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Abstract

We deal with congruences on semilattices with section antitone in-
volution which rise e.g., as implication reducts of Boolean algebras,
MV-algebras or basic algebras and which are included among implica-
tion algebras, orthoimplication algebras etc. We characterize congru-
ences by their kernels which coincide with semilattice filters satisfying
certain natural conditions. We prove that these algebras are congru-
ence distributive and 3-permutable.
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Let (P ;≤) be an ordered set. A mapping x 7→ x
′

on P is called an antitone
involution if x′′ = x and x ≤ y ⇒ y′ ≤ x′.

By a semilattice with section antitone involutions (semilattice with SAI,
for short) is meant a structure S = (S;∨, 1, (a)a∈S) such that (S;∨) is a
join-semilattice with greatest element 1 and for each a ∈ S there exists an
antitone involution x 7→ xa on the interval [a, 1] (the so-called section, see
e.g., [3]).
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Let us note that semilattices with SAI are rather frequent in algebraic inves-
tigations. If e.g., (B;∨,∧,′ , 0, 1) is a Boolean algebra and xa = x′ ∨ a then
(B;∨, 1, (a)a∈B) is a semilattice with SAI. Similarly, if (L;∨,∧,⊥ , 0, 1) is an
orthomodular lattice and xa = x⊥ ∨ a then (L;∨, 1, (a)a∈L) is a semilattice
with SAI. If M = (M ;⊕,¬, 0) is an MV-algebra and we define 1 = ¬0,
x ∨ y = ¬(¬x ⊕ y) ⊕ y and xa = ¬x ⊕ a then (M ;∨, 1, (a)a∈M ) is a semi-
lattice with SAI. In the same way it can be shown for basic algebras (see
e.g., [5]). If (A; ·, 1) is a positive BCK-algebra then for x ∨ y = (x · y) · y
and xa = x · a we obtain a semilattice with SAI (A;∨, 1, (a)a∈A) again, see
e.g., [5]. Analogously, every implication algebra (see [1]), orthoimplication
algebra (see [2]) or weak implication algebra (see [6]) can be converted into
a semilattice with SAI.

The aim of this paper is to characterize congruences on semilattices with
SAI via their congruence kernels and prove several important congruence
identities.

Let S = (S;∨, 1, (a)a∈S) be a semilattice with SAI. Although S is only
a partial algebra since the involutions are defined only on sections, it can be
easily converted into a total algebra if one define enlarged unary operations
(a)a∈S in the way x 7→ (x ∨ a)a. Since x ∨ a ∈ [a, 1], this is everywhere
defined operation which coincides with the original one just on the section
[a, 1]. Moreover, we can define a new binary operation x ·y = (x∨ y)y which
can replace other operations of S since x ∨ y = (x · y) · y and xa = x · a for
x ∈ [a, 1]. However, in some reasonable cases, it is useful to deal with the
original structure S as defined above.

Let S = (S;∨, 1, (a)a∈S) be a semilattice with SAI. By a congruence on S
is meant an equivalence relation Θ on S having the substitution property with
respect to all operations of S, i.e. if 〈a, b〉, 〈c, d〉 ∈ Θ then 〈a ∨ c, b ∨ d〉 ∈ Θ
and for each z ≤ a, z ≤ b also 〈az, bz〉 ∈ Θ. Denote by ConS the lattice of all
congruences on S and for Θ ∈ ConS denote by [1]Θ = {x ∈ S; 〈x, 1〉 ∈ Θ},
the so-called kernel of Θ.

At first we establish connection between congruences and their kernels.

Theorem 1. Let S = (S;∨, 1, (a)a∈S) be a semilattice with SAI and Θ ∈
ConS. Then 〈x, y〉 ∈ Θ if and only if (x∨y)x, (x∨y)y ∈ [1]Θ. If Θ,Φ ∈ ConS
and [1]Θ = [1]Φ then Θ = Φ.

Proof. If 〈x, y〉 ∈ Θ then 〈(x ∨ y)x, 1〉 = 〈(x ∨ y)x, (x ∨ x)x〉 ∈ Θ and
〈(x ∨ y)y, 1〉 = 〈(x ∨ y)y, (y ∨ y)y〉 ∈ Θ thus (x ∨ y)x, (x ∨ y)y ∈ [1]Θ.
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Conversely, assume (x ∨ y)y, (x ∨ y)x ∈ [1]Θ. Then 〈(x ∨ y)y, 1〉 ∈ Θ and
hence

〈x ∨ y, y〉 = 〈(x ∨ y)yy, 1y〉 ∈ Θ

and, analogously, 〈x∨ y, x〉 ∈ Θ. Due to symmetry and transitivity of Θ, we
infer 〈x, y〉 ∈ Θ.

Hence, if Θ,Φ ∈ ConS and [1]Θ = [1]Φ then 〈x, y〉 ∈ Θ iff (x ∨ y)x, (x ∨
y)y ∈ [1]Θ = [1]Φ iff 〈x, y〉 ∈ Φ thus Θ = Φ.

By Theorem 1, every congruence on S is uniquely determined by its kernel.
Hence, to characterize congruences we need only to characterize their kernels
which is our next task.

Let S = (S;∨, 1, (a)a∈S) be a semilattice with SAI. A subset F ⊆ S is
called a filter of S if 1 ∈ F and the following conditions are satisfied

(i) a ∈ F and a ≤ y imply y ∈ F ;

(ii) a ∈ F and ax ∈ F imply x ∈ F ;

(iii) ab ∈ F implies (a ∨ z)(b∨z) ∈ F for each z ∈ S;

(iv) ab ∈ F implies (bz)(a
z) ∈ F for each z ≤ b.

Let us note that if b ≤ a then b ∨ z ≤ a ∨ z and if, moreover, z ≤ b, then
az ≤ bz thus the conditions (iii) and (iv) are correctly settled.

In what follows, let S = (S;∨, 1, (a)a∈S) be a semilattice with SAI and
F be a subset of S. Define a binary relation ΘF on S by the rule

〈x, y〉 ∈ ΘF if and only if (x ∨ y)x, (x ∨ y)y ∈ F.

Lemma 1. Let F be a filter of S and a ≤ b ≤ c.

(a) If ba ∈ F and cb ∈ F then also ca ∈ F ;

(b) If 〈a, b〉 ∈ ΘF and 〈b, c〉 ∈ ΘF then 〈a, c〉 ∈ ΘF ;

(c) If 〈b, c〉 ∈ ΘF then 〈ba, ca〉 ∈ ΘF ;

(d) If 〈a, b〉 ∈ ΘF and z ∈ S then 〈a ∨ z, b ∨ z〉 ∈ ΘF .
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Proof.

(a) Since cb ∈ F and a ≤ b ≤ c, by (iv) we have (ba)(c
a) ∈ F . Since also

ba ∈ F , (ii) implies ca ∈ F .

(b) If a ≤ b ≤ c and 〈a, b〉 ∈ ΘF , 〈b, c〉 ∈ ΘF then, by the definition of ΘF

we have

ba = (a ∨ b)a ∈ F and cb = (b ∨ c)b ∈ F.

By (a) we obtain ca ∈ F whence (a∨c)a = ca ∈ F , (a∨c)c = cc = 1 ∈ F

thus 〈a, c〉 ∈ ΘF .

(c) Since a ≤ b ≤ c we have ca ≤ ba. If 〈b, c〉 ∈ ΘF then cb = (b ∨ c)c ∈ F

thus, by (iv), also (ba)(c
a) ∈ F , i.e. (ba ∨ ca)(c

a) = (ba)(c
a) ∈ F and

(ba ∨ ca)(c
a) = (ca)(c

a) = 1 ∈ F whence 〈ba, ca〉 ∈ ΘF .

(d) Let z ∈ S and 〈a, b〉 ∈ ΘF . Then ba = (a ∨ b)b ∈ F and, by (iii), also
(b∨ z)(a∨z) ∈ F. Of course, a∨ z ≤ b∨ z thus ((a∨ z)∨ (b∨ z))(a∨z) =
(b ∨ z)(a∨z) ∈ F and ((a ∨ z) ∨ (b ∨ z))(b∨z) = (b ∨ z)(b∨z) = 1 ∈ F

whence 〈a ∨ z, b ∨ z〉 ∈ ΘF .

Theorem 2. Let S = (S;∨, 1, (a)a∈S) be a semilattice with SAI. A subset
F ⊆ S is a kernel of some congruence of S if and only if F is a filter of S.
If F is a filter of S then ΘF is a congruence on S and F = [1]ΘF

.

Proof. Assume F = [1]Θ for some Θ ∈ ConS. We are going to check
(i)–(iv) to prove that F is a filter of S.

(i) If a ∈ [1]Θ and a ≤ y then 〈a, 1〉 ∈ Θ and hence 〈y, 1〉 = 〈a∨y, 1∨y〉 ∈
Θ thus y ∈ [1]Θ.

(ii) Let a ∈ [1]Θ and ax ∈ [1]Θ. Then 〈ax, 1〉 ∈ Θ thus also 〈a, x〉 =
〈axx, 1x〉 ∈ Θ. Due to the fact that 〈a, 1〉 ∈ Θ, we conclude 〈x, 1〉 ∈ Θ
whence x ∈ [1]Θ.

(iii) Assume ab ∈ [1]Θ, i.e. 〈ab, 1〉 ∈ Θ. Then 〈a, b〉 = 〈abb, 1b〉 ∈ Θ thus
also 〈a ∨ z, b ∨ z〉 ∈ Θ for each z ∈ S. Hence

〈(a ∨ z)(b∨z), 1〉 = 〈(a ∨ z)(b∨z), (b ∨ z)(b∨z)〉 ∈ Θ

thus (a ∨ z)(b∨z) ∈ [1]Θ.
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(iv) Analogously as above, if ab ∈ F then 〈a, b〉 ∈ Θ thus also 〈az, bz〉 ∈ Θ
for each z ≤ a, i.e. 〈(az)b

z

, 1〉 = 〈(az)b
z

, (bz)b
z

〉 ∈ Θ thus (az)(b
z) ∈ F .

We have shown that [1]Θ is a filter of S.

Conversely, let F be a filter of S. We are going to prove that ΘF is a
congruence on S whose kernel is F . Since 1 ∈ F , ΘF is reflexive and, by
the definition, it is symmetrical. At first we observe that, by the definition
of ΘF ,

(∗) 〈x, y〉 ∈ ΘF if and only if 〈x, x ∨ y〉, 〈y, x ∨ y〉 ∈ ΘF .

Now, we prove transitivity of ΘF .

Assume 〈a, b〉, 〈b, c〉 ∈ ΘF . By (∗) we have 〈a, a ∨ b〉, 〈b, a ∨ b〉, 〈b, b ∨
c〉, 〈c, b∨ c〉 ∈ ΘF . Since b ≤ a∨ b and b ≤ b∨ c, we apply (d) of Lemma 1 to
get 〈a∨ b, a∨ b∨ c〉 ∈ ΘF and 〈b∨ c, a∨ b∨ c〉 ∈ ΘF . Applying (b) of Lemma
1 we infer 〈a, a∨ b∨ c〉 ∈ ΘF and 〈c, a∨ b∨ c〉 ∈ ΘF . By the definition of ΘF

we obtain (a∨ b∨ c)a ∈ F and (a∨ b∨ c)c ∈ F . Since (a∨ b∨ c)a ≤ (a∨ c)a

and (a∨ b∨ c)c ≤ (a∨ c)c, we infer by (i) that also (a∨ c)a, (a∨ c)c ∈ F thus
〈a, c〉 ∈ ΘF .

We prove the substitution property of ΘF .

Assume 〈x, y〉 ∈ ΘF and 〈z, v〉 ∈ ΘF . Then (x ∨ y)x, (x ∨ y)y ∈ F and,
by (iii) also

((x ∨ z) ∨ (y ∨ z))(x∨z) = (x ∨ y ∨ z)(x∨z) ∈ F

and

((x ∨ z) ∨ (y ∨ z))(y∨z) = (x ∨ y ∨ z)(y∨z) ∈ F

thus 〈x∨ z, y ∨ z〉 ∈ ΘF . Analogously we prove 〈y ∨ z, y ∨ v〉 ∈ ΘF and, due
to transitivity of ΘF , we conclude 〈x ∨ z, y ∨ v〉 ∈ ΘF .

Assume 〈x, y〉 ∈ ΘF and z ≤ x, y. As mentioned above, then 〈x, x∨y〉 ∈
ΘF and 〈y, x∨y〉 ∈ ΘF thus, by (c) of Lemma 1, also 〈xz , (x∨y)z〉 ∈ ΘF and
〈yz, (x ∨ y)z〉 ∈ ΘF . Using symmetry and transitivity, we obtain 〈xz, yz〉 ∈
ΘF .

Finally, if a ∈ F then (a ∨ 1)a = 1a = a ∈ F and (a ∨ 1)1 = 11 = 1 ∈ F

thus 〈a, 1〉 ∈ ΘF , i.e. a ∈ [1]ΘF
. If a ∈ [1]ΘF

then 〈a, 1〉 ∈ ΘF and hence
a = 1a = (1 ∨ a)a ∈ F . We conclude F = [1]ΘF

.
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Recall several concepts from [4]. An algebra A with a constant 1 is called
congruence distributive at 1 if

[1]Θ∧(Φ∨Ψ) = [1](Θ∧Φ)∨(Θ∧Ψ)

for all Θ,Φ,Ψ ∈ ConA. Further, A is permutable at 1 if

[1]Θ·Φ = [1]Φ·Θ

for all Θ,Φ ∈ ConA. It is worth noticing that Θ · Φ and Φ · Θ need not be
congruences of A; they are congruences if and only if they permute, i.e. if
Θ · Φ = Φ ·Θ.

A is called arithmetical at 1 if it is both congruence permutable at 1
and congruence distributive at 1. The following assertion follows directly
from Theorem 8.3.2 from [4].

Proposition. If A is an algebra with a constant 1 and A has a binary term
function t(x, y) satisfying the identities t(x, x) = 1 = t(1, x) and t(x, 1) = x

then A is arithmetical at 1.

This yields immediately

Corollary 1. Every semilattice with SAI is arithmetical at 1.

Proof. One can take t(x, y) = (x ∨ y)x. Then t(x, x)= (x ∨ x)x = xx=1,
t(1, x) = (1 ∨ x)1 = 11 = 1 and t(x, 1) = (x ∨ 1)x = 1x = x.

Since every congruence is uniquelly determined by its kernel, Corollary 1
gets the following

Corollary 2. Every semilattice S with SAI is congruence distributive, i.e.
ConS is a distributive lattice.

Proof. By Corollary 1 we infer

[1]Θ∧(Φ∨Ψ) = [1](Θ∧Φ)∨(Θ∧Ψ)

for all Θ,Φ,Ψ ∈ ConS and, by Theorem 1, it yields Θ∧ (Φ∨Ψ) = (Θ∧Φ)∨
(Θ ∧Ψ).
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Unfortunately, Corollary 1 does not imply congruence permutability of S
due to the fact that Θ ·Φ need not be a congruence on S. However, we can
prove the following

Theorem 3. Every semilattice with SAI is congruence 3-permutable.

Proof. By Corollary 2, S = (S;∨, 1, (a)a∈S) is congruence permutable at 1
and, due to Lemma 8.1.1 [4], it gets [1]Θ∨Φ = [1]Θ·Φ for each Θ,Φ ∈ ConS.
Assume 〈x, y〉 ∈ Θ ∨ Φ. By Theorem 1, we have (x ∨ y)y ∈ [1]Θ·Φ and
(x ∨ y)x ∈ [1]Θ·Φ. Hence, there exist z, v ∈ S such that

〈(x ∨ y)y, z〉 ∈ Θ, 〈z, 1〉 ∈ Φ

〈(x ∨ y)x, v〉 ∈ Θ, 〈v, 1〉 ∈ Φ.

Then

(i) 〈x, (v ∨ x)x〉 = 〈(1 ∨ x)x, (v ∨ x)x〉 ∈ Φ

(ii) 〈(z ∨ y)y, y〉 = 〈(z ∨ y)y, (1 ∨ y)y〉 ∈ Φ

and

〈x ∨ y, (z ∨ y)y〉 = 〈((x ∨ y)y ∨ y)y, (z ∨ y)y〉 ∈ Θ

〈x ∨ y, (v ∨ x)x〉 = 〈((x ∨ y)x ∨ x)x, (v ∨ x)x〉 ∈ Θ

thus also 〈(v ∨ x)x, (z ∨ y)y〉 ∈ Θ. This together with (i) and (ii)
yields 〈x, y〉 ∈ Φ · Θ · Φ. We have shown Θ ∨ Φ ⊆ Φ · Θ · Φ. The con-
verse inclusion is trivial thus Θ ∨ Φ = Φ · Θ · Φ and hence S is congruence
3-permutable.

If S has a least element, we can prove a stronger assertion.

Theorem 4. Let S = (S;∨, 1, 0, (a)a∈S) be a semilattice with SAI having a
least element 0. Then S is congruence permutable.
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Proof. Let S have a least element 0. Since the mapping x 7→ x0 is
an antitone involution in the whole semilattice (S;∨), it is plain to show
that x ∧ y = (x0 ∨ y0)0 is infimum of x, y thus (S;∨,∧) is a lattice.

Hence, ∧ is a term operation of S and we can construct the following ternary
term operation

p(x, y, z) = ((x ∨ y)y ∨ z)z ∧ ((z ∨ y)y ∨ x)x.

An easy calculation gets

p(x, x, z) = ((x ∨ x)x ∨ z)z ∧ ((z ∨ x)x ∨ x)x

= 1z ∧ (z ∨ x)xx = z ∧ (z ∨ x) = z

and, analogously,

p(x, z, z) = ((x ∨ z)z ∨ z)z ∧ ((z ∨ z)z ∨ x)x

= (x ∨ z)zz ∧ 1x = (x ∨ z) ∧ x = x.

Thus p(x, y, z) is a Maltsev term function on S and hence S is congruence
permutable.
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