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Abstract

We deal with congruences on semilattices with section antitone in-
volution which rise e.g., as implication reducts of Boolean algebras,
MV-algebras or basic algebras and which are included among implica-
tion algebras, orthoimplication algebras etc. We characterize congru-
ences by their kernels which coincide with semilattice filters satisfying
certain natural conditions. We prove that these algebras are congru-
ence distributive and 3-permutable.
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Let (P; <) be an ordered set. A mapping x z on P is called an antitone
involution if x”’ =z and z <y =19y <2’

By a semilattice with section antitone involutions (semilattice with SAI,
for short) is meant a structure S = (S;V,1,(%)4es) such that (S;V) is a
join-semilattice with greatest element 1 and for each a € S there exists an
antitone involution z — z% on the interval [a, 1] (the so-called section, see

e.g., [3]).

*This work is supported by the Research Project MSM 6198959214 by Czech Govern-
ment.
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Let us note that semilattices with SAT are rather frequent in algebraic inves-
tigations. If e.g., (B;V,A,,0,1) is a Boolean algebra and 2% = 2’ V a then
(B;V,1,(%)aen) is a semilattice with SAIL Similarly, if (L;V,A,*,0,1) is an
orthomodular lattice and 2% = 21 V @ then (L;V, 1, (%)acr) is a semilattice
with SAL If M = (M;®,—-,0) is an MV-algebra and we define 1 = -0,
xVy=-(-xdy) ®yand 2 = -z & a then (M;V,1,(*)een) is a semi-
lattice with SAIL In the same way it can be shown for basic algebras (see
e.g., [5]). If (A;-,1) is a positive BCK-algebra then for z Vy = (x - y) - y
and z% = x - a we obtain a semilattice with SAT (A;V, 1, (*).ca) again, see
e.g., [5]. Analogously, every implication algebra (see [1]), orthoimplication
algebra (see [2]) or weak implication algebra (see [6]) can be converted into
a semilattice with SAI.

The aim of this paper is to characterize congruences on semilattices with
SAI via their congruence kernels and prove several important congruence
identities.

Let S = (5;V,1,(%)4es) be a semilattice with SAI. Although S is only
a partial algebra since the involutions are defined only on sections, it can be
easily converted into a total algebra if one define enlarged unary operations
(“)aes in the way z +— (z V a)® Since z V a € [a, 1], this is everywhere
defined operation which coincides with the original one just on the section
[a, 1]. Moreover, we can define a new binary operation z-y = (zVy)¥ which
can replace other operations of S since zVy = (z-y) -y and 2% = z - a for
x € [a,1]. However, in some reasonable cases, it is useful to deal with the
original structure S as defined above.

Let S = (S;V,1,(%)aecs) be a semilattice with SAIL. By a congruence on S
is meant an equivalence relation © on S having the substitution property with
respect to all operations of S, i.e. if {(a,b),(c,d) € © then (a Ve, bV d) € ©
and for each z < a, z < b also (a?,b*) € O. Denote by ConS the lattice of all
congruences on S and for © € ConS denote by [l]eg = {z € S;(z,1) € O},
the so-called kernel of ©.

At first we establish connection between congruences and their kernels.
Theorem 1. Let S = (S;V,1,(%)acs) be a semilattice with SAI and © €

ConS. Then (z,y) € O if and only if (xVy)*, (xVy)Y € [1]o. IfO,P € ConS
and [1]e = [1]¢ then © = ®.

Proof. If (z,y) € © then ((x Vy)*,1) = ((x Vy)*, (z Vx)*) € O and
((zVvy)!,1) = ((zVy) (yVy)) € O thus (x Vy)*, (zVy)’ € []e.
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Conversely, assume (z V y)Y, (z V y)* € [l]e. Then ((z Vy)Y,1) € © and
hence
(£ Vy,y) = ((zVy)" 1Y) €O

and, analogously, (zVy,z) € ©. Due to symmetry and transitivity of ©, we
infer (x,y) € O©.

Hence, if ©,® € ConS and [1l]e = [1]¢ then (z,y) € O iff (zV y)*, (z V
Y)Y € [l]le = [1] iff (x,y) € @ thus © = D. |

By Theorem 1, every congruence on S is uniquely determined by its kernel.
Hence, to characterize congruences we need only to characterize their kernels
which is our next task.

Let S = (S;V,1,(*)4es) be a semilattice with SAI. A subset F' C S is
called a filter of S if 1 € F' and the following conditions are satisfied

(i) a € F and a < y imply y € F}
(ii) @ € F and a” € F imply = € F}
(iii) a® € F implies (a V 2)®V?) € F for each z € S;

(iv) a’ € F implies (b*)(¢") € F for each z < b.

Let us note that if b < a then bV z < a V z and if, moreover, z < b, then
a’® < b* thus the conditions (iii) and (iv) are correctly settled.

In what follows, let S = (S;V, 1, (*)ses) be a semilattice with SAT and
F be a subset of S. Define a binary relation © on S by the rule

(r,y) € Op ifand only if (zVy)*, (xVy)Y € F.

Lemma 1. Let F be a filter of S and a < b < c.
(a) Ifb* € F and ¢* € F then also ¢* € F;
(b) If (a,b) € O and (b,c) € OF then (a,c) € Op;
(c) If (b,c) € OF then (b* c*) € OF;

(d) If (a,b) € O and z € S then (aV z,bV z) € OF.
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Proof.
(a) Since ¢ € F and a < b < ¢, by (iv) we have (b%)(*") € F. Since also
b* € F, (ii) implies ¢* € F.
(b) If a <b<cand (a,b) € Op, (b,c) € O then, by the definition of Op
we have
VW=(aVvb?*cF and ¢=(@bve)leF
By (a) we obtain ¢* € F whence (aVc)* =c¢* € F, (aVe)¢ =c*=1€ F
thus (a,c) € OF.
(c) Since a < b < ¢ we have ¢® < b®. If (b,c) € Op then ¢® = (bV )¢ € F
thus, by (iv), also (b*)*) € F, ie. (b V ¢*)() = (b9)(¢") € F and
(b V ) ) = (¢4)(¢) =1 € F whence (b, c*) € Op.
(d) Let z € S and (a,b) € Op. Then b® = (a V b)* € F and, by (iii), also

(bV 2)@V2) € F. Of course, aV z < bV z thus ((aV z)V (bV 2))@V?) =
bV 2) @2 ¢ Fand ((aV2)V (bV2)®WV) = (bv2)tV2) =1 ¢ F
whence (aV z,bV z) € Op.

Theorem 2. Let S = (S;V,1,(*)aes) be a semilattice with SAI. A subset
F C S is a kernel of some congruence of S if and only if F' is a filter of S.

If F is a filter of S then ©F is a congruence on S and F = [1]o

Fe

Proof. Assume F = [l]g for some © € ConS. We are going to check
(i)—(iv) to prove that F' is a filter of S.

(i)

(if)

(iii)

If a € [1]o and a < y then (a,1) € © and hence (y,1) = (aVy,1Vy) €
© thus y € [1]e.

Let a € [l]o and a® € [l]e. Then (a®,1) € © thus also (a,x) =
(a®®,17) € ©. Due to the fact that (a,1) € O, we conclude (z,1) € ©
whence z € [1]e.

Assume a® € [1]g, i.e. (a®,1) € ©. Then (a,b) = (a*,1°) € O thus
also (aV z,bV z) € © for each z € S. Hence

{((aV Z)(sz)’ 1) ={((aV Z)(sz)’ (bV Z)(bv,z)> co

thus (a Vv 2)*V2) € [1]e.
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(iv) Analogously as above, if a® € F' then (a,b) € © thus also (a?,b*) € ©
for each z < a, i.e. ((a*)"",1) = ((a®)"", (b*)*") € © thus (a*)*) € F.

We have shown that [1]e is a filter of S.
Conversely, let F' be a filter of S. We are going to prove that O is a
congruence on & whose kernel is F. Since 1 € F', O is reflexive and, by

the definition, it is symmetrical. At first we observe that, by the definition
of O,

(%) (x,y) € O ifandonly if (x,zVy),({y,zVy) € Op.

Now, we prove transitivity of Op.

Assume (a,b), (b,c) € Op. By (%) we have (a,a V b),(b,a V b),(b,bV
¢),(c,bVec) € Op. Since b < aVband b <bVec, we apply (d) of Lemma 1 to
get (aVb,aVbVe) € Op and (bVe,aVbVe) € Op. Applying (b) of Lemma
1 we infer (a,aVbVe) € O and (c,aVbVec) € Op. By the definition of Op
we obtain (aVbVc)* € Fand (aVbVc)® € F. Since (aVbVe)® < (aVc)
and (aVbVe) < (aVc)€, we infer by (i) that also (aV¢)?, (aVc)® € F thus
(a,c) € Op.

We prove the substitution property of ©p.

Assume (z,y) € Op and (z,v) € Op. Then (z Vy)*, (x Vy)Y € F and,
by (iii) also

(xV2)V (V)T =@vyvz) V) e F

and

(zV2)V(yVva)WW =@vyvz) ¥ e F

thus (x V z,y V z) € Op. Analogously we prove (yV z,y Vv) € O and, due
to transitivity of O, we conclude (z V z,y V v) € Op.

Assume (z,y) € Op and z < z,y. As mentioned above, then (x,zVy) €
OF and (y,zVy) € Op thus, by (c) of Lemma 1, also (%, (xVy)*) € Op and
(y%, (x Vy)*) € Op. Using symmetry and transitivity, we obtain (x*,y*) €
Op.

Finally, if a € F then (aV1)*=1"=qa € Fand (aV1)! =1'=1€ F
thus (a,1) € OF, ie. a € [1l]o,. If a € [1]o, then (a,1) € Op and hence
a=1"=(1Va)® e F. We conclude F = [1]o,. |
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Recall several concepts from [4]. An algebra A with a constant 1 is called
congruence distributive at 1 if

Mea@vw) = [@re)v(©rw)
for all ©,®, ¥ € ConA. Further, A is permutable at 1 if
[1e-e = [s.0

for all ©,® € ConA. It is worth noticing that © - & and ® - © need not be
congruences of A; they are congruences if and only if they permute, i.e. if
0-2=90.0.

A is called arithmetical at 1 if it is both congruence permutable at 1
and congruence distributive at 1. The following assertion follows directly
from Theorem 8.3.2 from [4].

Proposition. If A is an algebra with a constant 1 and A has a binary term
function t(x,y) satisfying the identities t(x,z) =1 =t(1,z) and t(z,1) = x
then A is arithmetical at 1.

This yields immediately
Corollary 1. FEvery semilattice with SAI is arithmetical at 1.

Proof. One can take t(z,y) = (x V y)*. Then t(z,z)=(z V)" = 2" =1,
t(l,z) =(1va) =1' =1l and t(x,1) = (zV1)* = 17 = .

Since every congruence is uniquelly determined by its kernel, Corollary 1
gets the following

Corollary 2. Every semilattice S with SAI is congruence distributive, i.e.
ConS is a distributive lattice.

Proof. By Corollary 1 we infer

Mea@vw) = [@re)v(©rw)

for all ©,®, ¥ € ConS and, by Theorem 1, it yields © A (PV ¥) = (OAD)V
(OATD). |
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Unfortunately, Corollary 1 does not imply congruence permutability of S
due to the fact that © - ® need not be a congruence on S. However, we can
prove the following

Theorem 3. Every semilattice with SAI is congruence 3-permutable.

Proof. By Corollary 2, S = (S;V, 1, (%)aecs) is congruence permutable at 1
and, due to Lemma 8.1.1 [4], it gets [1Jeve = [1]e.o for each ©,® € ConS.
Assume (z,y) € © V ®. By Theorem 1, we have (z V y)! € [l]o.¢ and
(x Vy)* € [l]e.e. Hence, there exist z,v € S such that

(zvy),z) €O, (2,1)€d

(xVy)*,v)yeO, (v,1)€d.

Then
(i) (z,(vVva)*)=(AVa)*,(vVx)*)ed

(i) ((zVvyy=(zVvy’,QVvyY) e

and

(zVy, (zvy)?)=((zVvy)? vy (:Vy)’) €O

(xVy,(vVa))={((zVy)* V), (vVz)) e

thus also ((v V z)*,(z V y)¥) € ©O. This together with (i) and (ii)
yields (z,y) € ® - 0O - ®. We have shown O VP C & -0 - d. The con-
verse inclusion is trivial thus © V & = & - © - ® and hence S is congruence
3-permutable. ]

If S has a least element, we can prove a stronger assertion.

Theorem 4. Let S = (S;V,1,0,(*)acs) be a semilattice with SAI having a
least element 0. Then S is congruence permutable.
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Proof. Let S have a least element 0. Since the mapping = — 2 is

an antitone involution in the whole semilattice (S;V), it is plain to show
that z Ay = (20 v ¢9)° is infimum of x,y thus (S;V,A) is a lattice.

Hence, A is a term operation of S and we can construct the following ternary
term operation

p(x,y,2) = ((zVy)! V)" A((zVy)' V)
An easy calculation gets
p(z,z,2) = ((xVa)*Vz)*A((zVa)*Va)?
=1PAN@zVe)"™=zA(zVz)=2
and, analogously,
p(z,z,2) = (2 V2)* V)P A((2V2)* V)
=(@xVz)¥*AN1"=(xVz)ANz=u

Thus p(z,y, 2) is a Maltsev term function on S and hence S is congruence
permutable. [ |
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