 233, 489, . . . ,

etc. We can generalize this approach in the following result.

Theorem 10. Let R = (R; +, ·) be a unitary ring of characteristic 2 satis-

fying xp = x for some natural number p of the form 2n − (3 · 2l − 1) where

n, l are arbitrary natural numbers such that n− 3 ≥ l. Then R is Boolean.

Proof. If p = 2n− (3 · 2l − 1) for some natural numbers satisfying n− 3 ≥ l

then

3 · 2l ≤ 3 · 2n−3 < 4 · 2n−3 = 2n−1

and, therefore, p = 2n−1+(2n−1−3·2l)+1. We put q = n−1, 2m = 2n−1−3·2l

and then obtain
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2q − 2m = 2n−1 − (2n−1 − 3 · 2l) = 3 · 2l = 2 · 2l + 2l = 2l+1 + 2l

which, due to Corollary 8, means that R is Boolean.

In the next theorem, we will analyse the case of Theorem 7 in more details
to obtain a general method how to produce sequences of p’s for which R is
Boolean.

Theorem 11. Let R = (R; +, ·) be a unitary ring of characteristic 2 sat-

isfying xp = x where p = 2q + 2m + 1 for some natural number q and

m ∈ {1, 2, . . . , 2q−1 − 1} such that 2q − 2m = 2a + 2b where a, b are integers

satisfying a > b ≥ 1 and, moreover, q = (a + 1) + k · (a − b) for some

nonnegative integer k. Then R is Boolean.

Proof. Consider a unitary ring R of characteristic 2 satisfying the identity
xp = x for a number p possessing the assumption. Then

2m = 2q − 2a − 2b = 2(a+1)+k·(a−b) − 2a − 2b

= 2b ·
(

2(a+1)+k·(a−b)−b − 2a−b − 1
)

= 2b ·
(

2(k+1)·(a−b)+1 − 2a−b − 1
)

= 2b ·
(

2 · 2(k+1)·(a−b) − 2a−b − 1
)

= 2b ·

[(

(

2a−b
)k+1

− 2a−b

)

+

(

(

2a−b
)k+1

− 1

)]

= 2b ·

[

2a−b ·

(

(

2a−b
)k

− 1

)

+

(

(

2a−b
)k+1

− 1

)]

= 2b ·
[

2a−b ·
(

2a−b − 1
)

·

(

(

2a−b
)k−1

+ . . .+ 2a−b + 1

)

+
(

2a−b − 1
)

·

(

(

2a−b
)k

+ . . .+ 2a−b + 1

)

]

= 2b ·
(

2a−b − 1
)

·

(

2 ·
(

2a−b
)k

+ . . . + 2 · 2a−b + 1

)

=
(

2a − 2b
)

·

(

2 ·
(

2a−b
)k

+ . . .+ 2 · 2a−b + 1

)

.

Hence, 2a − 2b divides 2m and, by Theorem 7, R is Boolean.
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Remark 12. Theorem 11 shows us how to construct numbers p for which
the unitary ring of characteristic 2 satisfying xp = x is Boolean.

It is enough to choose arbitrary integers a, b such that a > b ≥ 1 then to
take q = (a+1)+ k · (a− b) for some nonnegative integer k and to compute
2m = 2q − 2a − 2b. Then p = 2q + 2m+ 1 is the number which we look for.

Example 13. If we take a = 8, b = 3 and k = 1, we have q = (8 + 1) + 1 ·
(8 − 3) = 14 and, consequently, 2m = 214 − 28 − 23 = 16120. In fact, we
have proved that the unitary ring of characteristic 2 satisfying the identity
x32505 = x is Boolean, because 32505 = 214 + 16120 + 1.

Until now, except Lemma 5(i) and partially also Lemma 3, we have dealed
with unitary rings of characteristic 2 satisfying the identity xp = x only
for odd natural numbers p. Further, we will discuss some cases when p

is even.

It is worth noticing that we have already solved the case of unitary ring
satisfying x2

r

= x for r even. As mentioned in Remark 4, such a ring is
of characteristic 2 and we can write here 2r = 3k + 1 for some odd natural
number k. Hence, by Lemma 3, such a ring need not be Boolean.

If we consider a unitary ring satisfying x2
r

= x for r odd then this ring
is of characteristic 2 and we can express 2r in the form 3k + 2 for some
even k. Such a ring also need not be Boolean in general, see the following
example for r = 3.

Example 14. The eight-element ring R whose operations + and · are de-
termined by the tables

+ 0 1 2 3 4 5 6 7

0 0 1 2 3 4 5 6 7
1 1 0 3 2 6 7 4 5
2 2 3 0 1 5 4 7 6
3 3 2 1 0 7 6 5 4
4 4 6 5 7 0 2 1 3
5 5 7 4 6 2 0 3 1
6 6 4 7 5 1 3 0 2
7 7 5 6 4 3 1 2 0

· 0 1 2 3 4 5 6 7

0 0 0 0 0 0 0 0 0
1 0 1 2 3 4 5 6 7
2 0 2 4 5 3 7 1 6
3 0 3 5 6 7 1 4 2
4 0 4 3 7 5 6 2 1
5 0 5 7 1 6 2 3 4
6 0 6 1 4 2 3 7 5
7 0 7 6 2 1 4 5 3

is unitary, of characteristic 2, but it is evidently not Boolean.
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We finish with the result which solves the problem for even natural numbers
p which are sum of two consequently standing powers of two, i.e. for numbers

p = 6, 12, 24, 48, . . . .

Theorem 15. Let R = (R; +, ·) be a unitary ring satisfying the identity

xp = x where p = 2a+1+2a for some natural number a. Then R is Boolean.

Proof. Consider a unitary ring R satisfying x2
a+1+2a = x for some natural

number a. By Remark 4, this ring is of characteristic 2 and, by [3], Lemma
3(a), we have

1 + x = (1 + x)2
a+1+2a = (1 + x)2

a+1

· (1 + x)2
a

= (1 + x2
a+1

) · (1 + x2
a

) = 1 + x2
a

+ x2
a+1

+ x2
a+1+2a .

Hence, x2
a+1

= x2
a

, and further

x2
a+2

= x2
a+1+2a+1

= x2
a+1

· x2
a+1

= x2
a+1

· x2
a

= x2
a+1+2a = xp = x.

From the identity xp = x2
a+1+2a = x we can also obtain

x2
a+2

= x(2
a+1+2a)+(2a+1

−2a) = x1+(2a+1
−2a) = x1+2a .

Altogether we have x = x2
a+2

= x2
a+1, and, by Lemma 6, R is Boolean.

Remark 16. It is easily seen that all the numbers p which are determined
by Theorem 15 are just the numbers of the form p = 6 · 2k−1 where k is an
arbitrary natural number.
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