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1. Introduction

Given a function f , the essential variables in f are defined as variables which
occur in f and weigh with the values of that function. The number of essen-
tial variables is an important measure of complexity for discrete functions.
Some deep results characterizing such variables and sets of essential vari-
ables are known ([2, 3, 8, 9, 10]). Similar problems about terms in universal
algebra are discussed in [7, 11, 12] and about tree automata in [13]. So,
any opportunity to reduce the number of essential variables in discrete func-
tions is an important procedure in theoretical and applied computer science
and modeling. There are two ways to decrease this number - by replacing
some variables in function with constants or with other variables (i.e. with
identification of variables).

M. Couceiro and E. Lehtonen classify finite valued functions on a finite
set A in terms of their arity gap ([6]). The aim of the present paper is
the representation and description of such functions. We shall use the well
known fact that each n-ary function f : An → A can be represented as sums
of conjunctions.

In Section 2 we introduce the basic definitions and some preliminary
results concerning k-valued functions.

In Section 3 we study the essential arity gap of functions. Here a com-
plete description of the functions in k-valued logic depending essentially on
all of its n variables whose essential arity gap is equal to p with 2 < p ≤ n ≤ k
is obtained.

In Section 4 we consider the class Gn
2,k of n-ary k-valued functions which

have essential arity gap equal to 2 when k > 2. This class is presented as
union of two subclasses which are investigated.

In Section 5 we discuss a special class of the ternary k-valued functions
which have essential arity gap equal to 2. The number of functions in this
class is found.

2. Preliminaries

Let k ≥ 2 be a natural number. Denote by K = {0, 1, . . . , k − 1} the set
(ring) of remainders modulo k. A function (operation) on K is a mapping
f : Kn → K where n is a natural number, called the arity of f . The set
of the all such functions is denoted by Pn

k . Operations from Pn
2 are called
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Boolean functions.

Let Xn = {x1, . . . , xn} be the set of n variables and f ∈ Pn
k be a k-valued

function.

Definition 2.1. A variable xi is called essential in f , or f essentially
depends on xi, if there exist values a1, . . . , an, b ∈ K, such that

f(a1, . . . , ai−1, ai, ai+1, . . . , an) 6= f(a1, . . . , ai−1, b, ai+1, . . . , an).

The set of all essential variables in a function f is denoted by Ess(f) and
the number of its essential variables is denoted by ess(f) = |Ess(f)|. The
variables from Xn which are not essential in f ∈ Pn

k are called fictive and
the set of fictive variables in f is denoted by Fic(f).

Let xi and xj be two distinct essential variables in f . We say that the
function g is obtained from f ∈ Pn

k by the identification of the variable xi
with xj, if

g(a1, . . . , ai−1, ai, ai+1, . . . , an) = f(a1, . . . , ai−1, aj , ai+1, . . . , an),

for all (a1, . . . , an) ∈ Kn.

Briefly, when g is obtained from f, by identification of the variable xi
with xj, we will write g = fi←j and g is called the identification minor of f
and Min(f) denotes the set of all identification minors of f .

We shall allow formation of identification minors when xi or xj are not
essential in f , also. Such minors of f are called trivial and they do not
belong to Min(f). For instance, if xi does not occur in f , then fi←j := f .

Remark 2.1. Let i and j be two natural numbers with 1 ≤ j, i ≤ n, i 6= j.
Then we have:

(i) ess(fi←j) ≤ ess(f), because xi /∈ Ess(fi←j), even though it might be
essential in f .

(ii) If xj is an essential variable in f then Ess(fi←j) ⊆ Ess(f).

Definition 2.2. Let f ∈ Pn
k be an n-ary k-valued function. Then the es-

sential arity gap (briefly arity gap or gap) of f is defined as follows

gap(f) := ess(f)− max
g∈Min(f)

ess(g).
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We say that the function f has non-trivial arity gap if gap(f) ≥ 2.

We let Gm
p,k denote the set of all functions in P

n
k which essentially depend

on m variables whose arity gap is equal to p i.e. Gm
p,k = {f ∈ Pn

k | ess(f) =
m & gap(f) = p}, with m ≤ n.

The set of all n-ary k-valued functions which essentially depend on m
variables is denoted by Pn

m,k, i.e. P
n
m,k = {f ∈ Pn

k | ess(f) = m}, m ≤ n.

An upper bound of gap(f) for Boolean functions is found by K. Chimev,
A. Salomaa and O. Lupanov [4, 10, 9]. It is proved that gap(f) ≤ 2, when
f ∈ Pn

2 , n ≥ 2.

This result is generalized for arbitrary finite valued functions in [5]. It
is shown that gap(f) ≤ k for all f ∈ Pn

k .

In [5] the Boolean functions whose arity gap is equal to 2 are described.
In [14] the class Gn

2,2 is investigated, also. Several combinatorial results
concerning the number of the functions in this class are obtained.

The case 2 ≤ p ≤ k < n is fully described in [15] where it is proved that
gap(f) ≤ 2 and if f ∈ Gn

2,k then f is a totally symmetric function.

So, in the present paper we shall pay attention to the case 2 < k and
n ≤ k.

We show that if f ∈ Gn
p,k, 2 < p ≤ n ≤ k then f = h ⊕ g where

ess(h) = n− p and g ∈ Gn
n,k which arises in this way, solving the following

problem:
For each 1 ≤ p ≤ k, determine explicitly the functions f ∈ Pn

k whose arity
gap is equal to p, p ≥ 2 ([5], p. 6, Problem 1).

Let m ∈ N , 0 ≤ m ≤ kn − 1 be an integer. It is well known that for
every k, n ∈ N, k ≥ 2 there is an unique finite sequence (α1, . . . , αn) ∈ Kn

such that

(1) m = α1k
n−1 + α2k

n−2 + . . .+ αn.

The equation (1) is known as the representation of m in k−ary positional
numerical system. One briefly writes m = α1α2 . . . αn instead (1).

Given a variable x and α ∈ K, xα is an important function defined by:

xα =





1 if x = α

0 if x 6= α.
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In this paper we shall use sums of conjunctions (SC) for representation of
functions in Pn

k . This is the most natural representation of the functions in
finite algebras. It is based on so called operation tables of the functions.

Theorem 2.1. Each function f ∈ Pn
k can be uniquely represented in SC-

form as follows

(2) f = a0.x
0
1 . . . x

0
n ⊕ . . .⊕ am.x

α1

1 . . . xαn
n ⊕ . . . ⊕ akn−1.x

k−1
1 . . . xk−1n

with m = α1 . . . αn, am ∈ K, where ”⊕” and ”.” are the operations addition
and multiplication modulo k in the ring K.

A fact we shall use repeatedly is this: A variable xi is fictive (inessential) in
the function f ∈ Pn

k , if and only if

f(x1, . . . , xn) = x0i .f1 ⊕ x1i .f2 . . . ⊕ xk−1i .fk,

with f1 = f2 = . . . = fk and xi /∈ Ess(fj), where fj are n− 1-ary k-valued
functions with set of variables {x1, . . . , xi−1, xi+1, . . . , xn} for j = 1, 2, . . . , k.

Consequently, if f, g ∈ Pn
k , xi ∈ Fic(f) and xi ∈ Fic(g), then xi ∈

Fic(f ⊕ g).

Let us note that if fi←j = gi←j and αi = αj then f(α1, . . . , αj , . . . ,
αi, . . . , αn) = g(α1, . . . , αj , . . . , αi, . . . , αn).

Lemma 2.1. Let f and g be two k-valued functions, depending essentially
on n, n ≥ k + 1 variables. If fi←j = gi←j for all i, j with 1 ≤ j, i ≤ n and
i 6= j, then f = g.

Proof. Let (α1, α2, . . . , αn) ∈ Kn be an arbitrary n-tuple of integers from
K. Since n ≥ k+1 it follows that there exist two natural numbers i, j with
1 ≤ j < i ≤ n and αi = αj. Then fi←j = gi←j implies

f(α1, . . . , αj , . . . , αi, . . . , αn) = g(α1, . . . , αj , . . . , αi, . . . , αn).

Consequently f = g.
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Example 2.1. Let us consider the functions f = x01x
0
2x

0
3 ⊕ x11x

0
2x

2
3 and

g = x01x
0
2x

0
3 ⊕ x01x

1
2x

2
3 from P 3

3 . It is not too hard to show that fi←j =
gi←j = x0jx

0
m, where m ∈ {1, 2, 3} \ {i, j} for all i, j with 1 ≤ j, i ≤ 3 and

i 6= j. On the other hand we have f 6= g. This example shows that n ≥ k+1
is an essential condition in Lemma 2.1.

Lemma 2.2. If xi /∈ Ess(f) and f ∈ Pn
k then f = fi←j, for all j ∈ {1 . . . n},

i 6= j.

Proof. Without loss of generality assume that j = 1 and i = 2. Then we
have

f(α1, α2, α3, . . . , αn) = f(α1, β2, α3, . . . , αn),

for all α1, α2, α3, . . . , αn, β2 ∈ K.

Let γ1, γ2, γ3, . . . , γn ∈ K be arbitrary n integers from K. Then we have

f(γ1, γ1, γ3, . . . , γn) = f(γ1, γ2, γ3, . . . , γn).

Consequently f = f2←1.

Lemma 2.2 implies that if xi /∈ Ess(f) then Ess(f) = Ess(fi←j), for all
j ∈ {1 . . . n} with i 6= j.

3. Essential arity gap of k-valued functions

We are going to study the n-ary k-valued functions whose arity gap is
equal to n. The set of all strings overK with lengthm,m ≥ 1 will be denoted
by Km.

Given two natural numbers k, n ≥ 2, Eqnk denotes the set of all strings
over K = {0, 1, . . . , k−1} with length n which have at least two equal letters
i.e.

Eqnk := {α1 . . . αn ∈ Kn | αi = αj , for some i, j ≤ n, i 6= j}.

Lemma 3.1. If f ∈ Gn
n,k and 2 ≤ n ≤ k, then f(α1, . . . , αn) = f(0, . . . , 0)

for all α1 . . . αn ∈ Eqnk .
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Proof. Let α1α2 . . . αn be an arbitrary string from Eqnk . Without loss
of generality let us assume that α1 = α2. Since f ∈ Gn

n,k it follows
that the function f2←1 = f(x1, x1, x3, . . . , xn) does not essentially depend
on any of its variables x1, x3, . . . , xn. So, we have f(α1, α2, α3, . . . , αn) =
f(α1, α1, α3, . . . , αn) = f(0, . . . , 0).

Theorem 3.1. Let f ∈ Pn
k , be a function which depends essentially on all

of its n variables and 2 ≤ n ≤ k. Then f ∈ Gn
n,k if and only if it can be

represented as follows

(3) f =




⊕

β1...βn /∈Eqn
k

ar.x
β1

1 . . . xβn
n


⊕ a0.




⊕

α1...αn∈Eqn
k

xα1

1 . . . xαn
n


 ,

where r = β1 . . . βn and at least two among the coefficients

{a0} ∪ {ar | r = β1 . . . βn, & β1 . . . βn /∈ Eqnk}

are distinct.

Proof. ” ⇒ ” Let f ∈ Gn
n,k be represented in its SC-form as follows

f =
kn−1⊕

m=0

am.x
β1

1 . . . xβn
n where m = β1 . . . βn.

By Lemma 3.1 we have f(α1, . . . , αn) = f(0, . . . , 0) = a0 for α1 . . . αn ∈ Eqnk .
This shows that f has to be in the form (3.1). Moreover, at least two among
the coefficients {a0} ∪ {ar | r = β1 . . . βn & β1 . . . βn ∈ Eqnk} are distinct.

” ⇐ ” Let f be represented in the form (3). Then f depends essentially
on all of its variables since at least two among the coefficients {a0}∪{ar | r =
β1 . . . βn, & β1 . . . βn /∈ Eqnk}, are distinct. We have to prove that for all i, j
with 1 ≤ j, i ≤ n and i 6= j the functions

fi←j = a0.
⊕

βi=βj

xβ1

1 . . . x
βj

j . . . xβi

i . . . xβn
n

do not depend on any of their variables.
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Without loss of generality let us prove this for j = 1 and i = 2. Then

f2←1 = a0.
(
x01 ⊕ x11 ⊕ . . . ⊕ xk−11

)



⊕

β3...βn∈Kn−2

xβ3

3 . . . xβn
n


 = a0.1.1 = a0.

Hence ess(f2←1) = 0. This completes the proof of the theorem.

Corollary 3.1. For every n, k, with 2 ≤ n ≤ k the functions

(4) pk(x1, . . . , xn) =
⊕

α1...αk /∈Eqn
k

am.x
α1

1 . . . xαn
n ,

with am ∈ K, have the essential arity gap equals to n, excluding when all
am’s are equal to 0 and pk(xi = xj) = 0 for all 1 ≤ i, j ≤ n with i 6= j.

Theorem 3.2. If 2 ≤ n ≤ k then

|Gn
n,k| = k

(
(kn).n!+1

)
− k.

Proof. The number of coefficients ai in (3) is equal to
(
k
n

)
.n! + 1 and they

can be chosen in k[(
k

n).n!+1] ways. There are k ”forbidden” cases, when a0
and ar’s in (3) are the same.

Lemma 3.2. Let f ∈ Pn
k be a k-valued function. If xi /∈ Ess(fu←v), with

1 ≤ i, u, v ≤ n, u 6= v and i /∈ {u, v} then fu←v = [fi←j]u←v, for all j,
j ∈ {1 . . . n}, j 6= i.

Proof. Suppose with no loss of generality that u = 2, v = 1 and i = 3.
Then f2←1 = f(x1, x1, x3, x4, . . . , xn) and from x3 /∈ Ess(f2←1) we have

f(x1, x1, α, x4, . . . , xn) = f(x1, x1, β, x4, . . . , xn)

for all α, β ∈ K.
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Let j ∈ {1, . . . , n} and j 6= 3. Then we have

[f3←j]2←1 = f(x1, x1, xj, x4, . . . , xn) = f(x1, x1, x3, x4, . . . , xn) = f2←1.

Lemma 3.3. Let f ∈ Pn
k be a k-valued function. If xv /∈ Ess(fu←v) for

some u, v ≤ n, then fu←v = [fv←j ]u←j = [fu←j]v←j , for all j, j ∈ {1 . . . n},
j 6= u, v.

Proof. Without loss of generality assume that u = 2 and v = 1.

Then f2←1 = f(x1, x1, x3, . . . , xn) and from x1 /∈ Ess(f2←1) we obtain

f2←1 = f(α,α, x3, . . . , xn) = f(β, β, x3, . . . , xn)

for all α, β ∈ K.

Let j > 2 and by symmetry, we may assume j = 3. Then we obtain

[f1←3]2←3 = [f(x3, x2, x3, x4, . . . , xn)]2←3 = f(x3, x3, x3, x4, . . . , xn)

= f(α,α, x3, . . . , xn) = f2←1.

We are going to describe the basic properties of the functions f whose arity
gap is non-trivial i.e. gap(f) = p with 2 ≤ p < n ≤ k, in the rest of the
paper.

Theorem 3.3. Let 2 < p < n ≤ k. Then for each f ∈ Gn,
p,k there is a

function h ∈ Pn
k with

(i) ess(h) = n− p;

(ii) fi←j = h for all 1 ≤ i, j ≤ n with i 6= j and xi ∈ Fic(h).

Moreover, for all 1 ≤ u, v ≤ n with v 6= u and xv ∈ Fic(fu←v) holds
fi←j = fu←v for all 1 ≤ i, j ≤ n with i 6= j and xi ∈ Fic(fu←v) as well as
ess(fu←v) = n− p.

Proof. Let f ∈ Gn
p,k and 1 ≤ i, j ≤ n with i 6= j and ess(fi←j) = n − p.

Let us set h = fi←j.
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First, we shall prove that there are 1 ≤ r, s ≤ n with r 6= s, ess(fr←s) = n−p
and xs /∈ Ess(fr→s).

If xj /∈ Ess(fi←j) we are done in this part of the proof.

Furthermore, let us assume that xj ∈ Ess(fi←j). Since n > p > 2, i.e.
n > 3 there are 1 ≤ r, s ≤ n with r 6= s and xr, xs ∈ Fic(h) \ {xi}. We shall
prove that ess(fr←s) = n− p and xs /∈ Ess(fr→s).

By Lemma 3.2, we have

fi←j = [fr←s]i←j.

This gives n − p = ess(fi←j) ≤ ess(fr←s) ≤ n − p since gap(f) = p,
i.e. ess(fr←s) = n − p. Further, let xm ∈ Ess(h) \ {xj}. Assume that
xm /∈ Ess(fr→s). Then

fr←s = [fr←s]m←i and thus [fr←s]i←j = [[fr←s]m←i]i←j.

Moreover, h = hr←s since xr /∈ Ess(h). Because of r 6= i, we have

hr←s = [fr←s]i←j and thus h = [[fr←s]m←i]i←j.

Since xm 6= xj we have xm /∈ Ess([[fr←s]m←i]i←j), i.e. xm /∈ Ess(h), which
is a contradiction. This shows that

Ess(h) \ {xj} ⊆ Ess(fr←s) and thus Fic(fr←s) ⊆ {xj} ∪ Fic(h).

Now let us prove that xs /∈ Ess(fr←s). For suppose this were not true
i.e. xs ∈ Ess(fr←s). Because of n − p = ess(fr←s) = ess(fi←j), then
xs /∈ Fic(fr←s) implies Fic(fr←s) = ({xj} ∪ Fic(h)) \ {xs}. This provides
xi, xj ∈ Fic(fr←s). Then we have fr←s = [fr←s]i←j. Moreover, h = hr←s.
Since r 6= i, we have [fr←s]i←j = hr←s. Altogether, this provides fr←s = h.
This shows that Fic(h) = Fic(fr←s), and in particular, xj ∈ Fic(h) which
is a contradiction. Hence xs /∈ Ess(fr←s).

Second, we shall prove that h = fu←v for all 1 ≤ u, v ≤ n with u 6= v
and xu ∈ Fic(h).

Let 1 ≤ r, s ≤ n with r 6= s and xr ∈ Fic(h). Assume that r 6= i. By the
same arguments as in the previous, we can show that Ess(h) ⊆ Ess(fr←s).
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Because of gap(f) = p, this implies Ess(h) = Ess(fr←s). Let us assume
that s 6= i. Since xr /∈ Ess(h) and xi /∈ Ess(h) = Ess(fr←s), we have

h = hr←s and fr←s = [fr←s]i←l

for l ∈ {j, s}. Since s 6= i and r 6= i, it is easy to see that hr←s = [fr←s]i←j

when r 6= j and hr←s = [fr←s]i←s when r = j. Altogether, this gives
fr←s = h.

Next, let us assume that s = i. Since xj /∈ Ess(h) = Ess(fr←s), we
have fr←s = [fr←s]j←s. Moreover, xj, xr /∈ Ess(h) implies h = [hr←s]j←s.
Since s = i, we have

[fr←s]j←s = [hr←s]j←s and thus fr←s = h.

Finally, assume that r = i and s 6= i. Because of xj /∈ Ess(h), we have
in particular h = fj←i where xi /∈ Ess(h) = Ess(fj←i) (as we have shown

in the previous). We might choose h̃ := fj←i (instead of h := fi←j) and
obtain fj←i = fi←s by the previous considerations. Altogether, we have
h = fi←s.

Lemma 3.4. Let f ∈ Gn
p,k . Then the following conditions hold:

(i) If 2 < p < n then there exist u, v ∈ {1, . . . , n} such that fu←v depends
essentially on n− p variables and xv ∈ Ess(fu←v);

(ii) If 2 < p ≤ n then there exist u, v ∈ {1, . . . , n} such that fu←v depends
essentially on n− p variables and xv /∈ Ess(fu←v).

Proof. By Theorem 3.3, there are u, v ∈ {1, . . . , n} such that ess(fu←v) =
n− p and fu←v = fi←j for 1 ≤ i, j ≤ n with i 6= j and xi ∈ Fic(fu←v).

(i) Since p < n, there is an l ∈ {1, . . . , n} with xl ∈ Ess(fu←v). Then
fu←v = fu←l since xu ∈ Fic(fu←v). This shows xl ∈ Ess(fu←l) where
ess(fu←l) = n− p.

(ii) It was already proved in Theorem 3.3.
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Theorem 3.4. Let f be a k-valued function which depends essentially on
the all of its n variables and 2 < p < n ≤ k. Then f ∈ Gn

p,k if and only if
there exist n− p variables yl1 , . . . , yln−p

∈ Xn such that

(5) f = h⊕ g,

where Ess(h) = {yl1 , . . . , yln−p
} and g ∈ Gn

n,k. Moreover, gi←j = 0 for all
1 ≤ i, j ≤ n with i 6= j.

Proof. ” ⇐ ” Let f be represented in the form (5), where h depends
essentially on all of its n − p variables and g ∈ Gn

n,k. With no loss of
generality we might assume that h is an (n− p)-ary k-valued function.

Again, without loss of generality, let us assume that yl1 , . . . , yln−p
=

x1, . . . , xn−p.

Since 2 < p < n ≤ k there is at least one variable xj ∈ Xn on
which h does not depend essentially i.e. n − p < j ≤ n. Then from
Lemma 2.2 we have Ess(hj←i) = Ess(h) for all i, 1 ≤ i ≤ n − p.
Since g ∈ Gn

n,k it follows that ess(gu←v) = 0 for all u and v with
1 ≤ u, v ≤ n and u 6= v. Hence ess(fu←v) = ess(hu←v) for all u, v with
1 ≤ u, v ≤ n and u 6= v. On the other hand ess(hu←v) = n − p when
u > n− p. Consequently,

max
t∈Min(f)

ess(t) = n− p and hence gap(f) = p.

” ⇒ ” From Lemma 3.4 (ii) it follows that there are u, v ∈ {1, . . . , n}
such that fu←v depends essentially on n− p variables and xv /∈ Ess(fu←v).
With no loss of generality let us assume that (v, u) = (n − 1, n) and let
h := fn←n−1, where Ess(h) = {x1, . . . , xn−p}.

Let g ∈ Pn
k be the function defined by

(6) g := f ⊖ h

i.e. g is the unique function in Pn
k such that g ⊕ h = f .

We have to prove that g ∈ Gn
n,k i.e. Ess(g) = Xn and gi←j = 0 for all

i, j with 1 ≤ j, i ≤ n and i 6= j.
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First, {xn−p+1, . . . , xn} ⊆ Ess(g) because Ess(f) = Xn and {xn−p+1

, . . . , xn} ∩ Ess(h) = ∅.

Second, to prove that {x1, . . . , xn−p} ⊆ Ess(g) we shall suppose that
this is not the case and without loss of generality assume that x1 /∈ Ess(g).
Then from Theorem 3.3 we obtain

fn←1 = h(x1, x2, . . . , xn−p)⊕ gn←1 = h(x1, x2, . . . , xn−p).

Since K is an additive group it follows that gn←1 = 0. Consequently g1←n =
0 and from Lemma 2.2 we obtain g = g1←n = 0 which is a contradiction.
Hence {x1, . . . , xn−p} ⊆ Ess(g) and Ess(g) = Xn.

To prove that ess(gi←j) = 0 for all i, j with 1 ≤ i, j ≤ n and i 6= j, we
shall consider several cases.

Case 1. Let n − p < j, i < n and i 6= j. According to (6) we have
gn←n−1 = fn←n−1 ⊖ h = 0. From Theorem 3.3, it follows that fi←j =
fn←n−1 and from Lemma 2.2 we have hi←j = h which implies gi←j = 0 i.e.
ess(gi←j) = 0 for all i, j with n− p < j, i < n and i 6= j.

Case 2. Let j ≤ n−p < i. We may assume that j = 1 and i = n. Since
xn /∈ Ess(h), we have h = fn←n−1 = fn←1 by Theorem 3.3. Moreover, from
Lemma 2.2 we have h = hn←1. Thus gn←1 = fn←1 ⊖ hn←1 = h⊖ h = 0. On
the other hand we have

h1←n = [fn←n−1]1←n = [fn←1]1←n = f1←n,

i.e. h1←n = f1←n and thus g1←n = f1←n ⊖ h1←n = 0. Hence g1←n =
gn←1 = 0.

Case 3. Let i, j ≤ n − p and i 6= j. By symmetry we may assume that
j = 1 and i = 2. We have to prove that g2←1 = 0.

First let us assume that there is some u > n − p such that xu /∈
Ess(f2←1). According to Case 2 we have

gu←1 = gu←2 = g1←u = g2←u = 0.

From Lemma 3.3 we obtain g2←u = [g2←1]u←1 and Lemma 2.2 implies
g2←1 = [g2←1]u←1. Hence g2←u = g2←1 = 0.



230 S. Shtrakov and J. Koppitz

Second, assume that {xn−p+1, . . . , xn} ⊆ Ess(f2←1). Since p ≥ 3 then
f ∈ Gn

p,k implies ess(f2←1) < n− 2.

Hence in the whole Case 3 the function f2←1 can essentially depend on at
most n−3 variables. Then there is a variable xv, 3 ≤ v ≤ n−p, which is not
essential in f2←1. Without loss of generality let us assume that v = 3. From
Theorem 3.3 we have fn−1←3 = h and hence f3←n−1 = h3←n−1. This implies
[f3←n−1]2←1 = [h3←n−1]2←1. Hence [f3←n−1]2←1 = [f2←1]3←n−1 = f2←1 and
[h3←n−1]2←1 = [[f2←1]3←n−1]n←n−1. From f2←1 = [f2←1]3←n−1 it follows

[h3←n−1]2←1 = [f2←1]n←n−1 = [fn←n−1]2←1 = h2←1.

Altogether, we have f2←1 = h2←1, i.e. g2←1 = 0 and ess(g2←1) = 0.

Consequently, g ∈ Gn
n,k and gi←j = 0 for all 1 ≤ i, j ≤ n with i 6= j.

Corollary 3.2. Let f ∈ Gn
p,k. Then there is a partition of the set Ess(f) =

{x1, . . . , xn} into the sets V := Ess(h) and W := Ess(f) \ V , where h is
the function defined in the proof of Theorem 3.4, such that

(xi, xj) ∈W 2 ⇒
(
ess(fi←j) = n− p & xj /∈ Ess(fi←j)

)

and

(xi, xj) ∈W × V ⇒
(
ess(fi←j) = n− p & xj ∈ Ess(fi←j)

)
.

Theorem 3.5. If 2 < p < n ≤ k, then

|Gn
p,k| =

(
k(

k

n).n! − 1
)
.

n∑

j=p

(−1)j−p
(
j

p

)(
n

j

)
.kk

n−j

.

Proof. Theorem 3.1 shows that the function g in (5) is unique which
implies that the representation of f in (5) is unique, also. Let f = h ⊕ g ∈
Gn

p,k and gi←j = 0 for all 1 ≤ i, j ≤ n with i 6= j. Let a ∈ K be a non-zero
natural number from K i.e. 0 < a ≤ k − 1. Then clearly t = g ⊕ a ∈ Gn

n,k

and ti←j = a for all 1 ≤ i, j ≤ n with i 6= j. According to Theorem 3.2 the
number of functions g ∈ Gn

n,k with gi←j = 0 for all 1 ≤ i, j ≤ n when i 6= j

is equal to |Gn
n,k|/k =

(
k(

k

n).n! − 1
)
.
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It is well known that the number of all functions in Pn
k which

depend essentially on exactly n − p variables is equal to |Pn
n−p,k| =

∑n
j=p(−1)j−p

(
j
p

)(
n
j

)
.kk

n−j

.

Consequently,

|Gn
p,k| := (|Gn

n,k|/k).(|P
n
n−p,k|)

=
(
k(

k

n).n! − 1
)
.

n∑

j=p

(−1)j−p
(
j

p

)(
n

j

)
.kk

n−j

.

4. The class Gn
2,k with 4 ≤ n ≤ k

There are two subclasses of the class Gn
2,k with 4 ≤ n ≤ k. First one, consists

of functions satisfying conditions similar as the conditions in Theorem 3.3,
Lemma 3.4 and Theorem 3.4 for p = 2. The second subclass consists of
functions whose behavior is similar to the functions from Gn

2,k with n > k
(Theorem 2.1 in [15]).

Lemma 4.1. Let f be a k-valued function which depends essentially on all
of its n, n > 3 variables and gap(f) = 2. Then there exist two distinct
essential variables xu, xv such that ess(fu←v) = n−2, and xv /∈ Ess(fu←v).
Moreover, ess(fu←m) = ess(fv←m) = n − 2 for all m, 1 ≤ m ≤ n with
m /∈ {u, v}.

Proof. Since gap(f) = 2, there are 1 ≤ i, j ≤ n with i 6= j and ess(fi←j) =
n− 2.

If xj /∈ Ess(fi←j) we are done.

Let us assume that xj ∈ Ess(fi←j). Since gap(f) = 2, there is a
w ∈ {1, . . . , n} \ {i, j} such that xw /∈ Ess(fi←j). From Lemma 3.2, we
obtain

[fw←j]i←j = fi←j and n− 2 = ess(fi←j) ≤ ess(fw←j).

Hence ess(fi←j) = ess(fw←j) = n− 2 since gap(f) = 2.

We shall prove that xj /∈ Ess(fw←j) or xi /∈ Ess(fw←i) which will
complete the proof.
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For suppose this were not true. Then xj ∈ Ess(fw←j) and xi ∈ Ess(fw←i).
Assume that xi ∈ Ess(fw←j). Then there is a r ∈ {1, . . . , n} \ {i, j, w} such
that xr /∈ Ess(fw←j). Then xr /∈ Ess([fw←j]i←j), i.e. xr /∈ Ess(fi←j),
which is a contradiction. Hence xi /∈ Ess(fw←j). By similar arguments, we
obtain that xj /∈ Ess(fw←i).

Thus we have Ess(fi←j) = Xn \ {xi, xw}, Ess(fw←i) = Xn \ {xj , xw}
and Ess(fw←j) = Xn \ {xi, xw}.

Since n > 3 it follows that there is at least one essential variable xs in
f with s ∈ {1, . . . , n} \ {i, j, w}.

Now, the equation Ess(fw←s) = Xn \ {xw} is implicit in [15] (Lemma
1.1 (5)). This equation contradicts gap(f) = 2.

Let m /∈ {u, v} be a natural number with 1 ≤ m ≤ n. Lemma
3.2 implies fu←v = [fu←m]v←m for all 1 ≤ m ≤ n with m /∈ {u, v}.
Hence n − 2 = ess(fu←v) = ess([fu←m]v←m) ≤ ess(fu←m). Now,
gap(f) = 2 shows that ess(fu←m) = n − 2 and by symmetry we obtain
ess(fv←m) = n− 2.

Let us denote by Gn,+
p,k the set of all functions f ∈ Gn

p,k for which there
exist i and j with 1 ≤ i, j ≤ n, i 6= j such that xj ∈ Ess(fi←j) and
ess(fi←j) = n− p.

Gn,−
p,k denotes the set of all functions f ∈ Gn

p,k for which xv /∈ Ess(fu←v)
for all 1 ≤ u, v ≤ n with u 6= v.

Proposition 4.1. If 3 < n ≤ k then Gn
2,k = Gn,+

2,k ∪Gn,−
2,k .

Proof. Clearly, Gn,+
2,k ∪Gn,−

2,k ⊆ Gn
2,k. Let f ∈ Gn

2,k. Then Lemma 4.1 implies
that there exist two distinct essential variables xu, xv such that ess(fu←v) =
n− 2, and xv /∈ Ess(fu←v).

If xj /∈ Ess(fi←j) for all 1 ≤ i, j ≤ n with i 6= j then f ∈ Gn,−
2,k .

Next, assume that there are 1 ≤ i, j ≤ n with xj ∈ Ess(fi←j). We have
to prove that f ∈ Gn,+

2,k i.e. there exist r, s with 1 ≤ r, s ≤ n, xr ∈ Ess(fs←r)
and ess(fs←r) = n− 2.

If {i, j} ∩ {u, v} 6= ∅ we are done because of Lemma 4.1.

Let {i, j}∩{u, v}=∅. From Lemma 4.1 we have ess(fu←i)=ess(fu←j) =
ess(fv←i) = ess(fv←j) = n− 2. If xj ∈ Ess(fu←j) we are done as above. If
xj /∈ Ess(fi←j) then we have xi ∈ Ess(fi←j) and ess(fu←i) = n− 2.
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Corollary 4.1.

Gn
p,k =





Gn,+
p,k if 2 < p < n ≤ k

Gn,−
p,k if (2 ≤ n ≤ k & p = n) or (n > k)

Gn,+
p,k ∪Gn,−

p,k if 3 < n ≤ k & p = 2.

Proof. This representation of the set Gn
p,k follows by Theorem 3.4, Theorem

3.1, Proposition 4.1, Theorem 3.1 in [14] and Theorem 2.1 in [15].

4.1. The subclass G
n,+

2,k

Theorem 4.1 Let 4 ≤ n ≤ k and f ∈ Pn
k . Then the following statements

are equivalent:

(i) f ∈ Gn,+
2,k ;

(ii) There is a function h ∈ Pn
k with ess(h) = n− 2 and fr←s = h for all

1 ≤ r, s ≤ n with r 6= s and xr ∈ Fic(h).

Proof. (ii) ⇒ (i) is clear.

(i) ⇒ (ii). Let i and j be two distinct natural numbers fro which 1 ≤
i, j ≤ n, xj ∈ Ess(fi←j) and ess(fi←j) = n − 2. Following the proof of
Lemma 4.1 we might conclude that there exists an essential variable xw
in f such that xw /∈ Ess(fi←j), ess(fw←i) = ess(fw←j) = n − 2, and
xi /∈ Ess(fw←i) or xj /∈ Ess(fw←j). Without loss of generality let us assume
that xi /∈ Ess(fw←i) i.e. Ess(fw←i) = Xn \ {xw, xi}.

From Lemma 4.1 we have ess(fw←r) = ess(fi←r) = n − 2 for all r,
1 ≤ r ≤ n with r /∈ {w, i}.

First, we shall show that Xn \ {xw, xi, xr} ⊂ Ess(fw←r) and Xn \
{xw, xi, xr} ⊂ Ess(fi←r) for all r, 1 ≤ r ≤ n with r /∈ {w, i}. Note that
Xn \{xw, xi, xr} 6= ∅ because n > 3. Since xi /∈ Ess(fw←i) and from Lemma
3.3 it follows

fw←i = [fw←r]i←r = [fw←i]i←r.
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Let xs be an essential variable in f with s /∈ {w, i, r}. Suppose that
xs /∈ Ess(fw←r). Hence xs /∈ Ess([fw←i]i←r) i.e. xs /∈ Ess(fw←i), which
contradicts Ess(fw←i) = Xn \ {xw, xi}.

Second, we shall prove that xr ∈ Ess(fw←r) and xr ∈ Ess(fi←r)
for all r, 1 ≤ r ≤ n with r /∈ {w, i}. Since xj ∈ Ess(fi←j) it follows
that j /∈ {w, i}.

Consider the case r = j. We have known that xj ∈ Ess(fi←j) and from
xw /∈ Ess(fi←j) we obtain

fi←j = [fi←j]w←j = [fi←w]w←j = fi←w.

Hence xj ∈ Ess(fw←j).

Assume that r /∈ {w, i, j}. Suppose that xr /∈ Ess(fi←r) and from
Lemma 3.3 we have fi←r = [fi←j]r←j. Since xw /∈ Ess(fi←j) we have
xw /∈ Ess([fi←j]r←j) i.e. xw /∈ Ess(fi←r). Then ess(fi←r) = n− 3 because
xr, xi, xw /∈ Ess(fi←r) which is a contradiction. Hence xr ∈ Ess(fi←r). In
a similar way it might be shown that xr ∈ Ess(fw←r).

Hence Ess(fi←r) = Ess(fw←r) = Ess(fw←i) for all r, 1 ≤ r ≤ n with
r /∈ {w, i}.

Finally, let us set h := fw←i. Clearly Ess(h) = Xn \ {xw, xi} and
ess(h) = n− 2. Let r and s be two natural numbers such that 1 ≤ r, s ≤ n,
r 6= s and r ∈ {w, i}. With no loss of generality let us assume that r = w.
Since xi /∈ Ess(fr←i) then Lemma 3.3 implies

h = fr←i = [fr←s]i←s = [fi←s]r←s = fr←s,

because xi /∈ Ess(fr←s).

Corollary 4.2. If f ∈ Gn,+
2,k , n > 3 then there exist xu, xv ∈ Ess(f) such

that fr←s = fu←v = h for all r ∈ {u, v} and s ∈ {1, . . . , n}, s 6= r, as well
as ess(fu←v) = n− 2.

Theorem 4.2. Let f be a k-valued function which depends essentially on
the all of its n variables , n > 3. Then the following sentences are equivalent:
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(i) f ∈ Gn,+
2,k ;

(ii) There exist n− 2 variables yl1 , . . . , yln−2
∈ Xn such that

f = h⊕ g,

where Ess(h) = {yl1 , . . . , yln−2
} and g ∈ Gn

n,k. Moreover gi←j = 0 for
all 1 ≤ i, j ≤ n with i 6= j.

Proof. We might prove the theorem in a similar way as Theorem 3.4 by
using Theorem 4.1 instead of Theorem 3.3.

Proposition 4.2. |Gn,+
2,k | =

(
k(

k

n).n! − 1
)
.
∑n

j=2(−1)j
(j
2

)(n
j

)
.kk

n−j

.

The proof can be done in a similar way as the proof of Theorem 3.5.

4.2. The subclass G
n,−

2,k

Thus Lemma 4.1 implies Gn,+
2,k ∪Gn,−

2,k = Gn
2,k. We are going to describe the

class Gn,−
2,k when 3 < n ≤ k.

The next theorem is proved for n > k by R. Willard in [15].

Theorem 4.3. Let f be a k-valued function which depends essentially on
all of its n, n > 3 variables. If f ∈ Gn,−

2,k then each identification minor of
f is a symmetric function with respect to its essential variables.

Proof. Since Gn,−
2,k ⊂ Gn

2,k then Lemma 4.1 implies that there exist two
distinct essential variables xu, xv such that ess(fu←v) = n − 2, and xv /∈
Ess(fu←v). With no loss of generality let us assume that (v, u) = (1, 2) and
it is enough to prove that f2←1 is a symmetric function with respect to the
variables from the set Ess(f2←1). Since Ess(f2←1) = {x3, . . . , xn} there is
an n − 2-ary function h : Kn−2 → K such that f2←1 = h(x3, . . . , xn). By
symmetry, we have to prove that

h(x3, x4, x5, . . . , xn) = h(x4, x3, x5, . . . , xn).

In fact, we obtain
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h(x3, x4, x5 . . . , xn)

=f(x1, x1, x3, x4, x5, . . . , xn)

=f(x3, x3, x3, x4, x5, . . . , xn) ( since x1 /∈ Ess(f2←1)

=f(x4, x3, x4, x4, x5, . . . , xn) ( since x3 /∈ Ess(f1←3)

=f(x4, x3, x3, x3, x5, . . . , xn) ( since x4 /∈ Ess(f3←4)

=f(x4, x4, x4, x3, x5, . . . , xn) ( since x3 /∈ Ess(f2←3)

=f(x1, x1, x4, x3, x5, . . . , xn) ( since x1 /∈ Ess(f2←1)

=h(x4, x3, x5, . . . , xn).

We can now give a representation of the functions in Gn,−
2,k (see also Theorem

16 in [6])

Theorem 4.4. Let f be an n-ary k-valued function with 3 < n ≤ k. Then
the following sentences are equivalent:

(i) f ∈ Gn,−
2,k ;

(ii) f = t ⊕ g where g ∈ Gn
n,k and t is an n-ary totally symmetric func-

tion with Ess(ti←j) = Xn \ {xi, xj} for all i, j ∈ {1, . . . , n}, i 6= j.
Moreover gi←j = 0 for all 1 ≤ i, j ≤ n with i 6= j.

Proof. ”⇐” Clearly, ess(ti←j) = n − 2 and ess(gi←j) = 0 for all i, j ∈
{1, . . . , n}, i 6= j. Hence ess(fi←j) = n−2 and gap(f) = 2. We have to prove
that Ess(f) = Xn. By symmetry it is enough to show that x1 ∈ Ess(t⊕ g).
Since n > 3 we have

f(x1, x2, x2, x4, . . . , xn) = f3←2 = t3←2 ⊕ g3←2

and

Ess(f3←2) = Ess(t3←2 ⊕ g3←2) = {x1, x4, . . . , xn} = Ess(t3←2) ⊆ Ess(f).
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”⇒” Let f ∈ Gn
2,k. Let us set f = t⊕ g, where

t =
⊕

α1α2...αn∈Eqn
k

am.x
α1

1 xα2

2 . . . xαn
n

and

g =
⊕

β1β2...βn /∈Eqn
k

ar.x
β1

1 x
β2

2 . . . xβn
n ,

with m = α1α2 . . . αn and r = β1β2 . . . βn.

Note that such representation of f can be obtained after a suitable
reordering of the conjunctions in its SC-form.

Clearly, gi←j = 0 for all i, j ∈ {1, . . . , n}, i 6= j.

From Theorem 4.3 it follows that fi←j is totally symmetric and
Ess(fi←j) = Xn \ {xi, xj} for all i, j ∈ {1, . . . , n}, i 6= j. Since fi←j = ti←j

from Theorem 4.3 we can conclude that ti←j is totally symmetric. We have
to show that t is totally symmetric, also. Since Ess(ti←j) = Xn \ {xi, xj}
there is an n − 2-ary function h such that ti←j = h, where h is a totally
symmetric function (according to Theorem 4.3) which depends essentially
on all of its variables. By t(α1, . . . , αn) = 0 when α1 . . . αn /∈ Eqnk it suffices
to prove that

(7)
t(α1, . . . , αj−1, β, αj+1, . . . , αi−1, β, αi+1, . . . , αn)

= h(α1, . . . , αj−1, αj+1, . . . , αi−1, αi+1, . . . , αn),

for all i, j ∈ {1, . . . , n}, i 6= j.

First we shall prove (7) for j = 1 and i = 3. Since x1 /∈ Ess(f3←1) we
obtain

t(α1, α2, α1, . . . , αn) = t(α2, α2, α2, . . . , αn) = h(α2, . . . , αn)

as desired.

In a similar way we might show (7) for j = 2 and i = 3. As in the
proof of Theorem 4.3 we may reorder the variables and show (7) for all
i, j ∈ {1, . . . , n}, i 6= j.
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Corollary 4.3. Let f ∈ Gn
2,k, 3 < n ≤ k and xv /∈ Ess(fu←v) for all

v, u ∈ {1, . . . , n}, u 6= v. Then there exists an n − 2-ary totally symmetric
function h such that

fi←j = f(x1, . . . , xj−1, xj , xj+1, . . . , xi−1, xj , xi+1, . . . , xn)

= h(x1, . . . , xj−1, xj+1, . . . , xi−1, xi+1, . . . , xn),

for all i, j ∈ {1, . . . , n}, i 6= j.

Remark 4.1. We shall use some notation and results from [1] and [15].

Let Sub(K) denote the set of all subsets of K. Define oddsupp : Kn →
Sub(K) as follows

oddsupp(α1, . . . , αn) := {αv : |{u : 1 ≤ u ≤ n & αu = αv}| is odd}.

A function f is determined by oddsupp if there exists a function f∗ :
Sub(K) → K such that f = f∗ ◦ oddsupp. It is easy to see that the func-
tions which are determined by oddsupp are totally symmetric, too. Then
from Theorem 16 [6] it follows that the function t defined in Theorem 4.4 is
determined by oddsupp.

5. The class Gn
2,k with 2 ≤ n ≤ 3 ≤ k

Let us note that the class G2
2,k is described in Section 3 by Theorem 3.1.

Thus f ∈ G2
2,k if and only if

f =



⊕

α6=β

arx
α
1x

β
2


⊕ a0.

(
x01x

0
2 ⊕ . . .⊕ xk−11 xk−12

)

where at least two among the coefficients {a0} ∪ {ar | r = αβ, & α 6= β}
are distinct.

Example 5.1. Let f ∈ P 3
3 be the following function

f = x01x
0
2x

0
3 ⊕ x01x

0
2x

1
3 ⊕ x01x

0
2x

2
3 ⊕ x01x

1
2x

0
3 ⊕ x01x

2
2x

0
3 ⊕ x11x

0
2x

0
3 ⊕ x21x

0
2x

0
3.
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It is easy to check that f2←1 = f3←1 = x01, f3←2 = x02 and hence f ∈ G3
2,3.

Let g ∈ P 3
3 be the following function

g = x01x
0
2x

0
3 ⊕ x01x

1
2x

1
3 ⊕ x01x

2
2x

2
3 ⊕ x11x

0
2x

1
3 ⊕ x11x

1
2x

0
3 ⊕ x21x

0
2x

2
3 ⊕ x21x

2
2x

0
3.

It is not difficult to see that g2←1 = x03, g3←1 = x02, g3←2 = x01 and hence
g ∈ G3

2,3.

Let h ∈ P 3
3 be the following function

h = x01x
0
2 ⊕ x01x

1
2x

1
3 ⊕ x01x

2
2x

2
3 ⊕ x11x

0
2x

1
3 ⊕ x21x

0
2x

2
3.

It is clear that h2←1 = h3←2 = x01, h3←1 = x02 and hence h ∈ G3
2,3.

Let r ∈ P 3
3 be the following function

r = x02 ⊕ 2.x11x
0
2x

2
3 ⊕ 2.x21x

0
2x

1
3.

It is clear that r3←1 = r3←2 = x02, r2←1 = x01 and hence r ∈ G3
2,3.

Clearly, the functions f, g and h do not satisfy Theorem 4.1 for n = 3,
and the functions f, h, and r do not satisfy Theorem 4.4 for n = 3, but
g ∈ G3,−

2,3 , and r ∈ G3,+
2,3 .

Example 5.1 shows that the case (p, n) = (2, 3) is a special case in studying
the functions with non-trivial arity gap.

In this section we shall pay attention to description of the class G3
2,k

with k > 2.

Lemma 5.1. If f ∈ G3
2,k then ess(fi←j) = 1 for all i, j ∈ {1, 2, 3}, i 6= j.

Proof. Since f ∈ G3
2,k there is an identification minor of f which depends

essentially on one variable and let us suppose ess(f2←1) = 1. There are two
possibilities.
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(i) Ess(f2←1) = {x3}. Then there are three constants α1, α3, β3 ∈ K
such that f(α1, α1, α3) 6= f(α1, α1, β3).

(ii) Ess(f2←1) = {x1}. Then there exist three constants µ1, µ2, ν3 ∈ K,
such that f(µ1, µ1, ν3) 6= f(µ2, µ2, ν3).

Now let us suppose the lemma is false and ess(f3←1) = 0. This implies that
for all four constants δ1, ε1, σ2, ψ2 ∈ K we have f(δ1, σ2, δ1) = f(ε1, ψ2, ε1)
which contradicts the both inequalities, listed above in (i) and (ii). The
similar arguments work if we suppose ess(f3←2) = 0.

We are going to describe the properties of the functions from G3
2,k. For this

we need the following auxiliary functions.

s(x1, x2) := x01x
0
2 ⊕ . . .⊕ xk−11 xk−12 , u(α)(x1, x2) :=

⊕

β 6=α

xβ1x
β
2 ,

v(α)(x1, x2) :=
⊕

β 6=α

xα1x
β
2 .(8)

For example, let k = 3, then s(x1, x2) = x01x
0
2 ⊕x11x

1
20⊕ x21x

2
2, u

(1)(x3, x2) =
x03x

0
2 ⊕ x23x

2
2 and v(1)(x3, x2) = x13x

0
2 ⊕ x13x

2
2.

Theorem 5.1. If

f =
2⊕

i=0

xi3.[
8⊕

j=0

a
(i)
j xα1

1 xα2

2 ] ∈ G3
2,3,

where j = α1α2, then f has to be represented in one of the following special
forms, up to permutation of variables:
(9)

f =
2⊕

i=0

a
(i)
0 [xi3.s(x1, x2)⊕ xi2.u

(i)(x1, x3)⊕ xi1.u
(i)(x2, x3)]⊕ p3(x1, x2, x3),

(10) f =

2⊕

i=0

a
(i)
0 [xi1.x

i
2 ⊕ xi1.u

(i)(x2, x3)⊕ xi2.u
(i)(x1, x3)]⊕ p3(x1, x2, x3),
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(11) f =
2⊕

i=0

a
(i)
0 [xi1.x

i
2 ⊕ xi2.v

(i)(x3, x1)⊕ xi2.u
(i)(x1, x3)]⊕ p3(x1, x2, x3),

(12) f =

2⊕

i=0

a
(i)
0 [xi1.x

i
2 ⊕ xi1.v

(i)(x3, x2)⊕ xi2.v
(i)(x3, x1)]⊕ p3(x1, x2, x3),

such that at least two among the coefficients a
(0)
0 , a

(1)
0 , a

(2)
0 are different and

p3 are arbitrary functions defined by (4).

Proof. According to Lemma 5.1, for f ∈ G3
2,3 we need ess(f2←1) =

ess(f3←1) = ess(f3←2) = 1. This is equivalent to the following conjunc-
tion of three disjunctions:

(
x1 /∈ Ess(f2←1) or x3 /∈ Ess(f2←1)

)
and

(
x1 /∈ Ess(f3←1) or x2 /∈ Ess(f3←1)

)
and

(
x2 /∈ Ess(f3←2) or x1 /∈ Ess(f3←2)

)
.

Thus we obtain the following linear systems of equations for the coefficients
of the functions from G3

2,3.

(13)

(a) (a
(0)
0 , a

(1)
0 , a

(2)
0 ) = (a

(0)
4 , a

(1)
4 , a

(2)
4 ) = (a

(0)
8 , a

(1)
8 , a

(2)
8 )

(b) (a
(0)
0 , a

(0)
4 , a

(0)
8 ) = (a

(1)
0 , a

(1)
4 , a

(1)
8 ) = (a

(2)
0 , a

(2)
4 , a

(2)
8 ),

(14)

(a) (a
(0)
0 , a

(0)
1 , a

(0)
2 ) = (a

(1)
3 , a

(1)
4 , a

(1)
5 ) = (a

(2)
6 , a

(2)
7 , a

(2)
8 )

(b) (a
(0)
0 , a

(1)
3 , a

(2)
6 ) = (a

(0)
1 , a

(1)
4 , a

(2)
7 ) = (a

(0)
2 , a

(1)
5 , a

(2)
8 ),
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(15)

(a) (a
(0)
0 , a

(0)
3 , a

(0)
6 ) = (a

(1)
1 , a

(1)
4 , a

(1)
7 ) = (a

(2)
2 , a

(2)
5 , a

(2)
8 )

(b) (a
(0)
0 , a

(1)
1 , a

(2)
2 ) = (a

(0)
3 , a

(1)
4 , a

(2)
5 ) = (a

(0)
6 , a

(1)
7 , a

(2)
8 ).

Now any solution is determined by a word (string) over the alphabetic {a, b}
with length 3. For example let us consider the string aba. Then we use
equations a from (13), b from (14) and a from (15).

Then we obtain

a
(0)
0 = a

(0)
4 = a

(0)
8 = a

(0)
1 = a

(0)
2 = a

(1)
1 = a

(2)
2

a
(1)
0 = a

(1)
4 = a

(1)
8 = a

(1)
3 = a

(1)
5 = a

(0)
3 = a

(2)
5

a
(2)
0 = a

(2)
4 = a

(2)
8 = a

(2)
6 = a

(2)
7 = a

(0)
6 = a

(1)
1 .

Hence

f =

2⊕

i=0

a
(i)
0 [xi1.x

i
3 ⊕ xi1.u

(i)(x2, x3)⊕ xi3.u
(i)(x1, x2)],

i.e. f is as the function presented by (10) where the variables x2 and x3 are
permuted.

In this way we might generate 23 = 8 linear systems for the coefficients.

The remaining seven cases of strings, might be checked in the same way.
We will summarize the results. The functions in the form (9) are generated
by the string aaa; (10) – by aba, baa and aab; (11) – by abb, bba and bab
and (12) – by bbb.

Proposition 5.1. |G3
2,3| ≤ 139968.

Proof. Clearly, each of the functions in equations (9)–(12) can be written
as follows

f =

[
2⊕

i=0

a
(i)
0 .g(i)(x1, x2, x3)

]
⊕ p3(x1, x2, x3),
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where p3 are the functions defined in (4) when k = 3. The number of the
functions p3(x1, x2, x3) is equal to 33! = 729.

The functions g(i) from the equations (9) and (12) are totally symmetric,
but these from (10) and (11) are symmetric with respect to two of their

arguments, only. Thus if the coefficients a
(i)
0 are fixed then there exist one

function

2⊕

i=0

a
(i)
0 .g(i)(x1, x2, x3)

determined by (9), one – by (12), three functions are determined by (10) and

three – by (11). So, there are 8 such functions. The triples (a
(0)
0 , a

(1)
0 , a

(2)
0 )

can be chosen in 33−3 = 24 ways (the triples (0, 0, 0), (1, 1, 1) and (2, 2, 2) are

forbidden). Hence there are 8.24 = 192 functions
⊕2

i=0 a
(i)
0 .g(i)(x1, x2, x3)

which satisfied (9)–(12). Hence |G3
2,3| ≤ 192.729 = 139968.

Proposition 5.2. |G3
2,k| ≤ 8.k(

k

3
)3!.(kk − k).

Proof. Without any difficulties, excluding the more complex calculations,
we might generalize results from G3

2,3 to G3
2,k for arbitrary k, k ≥ 3.

In this case we obtain the same conjunction of three disjunctions to
determine the functions from G3

2,k. The difference is that in the equations
(13)–(15) participate k tuples of k coefficients and a function belongs to
G3

2,k if and only if it can be represented as in (9)–(12) as the sums are

extended up to k − 1 instead of 2 in the case G3
2,3. All other arguments

work, here also.
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