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Abstract

Pseudo BL-algebras are a noncommutative extention of BL-algebras.
In this paper we study good pseudo BL-algebras and consider some
classes of these algebras.
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1. Introduction

Hájek [9] introduced BL-algebras in 1998. MV-algebras introduced by Chang
[1] are contained in the class of BL-algebras. A noncommutative extention
of MV-algebras, called pseudo MV-algebras, were introduced by Georgescu
and Iorgulescu [6]. A concept of pseudo BL-algebras were firstly introduced
by Georgescu and Iorgulescu in 2000 as noncommutative generalization of
BL-algebras and pseudo MV-algebras. The basic properties of pseudo BL-
algebras were given in [2] and [3]. The pseudo BL-algebras correspond to a
pseudo-basic fuzzy logic (see [10] and [11]).

In [8], there were characterized some classes of pseudo BL-algebras. In
this paper we give some interesting facts about good pseudo BL-algebras.
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We study bipartite good pseudo BL-algebras and some connections between
a good pseudo BL-algebra A and the set M(A) of elements a ∈ A such that
a = (a−)∼ = (a∼)−.

2. Preliminaries

Definition 2.1. An algebra (A,∨,∧,⊙,→, , 0, 1) of type (2,2,2,2,2,0,0)
is called a pseudo BL-algebra if it satisfies the following axioms for any
a, b, c ∈ A :

(C1) (A,∨,∧, 0, 1) is a bounded lattice,

(C2) (A,⊙, 1) is a monoid,

(C3) a⊙ b ≤ c ⇔ a ≤ b → c ⇔ b ≤ a c,

(C4) a ∧ b = (a → b)⊙ a = a⊙ (a b),

(C5) (a → b) ∨ (b → a) = (a b) ∨ (b a) = 1.

Throughout this paper A will denote a pseudo BL-algebra. For any a ∈ A
and n = 0, 1, . . . , we put a0 = 1 and an+1 = an ⊙ a.

Proposition 2.2 ([2]). The following properties hold in A for all a, b, c ∈ A :

(i) a ≤ b ⇔ a → b = 1,

(ii) b ≤ a → b and b ≤ a b,

(iii) a⊙ b ≤ a and a⊙ b ≤ b,

(iv) a → (b → c) = a⊙ b → c and a (b c) = b⊙ a c,

(v) a⊙ (b ∨ c) = (a⊙ b) ∨ (a⊙ c) and (b ∨ c)⊙ a = (b⊙ a) ∨ (c⊙ a),

(vi) a ≤ b ⇔ a⊙ c ≤ b⊙ c.

We define a− := a → 0 and a∼ := a 0. We have

Proposition 2.3 ([2]). The following properties hold in A for all a, b, c ∈ A :
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(i) a ≤ (a−)∼ and a ≤ (a∼)−,

(ii) a− ⊙ a = a⊙ a∼ = 0,

(iii) (a⊙ b)− = a → b− and (a⊙ b)∼ = b a∼,

(iv) a b ≤ b∼ → a∼ and a → b ≤ b−  a−,

(v) (a ∨ b)− = a− ∧ b− and (a ∨ b)∼ = a∼ ∧ b∼,

(vi) (a ∧ b)− = a− ∨ b− and (a ∧ b)∼ = a∼ ∨ b∼,

(vii) ((a−)∼)− = a− and ((a∼)−)∼ = a∼,

(viii) a → b∼ = b a−,

(ix) a ≤ b implies b− ≤ a− and b∼ ≤ a∼.

Definition 2.4. A nonempty subset F of A is called a filter if it satisfies
the following two conditions:

(F1) If a ∈ F and a ≤ b, then b ∈ F,

(F2) If a, b ∈ F , then a⊙ b ∈ F.

A filter F is called proper if F 6= A. A proper filter F is called maximal or
an ultrafilter if F is not contained in any other proper filter.

Let MaxA denote the set of all ultrafilters of A. Denote M(A) =
⋂

MaxA.

For every filter F of A we define sets

F ∗

∼
= {a ∈ A : a ≤ x∼ for some x ∈ F},

F ∗

−
= {a ∈ A : a ≤ x− for some x ∈ F}.

Proposition 2.5 ([8]) .

(a) F ∗

∼
= {a ∈ A : a− ∈ F},

(b) F ∗

−
= {a ∈ A : a∼ ∈ F}.
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Definition 2.6. A is called:

(1) bipartite if A = F ∪ F ∗

∼
= F ∪ F ∗

−
for some ultrafilter F of A.

(2) strongly bipartite if A = F ∪ F ∗

∼
= F ∪ F ∗

−
for all F ∈ MaxA.

Proposition 2.7 ([13]). Let F be a proper filter of A. Then the following

conditions are equivalent:

(i) A = F ∪ F ∗

∼
= F ∪ F ∗

−
,

(ii) F ∗

−
= F ∗

∼
= A− F,

(iii) ∀a ∈ A (a ∈ F or (a− ∈ F and a∼ ∈ F )).

Let S(A) := {a ∨ a∼ : a ∈ A} ∪ {a ∨ a− : a ∈ A}.

Proposition 2.8 ([8]) . S(A) = {a ∈ A : a ≥ a∼ or a ≥ a−}.

Proposition 2.9 ([13]) . M(. A) ⊆ S(A).

Proposition 2.10 ([13]) . The following conditions are equivalent:

(i) A is strongly bipartite,

(ii) ∀F∈MaxA A = F ∪ F ∗

∼
= F ∪ F ∗

−
,

(iii) ∀F∈MaxA S(A) ⊆ F,

(iv) S(A) = M(A).

In the sequel, we need to recall same facts about pseudo MV-algebras, which
are the noncommutative generalizations of MV-algebras.

Definition 2.11. A pseudo MV-algebra is an algebra (M ;⊕,− ,∼ , 0, 1) of
type (2, 1, 1, 0, 0), which satisfies the following conditions for all a, b, c ∈ M :

(A1) a⊕ (b⊕ c) = (a⊕ b)⊕ c,

(A2) a⊕ 0 = 0⊕ a = a,
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(A3) a⊕ 1 = 1⊕ a = 1,

(A4) 1∼ = 0; 1− = 0,

(A5) (a∼ ⊕ b∼)− = (a− ⊕ b−)∼,

(A6) a⊕ a∼ · b = b⊕ b∼ · a = a · b− ⊕ b = b · a− ⊕ a,

(A7) a · (a− ⊕ b) = (a⊕ b∼) · a,

(A8) (a−)∼ = a.

where a ·b=(b−⊕a−)∼ and the operation · has a priority to the operation ⊕.

Recall that in a pseudo MV-algebra M the following conditions hold:

(i) (a∼)− = a,

(ii) a · b = (b∼ ⊕ a∼)−,

(iii) 0− = 1.

Definition 2.12. The nonempty subset I ⊆ M is called an ideal of a pseudo
MV-algebra M if the following conditions hold for all a, b ∈ M :

(I1) If a ∈ I, b ∈ M and b ≤ a, then b ∈ I;

(I2) If a, b ∈ I, then a⊕ b ∈ I.

Definition 2.13. An ideal I of M is called proper if I 6= M. A proper ideal
I of M is called maximal if I is not contained in any other proper ideal
of M .

The set of all maximal ideals of a pseudo MV-algebra M is denoted by
MaxM and the intersection of all maximal ideals of M by RadM.

Set T (M) = {a ∧ a− : a ∈ M}. We have

Proposition 2.14 ([5]) . RadM ⊆ T (M).

Let I be an ideal of a pseudo MV-algebra M . We set
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I− = {a− : a ∈ I},

I∼ = {a∼ : a ∈ I}.

A pseudo MV-algebra M is called bipartite if there exists a maximal ideal
I of M such that M = I ∪ I− = I ∪ I∼. If M = I ∪ I− = I ∪ I∼ for all
I ∈MaxM, then M is called strongly bipartite.

Proposition 2.15 ([4]). The following conditions are equivalent for pseudo

MV-algebra M :

(i) M is strongly bipartite,

(ii) for all I ∈MaxM, M = I ∪ I− = I ∪ I∼,

(iii) T (M) =RadM.

3. Good pseudo bl-algebras

Definition 3.1. A good pseudo BL-algebra is a pseudo BL-algebra which
satisfies the following identity:

(a−)∼ = (a∼)−.

From this place to the end of this paper, A will denote a good pseudo BL-
algebra.

We consider the subset

M(A) = {a ∈ A : a = (a−)∼ = (a∼)−}

of A.
For any a, b,∈ A, we define

a⊕ b := (b− ⊙ a−)∼.

Proposition 3.2 ([8]) . The following properties hold in A :

(i) 0, 1 ∈ M(A),

(ii) a− ∈ M(A) and a∼ ∈ M(A) for any a ∈ A,
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(iii) If a, b ∈ M(A), then a⊕ b = b∼ → a = a−  b,

(iv) If a, b ∈ M(A), then a ⊕ b− = b → a, a ⊕ b∼ = a−  b∼, a− ⊕ b =
b∼ → a− and a∼ ⊕ b = a b.

Proposition 3.3 ([8]). The structure (M(A),⊕,∼ ,− , 0, 1) is a pseudo MV-

algebra. The order on A agrees with the one of M(A), defined by a ≤M(A) b
iff a∼ ⊕ b = 1.

Following [8] we define two maps: ϕ1 : A → M(A) by ϕ1(a) = a− and
ϕ2 : A → M(A) by ϕ2(a) = a∼.

Let X ⊆ A. Write X− = ϕ1(X) and X∼ = ϕ2(X). It is obvious that

X− = {a− : a ∈ X},

X∼ = {a∼ : a ∈ X}.

Set

X∼ = {a : a∼ ∈ X},

X− = {a : a− ∈ X}.

If X ⊆ M(A), then ϕ−1
1 (X) = X− and ϕ−1

2 (X) = X∼.

Following [8] we have

Proposition 3.4. If F is a filter of A and I is an ideal of M(A), then:

(i) F− and F∼ are ideals of M(A);

(ii) I− and I∼ are filters of A;

(iii) if I is proper, then I− and I∼ are proper filters of A;

(iv) if F is proper, then F− and F∼ are proper ideals of M(A);
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(v) F ⊆ (F−)− and F ⊆ (F∼)∼;

(vi) if F is an ultrafilter, then (F−)− = (F∼)∼ = F ;

(vii) (I∼)
∼ = (I−)

− = I;

(viii) if I is maximal, then I− and I∼ are ultrafilters of A;

(ix) if F is an ultrafilter , then F−, F∼ are maximal ideals of M(A).

Proposition 3.5. Let F be a filter of A. Then F− = F ∗

−
and F∼ = F ∗

∼
.

Proof. Let b ∈ F−. Then b = a−, where a ∈ F. Obviously, b∼ =
(a−)∼. Since a ≤ (a−)∼, a ∈ F and F is a filter, we have b∼ ∈ F and
hence b ∈ F ∗

−
.

Conversely, let b ∈ F ∗

−
. Then b∼ ∈ F . So we have (b∼)− ∈ F−. Since

b ≤ (b∼)−, (b∼)− ∈ F− and F− is an ideal, we have b ∈ F−.

Similarly we can show that F∼ = F ∗

∼
.

From Propositions 2.5 and 3.5 we obtain

Corrolary 3.6. Let F be a filter of A. Then F− = F∼ and F∼ = F−.

Proposition 3.7. Let I be an ideal of M(A). Then I− = M(A)∩ I∼ and

I∼ = M(A) ∩ I−.

Proof. Let b ∈ I−. Then b = a−, where a ∈ I. Hence b∼ = (a−)∼.
Since I ⊆ M(A) and a ∈ I, we have b∼ = a. Therefore b∼ ∈ I. Consequently
b ∈ I∼. By Proposition 3.2 (ii), b = a− ∈ M(A). We obtain that b ∈
M(A) ∩ I∼.

Conversely, let b ∈ M(A) ∩ I∼. Then b ∈ M(A) and b ∈ I∼, i.e.,
b ∈ M(A) and b∼ ∈ I. Hence b = (b∼)− ∈ I−.

Similarly we can prove that I∼ = M(A) ∩ I−

Proposition 3.8. (RadM(A))−= (RadM(A))∼ = M(A).

Proof. Let us notice that:
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a /∈ M(A) ⇔ a /∈
⋂

F∈MaxA

F ⇔ ∃F∈MaxA a /∈ F ⇔

⇔ ∃F∈MaxA a /∈ (F∼)∼ ⇔ ∃F∈MaxA a∼ /∈ F∼ ⇔

⇔ ∃I=F∼∈Max(M(A)) a
∼ /∈ I ⇔ a∼ /∈ RadM(A) ⇔

⇔ a /∈ (RadM(A))∼.

Similarly, we can prove that (RadM(A))− = M(A).

Proposition 3.9. RadM(A) = (M(A))− = (M(A))∼ .

Proof. RadM(A) is an ideal. By Proposition 3.4 (vii) RadM(A) =
((RadM(A))−)

− . From Proposition 3.8 we obtain RadM(A) = (M(A))− .
Similarly, RadM(A) = (M(A))∼ .

Corrolary 3.10.

(i)
(

(M(A))−
)

−
= ((M(A))∼)

∼
= M(A),

(ii) ((RadM(A))−)
− = ((RadM(A))∼)

∼ = RadM(A).

Proof. By Propositions 3.8 and 3.9
(

(M(A))−
)

−
= (RadM(A))− =

M(A) and ((M(A))∼)
∼
= (RadM(A))∼ = M(A).

(ii) Follows from Proposition 3.4 (vii).

Proposition 3.11. If M(A) is bipartite by I, then I− = I∼.

Proof. By assumption, M(A) = I ∪ I∼ = I ∪ I−. Hence I− = M(A) − I
= I∼.

Let a ∈ I∼, then a∼ ∈ I, which implies (a∼)− = (a−)∼ ∈ I− = I∼.
Hence (a−)∼ = b∼ for some b ∈ I. Since b ∈ M(A), we conclude that
b = (b∼)− = [(a−)∼]− = a−. Therefore a− ∈ I. Thus a ∈ I−. We have I∼ ⊆
I−. Similarly we can show that I− ⊆ I∼. Consequently, I− = I∼.

Proposition 3.12. If A is bipartite by F , then F− = F∼.
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Proof. Let F be an ultrafilter such that A = F ∪ F ∗

−
= F ∪ F ∗

∼
. By

Proposition 2.7, F ∗

∼
= F ∗

−
= A − F. Then from Proposition 3.5 we have

F− = F∼.

Theorem 3.13. A good pseudo BL-algebra A is bipartite iff M(A) is a

bipartite pseudo MV-algebra.

Proof. Let A be bipartite, i.e. there exists an ultrafilter F such that
A = F ∪ F ∗

−
= F ∪ F ∗

∼
. Then we have M(A) = (F ∩M(A)) ∪ F−.

By Propositions 3.4 and 3.7, F ∩ M(A) = (F−)− ∩ M(A) = (F−)∼.

So we obtain, M(A) = (F−)∼ ∪ F− and by Proposition 3.4 (ix), F− is
a maximal ideal of M(A). From Propositions 3.4, 3.7 and 3.12 we have
F ∩ M(A) = (F∼)∼ ∩ M(A) = (F∼)− = (F−)−.Then we have M(A) =
(F ∩M(A)) ∪ F− = (F−)− ∪ F−, thus M(A) is bipartite.

Conversely, let M(A) = I ∪ I∼ = I ∪ I−, where I is a maximal ideal of
M(A). Now we prove that

(1) ∀a∈A[a ∈ I− or (a∼ ∈ I− and a− ∈ I−)]

holds. Suppose a /∈ I− = I∼ (see Proposition 3.11) we have a∼ /∈ I. Hence
a∼ ∈ I∼. Then a∼ ∈ I−, by Proposition 3.7. Thus (1) satisfied. I− is
proper due to Proposition 3.4 (iii). Applying Proposition 2.7 we get A =
I− ∪ (I−)

∗

∼
= I− ∪ (I−)

∗

−
where, by Proposition 3.4 (viii), I− is an ultrafilter

of A.

Corrolary 3.14.

(i) If M(A) is a strongly bipartite pseudo MV-algebra, then I− = I∼ for

any maximal ideal I of M(A).

(ii) If A is strongly bipartite pseudo BL-algebra, then F− = F∼ for any

ultrafilter F of A.

Proof. By Propositions 3.11 and 3.12.

Theorem 3.15. A good pseudo BL-algebra A is strongly bipartite iff M(A)
is a strongly bipartite pseudo MV-algebra.
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Proof. Let A be a strongly bipartite pseudo BL-algebra and suppose that
M(A) is not strongly bipartite. Then there exists a maximal ideal I of M(A)
such that M(A) 6= I ∪ I− or M(A) 6= I ∪ I∼. Without less of generality we
can assume that there is a0 ∈ M(A)− (I ∪ I−). Let F = I−. By Proposition
3.4 (viii), F is an ultrafilter of A. From Proposition 3.4 (viii) and Corrolary
3.14 we have I = (I−)

− = (I−)
∼. Observe that

(2) a ∈ M(A)− I ⇒ a− /∈ I−.

Indeed, suppose that a ∈ M(A) − I and a− ∈ I−. Then a = (a−)∼ ∈
(I−)

∼ = I, a contradiction. Thus (2) holds. Since a0 ∈ M(A) − I, we
conclude that a−0 /∈ I−. It is easy to see that a∼0 /∈ I. Applying (2) yields
a0 = (a∼0 )

− /∈ I−. Consequently, a0 /∈ F and a−0 /∈ F . By Propositions 2.7
and 2.10, A is not strongly bipartite. A contradiction.

Conversely, let M(A) be a strongly bipartite pseudo MV-algebra and A
is not bipartite. Then there exists an ultrafilter F of A such that

∃a∈A [a /∈ F and (a− /∈ F or a∼ /∈ F )].

Suppose that b, b− /∈ F . Let I = F−. Then I is a maximal ideal of M(A),
by Proposition 3.4 (ix). From Proposition 3.2 we see that b− ∈ M(A).
Observe that b− /∈ I. Indeed, b /∈ F = (F−)− and hence b− /∈ F− = I.
Since I− = (F−)− = F (see Proposition 3.4) and b− /∈ F , we have b− /∈ I−
and hence b− /∈ M(A) ∩ I− = I∼. Thus b− ∈ M(A) − (I ∪ I∼) Therefore
M(A) 6= I ∪ I∼. It is a contradiction.

Corrolary 3.16. Let A be strongly bipartite. Then:

(a) T (M(A))− = (T (M(A))∼ = S(A),

(b) (S(A))− = (S(A))∼ = T (M(A)).

Proof. (a) By Theorem 3.15, M(A) is a strongly bipartite pseudo MV-
algebra and hence T (M(A)) =RadM(A) (see Proposition 2.15). Applying
Propositions 3.8 and 2.10 we obtain

(T (M(A)))− = (RadM(A))− = M(A) = S(A).
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Similarly, (T (M(A)))∼ = S(A).
(b) From the proof of (a) and by Proposition 3.4 (vii) we have

(S(A))− = ((RadM(A))−)
− = RadM(A) = T (M(A))

and similarly, (S(A))∼ = T (M(A)).
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