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Abstract

A (usual) hypersubstitution of type τ is a function which takes
each operation symbol of the type to a term of the type, of the same
arity. The set of all hypersubstitutions of a fixed type τ forms a monoid
under composition, and semigroup properties of this monoid have been
studied by a number of authors. In particular, idempotent and regular
elements, and the Green’s relations, have been studied for type (n) by
S.L. Wismath.

A generalized hypersubstitution of type τ = (n) is a mapping σ
which takes the n-ary operation symbol f to a term σ(f) which does
not necessarily preserve the arity. Any such σ can be inductively ex-
tended to a map σ̂ on the set of all terms of type τ = (n), and any
two such extensions can be composed in a natural way. Thus, the set
HypG(n) of all generalized hypersubstitutions of type τ = (n) forms
a monoid. In this paper we study the semigroup properties ofHypG(n).
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In particular, we characterize the idempotent and regular generalized
hypersubstitutions, and describe some classes under Green’s relations
of this monoid.

Keywords: monoid, regular elements, idempotent elements, Green’s
relations, generalized hypersubstitution.
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1. Introduction

Identities are used to classify algebras into collections called varieties. Hy-
peridentities are used to classify varieties into collections called hypervari-
eties. The concepts of hyperidentities and hypervarieties were introduced
by W. Taylor in 1981 [7]. Hyperidentities in a variety V are identities which
have the property that, after replacing the operation symbols which occur
in these identities by any terms of the same arity, the resulting equation
is still satisfied in the variety. The main tool to study hyperidentities is
the concept of a hypersubstitution, which was introduced by K. Denecke, D.
Lau, R. Pöschel and D. Schweigert in 1991 [1]. Let τ = (ni)i∈I be a type and
let Wτ (X) be the set of all terms of type τ built up by operation symbols
from {fi|i ∈ I} where fi is ni-ary and variables from a countably infinite
alphabet X := {x1, x2, . . .}. A hypersubstitution of type τ is a mapping
σ : {fi|i ∈ I} → Wτ (X) which maps ni-ary operation symbols to ni-ary
terms. Let Hyp(τ) be the set of all hypersubstitutions of type τ . For every
σ ∈ Hyp(τ) induces a mapping σ̂ : Wτ (X) → Wτ (X) as follows: for any
t ∈ Wτ (X), σ̂[t] is defined inductively by

(i) σ̂[x] := x ∈ X,

(ii) σ̂[fi(t1, . . . , tni
)] := σ(fi)(σ̂[t1], . . . , σ̂[tni

]), for any ni-ary operation
symbol fi.

It turns out that (Hyp(τ); ◦h, σid) is a monoid where σ1 ◦h σ2 := σ̂1 ◦σ2 and
σid(fi) = fi(x1, . . . , xni

) is the identity element.

In 2000, S. Leeratanavalee and K. Denecke generalized the concept of a
hypersubstitution to a generalized hypersubstitution [2]. S. Leeratanavalee
and K. Denecke used generalized hypersubstitutions as the tools to study
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strong hyperidentities and used strong hyperidentities to classify varieties
into collections called strong hypervarieties. Varieties whose identities are
closed under arbitrary application of generalized hypersubstitutions are
called strongly solid.

A generalized hypersubstitution of type τ , or for short simply a gener-
alized hypersubstitution, is a mapping σ which maps each ni-ary operation
symbol of type τ to a term of this type in Wτ (X) which does not necessarily
preserve the arity. We denoted the set of all generalized hypersubstitutions
of type τ by HypG(τ). First, we define inductively the concept of generalized
superposition of terms Sm : Wτ (X)m+1 → Wτ (X) by the following steps:

(i) If t = xj, 1 ≤ j ≤ m, then Sm(xj , t1, . . . , tm) := tj.

(ii) If t = xj,m < j ∈ IN, then Sm(xj, t1, . . . , tm) := xj .

(iii) If t = fi(s1, . . . , sni
), then

Sm(t, t1, . . . , tm) := fi(S
m(s1, t1, . . . , tm), . . . , Sm(sni

, t1, . . . , tm)).

To define a binary operation on HypG(τ), we extend a generalized hyper-
substitution σ to a mapping σ̂ : Wτ (X) → Wτ (X) inductively defined as
follows:

(i) σ̂[x] := x ∈ X,

(ii) σ̂[fi(t1, . . . , tni
)] := Sni(σ(fi), σ̂[t1], . . . , σ̂[tni

]), for any ni-ary opera-
tion symbol fi.

Then we define a binary operation ◦G on HypG(τ) by σ1 ◦G σ2 := σ̂1 ◦ σ2
where ◦ denotes the usual composition of mappings and σ1, σ2 ∈ HypG(τ).
Let σid be the hypersubstitution which maps each ni-ary operation symbol
fi to the term fi(x1, . . . , xni

). S. Leeratanavalee and K. Denecke proved the
following propositions.

Proposition 1.1 ([2]). For arbitrary terms t, t1, . . . , tn ∈ Wτ (X) and for
arbitrary generalized hypersubstitutions σ, σ1, σ2 we have

(i) Sn(σ̂[t], σ̂[t1], . . . , σ̂[tn]) = σ̂[Sn(t, t1, . . . , tn)],

(ii) (σ̂1 ◦ σ2)̂ = σ̂1 ◦ σ̂2.
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Proposition 1.2 ([2]). HypG(τ) = (HypG(τ); ◦G, σid) is a monoid, with
σid as the identity element, and the set of all hypersubstitutions of type τ
forms a submonoid of HypG(τ).

Many properties of the monoid of hypersubstitutions of type τ = (n) were
described by S.L. Wismath [8]. In this paper we extend the results from [8]
to the case of HypG(n).

2. Projection and dual generalized
hypersubstitutions of type τ = (n)

We assume that from now on the type τ = (n), for some n ∈ IN, i.e. we have
only one n-ary operation symbol, say f . By σt we denote the generalized
hypersubstitution which maps f to the term t in W(n)(X). A generalized
hypersubstitution σt is called a projection generalized hypersubstitution if t
is a variable [3]. We denoted the set of all projection generalized hypersub-
stitutions of type τ = (n) by PG(n), i.e. PG(n) = {σxi

|xi ∈ X}.

Lemma 2.1. For any σt ∈ HypG(n) and σxi
∈ PG(n), we have

(i) σt ◦G σxi
= σxi

,

(ii) σxi
◦G σt ∈ PG(n).

Proof. (i) We have (σt ◦G σxi
)(f) = (σ̂t ◦ σxi

)(f) = σ̂t[σxi
(f)] = σ̂t[xi] =

xi = σxi
(f). So σt ◦G σxi

= σxi
.

(ii) We will proceed by induction on the complexity of the term t. If t ∈
X, then by (i) we get σxi

◦Gσt = σt ∈ PG(n). Assume that t = f(u1, . . . , un)
and σxi

◦G σu1 , . . . , σxi
◦G σun ∈ PG(n). Thus σ̂xi

[u1], . . . , σ̂xi
[un] ∈ X. We

have (σxi
◦G σt)(f) = (σxi

◦G σf(u1,...,un))(f) = Sn(xi, σ̂xi
[u1], . . . , σ̂xi

[un]).
If xi ∈ Xn where Xn = {x1, . . . , xn}, then (σxi

◦G σt)(f) = σ̂xi
[ui] ∈ X. If

i > n, then (σxi
◦G σt)(f) = xi ∈ X. So σxi

◦G σt ∈ PG(n).

Corollary 2.2.

(i) PG(n) ∪ {σid} is a submonoid of HypG(n) and PG(n) is the small-
est two-sided ideal of HypG(n), called the kernel of HypG(n). Thus,
HypG(n) is not simple.
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(ii) PG(n) is the set of all right-zero elements of HypG(n), so that PG(n)
itself is a right-zero band.

(iii) HypG(n) contains no left-zero elements.

Proof. These follow immediately from Lemma 2.1.

Another special kind of generalized hypersubstitutions in HypG(n) are
dual generalized hypersubstitutions, which are defined using permutations
of the set J := {1, . . . , n}. For any such permutation π, we let σπ =
σf(xπ(1),...,xπ(n)). We let DG be the set of all such dual generalized hyper-
substitutions.

Lemma 2.3.

(i) For any two permutations π and ρ, σρ ◦G σπ = σπ◦ρ.

(ii) For any permutation π with the inverse permutation π−1, the general-
ized hypersubstitutions σπ and σπ−1 are inverse of each other.

Proof. (i) We have (σρ◦Gσπ)(f) = σ̂ρ[f(xπ(1), . . . , xπ(n))]=Sn(f(xρ(1), . . . ,
xρ(n)), xπ(1), . . . , xπ(n)) = f(xπ(ρ(1)), . . . , xπ(ρ(n))) = σπ◦ρ(f).

(ii) This follows from (i).

Lemma 2.4. If σ ◦G ρ ∈ DG, then both σ and ρ are in DG.

Proof. Let σ(f) = f(u1, . . . , un) and ρ(f) = f(v1, . . . , vn). Since
σ ◦G ρ ∈ DG, thus there exists a permutation π such that (σ ◦G ρ)(f) =
f(xπ(1), . . . , xπ(n)). So f(xπ(1), . . . , xπ(n)) = (σ ◦G ρ)(f) = Sn(f(u1, . . . , un),
σ̂[v1], . . . , σ̂[vn]). Since π is a permutation, thus this forces all the ui’s to be
distinct variables in Xn, and all the vi’s to be distinct variables in Xn. It
follows that both σ and ρ are in DG.

Corollary 2.5. DG is a submonoid of HypG(n) which forms a group, and
no other elements of HypG(n) have inverses in HypG(n). Thus, DG is the
largest subgroup of HypG(n).



178 W. Puninagool and S. Leeratanavalee

Lemma 2.6. Let F be the set of generalized hypersubstitutions of the form
σf(xi,...,xi) for i ∈ IN. Let M = PG(n)∪DG ∪F . Then M is a submonoid of
HypG(n).

Proof. It is straightforward to check that any product of two elements in
M is also in M .

3. Idempotent and regular elements in HypG(n)

All idempotent elements of the monoid of all generalized hypersubstitutions
of type τ = (2) were studied by W. Puninagool and S. Leeratanavalee [6]
and all regular elements of the monoid of all generalized hypersubstitutions
of type τ = (2) were studied by W. Puninagool and S. Leeratanavalee [4].
In this section, we characterize the idempotent and regular generalized hy-
persubstitutions of type τ = (n).

We know from Corollary 2.2 (ii) that every projection generalized hy-
persubstitution is idempotent. We let G(n) := {σt|t /∈ X, var(t) ∩Xn = ∅}
where var(t) denotes the set of all variables occurring in t.

Lemma 3.1. If σt ∈ G(n) and σs ∈ HypG(n) \ PG(n), then σt ◦G σs = σt,
i.e. G(n) itself is a left zero band.

Proof. Let s = f(v1, . . . , vn). We have (σt ◦G σs)(f) = Sn(t, σ̂t[v1], . . . ,
σ̂t[vn]) = t since there is nothing to substitute in the term t. So σt ◦G σs
= σt.

Then we consider only the case σt ∈ HypG(n) \PG(n) and var(t)∩Xn 6= ∅.

Theorem 3.2. Let t = f(t1, . . . , tn) ∈ W(n)(X) and ∅ 6= var(t) ∩ Xn =
{xi1 , . . . , xim}. Then σt is idempotent if and only tik = xik for all k ∈
{1, . . . ,m}.

Proof. Assume that σf(t1,...,tn) is idempotent. Then Sn(f(t1, . . . , tn),
σ̂f(t1,...,tn) [t1], . . . , σ̂f(t1,...,tn) [tn]) = σ2

f(t1,...,tn)
(f) = σf(t1,...,tn) (f) =

f(t1, . . . , tn). Suppose that there exists k ∈ {1, . . . ,m} such that tik 6= xik .
If tik ∈ X, then σ̂f(t1,...,tn)[tik ] = tik 6= xik . So Sn(f(t1, . . . , tn), σ̂f(t1 ,...,tn)
[t1], . . . , σ̂f(t1,...,tn)[tn]) 6= f(t1, . . . , tn) and we have a contradiction.
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If tik /∈ X, then σ̂f(t1,...,tn)[tik ] /∈ X. We obtain op(t) = op(Sn(f(t1, . . . , tn),
σ̂f(t1,...,tn) [t1], . . . , σ̂f(t1,...,tn)[tn])) > op(t) where op(t) denotes the number
of all operation symbols occurring in t. This is a contradiction.

The proof of the converse direction is straightforward.

Now, we characterize the regular generalized hypersubstitutions of type τ =
(n). At first we want to recall the definition of the regular element.

Definition 3.3. An element a of a semigroup S is called regular if there
exists x ∈ S such that axa = a. The semigroup S is called regular if all its
elements are regular.

Lemma 3.4. Let t ∈ W(n)(X) and ∅ 6= var(t) ∩ Xn = {xi1 , . . . , xim}
and let a = f(a1, . . . , an) ∈ W(n)(X). If σ̂t[a] = t, then al = xl for all
l = i1, . . . , im.

Proof. Assume that σ̂t[a] = t. Then t = σ̂t[a] = Sn(t, σ̂t[a1], . . . , σ̂t[an]).
We will show that al = xl for all l = i1, . . . , im. Suppose that there
exists j′ ∈ {i1, . . . , im} such that aj′ 6= xj′ . If aj′ = xk ∈ X where
xk 6= xj′ , then σ̂t[aj′ ] = xk. It follows that t 6= Sn(t, σ̂t[a1], . . . , σ̂t[an]).
This is a contradiction. If aj′ /∈ X, then σ̂t[aj′ ] /∈ X. It follows that
op(t) = op(σ̂t[a]) = Sn(t, σ̂t[a1], . . . , σ̂t[an]) > op(t) and we have a contra-
diction.

Theorem 3.5. Let t = f(t1, . . . , tn) ∈ W(n)(X) and ∅ 6= var(t) ∩ Xn =
{xi1 , . . . , xim}. Then σt is regular if and only if there exist j1, . . . , jm ∈
{1, . . . , n} such that tj1 = xi1 , . . . , tjm = xim .

Proof. Assume that σt is regular. Then there exists σs ∈ HypG(n)
such that σt ◦G σs ◦G σt = σt. Since t /∈ X, thus s /∈ X. Then s =
f(s1, . . . , sn) for some s1, . . . , sn ∈ W(n)(X). From σt ◦G σs ◦G σt = σt, thus
σ̂t[σ̂s[t]] = t. By Lemma 3.4, σ̂s[t] = f(u1, . . . , un) for some u1, . . . , un ∈
W(n)(X) where ui1 = xi1 , . . . , uim = xim . From σ̂s[t] = f(u1, . . . , un), thus
Sn(f(s1, . . . , sn), σ̂s[t1], . . . , σ̂s[tn]) = f(u1, . . . , un). Since ui1 = xi1 , . . . , uim
= xim thus si1 , . . . , sim ∈ Xn. Let si1 = xj1 , . . . , sim = xjm. Hence
tj1 = xi1 , . . . , tjm = xim .
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Conversely, assume the condition holds. Let s = f(s1, . . . , sn) ∈ W(n)(X)
where s1, . . . , sn ∈ W(n)(X) such that si1 = xj1 , . . . , sim = xjm.

Then (σt ◦G σs ◦G σt)(f) = σ̂t[σ̂s[t]] = σ̂t[S
n(f(s1, . . . , sn), σ̂s[t1], . . . ,

σ̂s[tn])] = σ̂t[f(k1, . . . , kn)](where ki1 = xi1 , . . . , kim = xim) = Sn(t, σ̂t[k1],
. . . , σ̂t[kn]) = t. Hence σt ◦G σs ◦G σt = σt.

4. Term properties of the composition operation

We need to know more about the result of the composing two generalized
hypersubstitutions in HypG(n). In particular, we want to know how long
the term corresponding to σs ◦G σt is and what variables it uses, compared
to the lengths of the terms s and t and the variables they use. We begin
with the necessary definitions.

Definition 4.1. Let t ∈ W(n)(X). We define the length of t inductively by:

(i) The length of t is 1 if t is a variable.

(ii) If t is a compound term f(t1, . . . , tn), then the length of t is the sum
of the lengths of the terms t1, . . . , tn.

(iii) This length counts the total number of variable occurences in the
term t, and will be denoted by vb(t).

Definition 4.2 ([8]). Let t ∈ W(n)(X). We define some new terms, related
to t, as follows. Recall that J := {1, . . . , n}.

(i) Let α be any function from J to J . Cα[t] is the term formed from t by
replacing each occurrence in t of a variable xi ∈ Xn by the variable
xα(i) i.e, Cα[t] = Sn(t, xα(1), . . . , xα(n)).

(ii) Let π be any permutation of J . π[t] is the term defined induc-
tively by π[xi] = xi for any variable xi, and π[f(u1, . . . , un)] =
f(π[uπ(1)], . . . , π[uπ(n)]).

The previous length results for the type τ = (2) were found by W. Puni-
nagool and S. Leeratanavalee in [6] and S.L. Wismath in [8]. The next two
lemmas show how these results can be generalized to the type τ = (n).
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Lemma 4.3. Let n ∈ N with n > 1. Let σf(u1,...,un) ◦G σf(v1,...,vn) = σw.
Then w is a longer term than f(u1, . . . , un), unless the terms f(u1, . . . , un)
and f(v1, . . . , vn) satisfy the following condition (Q):

(Q) If a variable xi ∈ Xn is used anywhere in the term f(u1, . . . , un), then
the entry vi in f(v1, . . . , vn) is a variable.

Proof. If var(f(u1, . . . , un))∩Xn = ∅, then f(u1, . . . , un) and f(v1, . . . , vn)
satisfy the condition (Q). Let var(f(u1, . . . , un)) ∩ Xn = {xi1 , . . . , xik}.
If vij ∈ X for all j ∈ {1, . . . , k}, then f(u1, . . . , un) and f(v1, . . . , vn)
satisfy the condition (Q). If there exists j ∈ {1, . . . , k} where vij /∈ X,
then σ̂f(u1,...,un)[vij ] /∈ X. Since n > 1 and σ̂f(u1,...,un)[vij ] /∈ X, thus
vb(σ̂f(u1,...,un)[vij ]) > 1. So vb(w) = vb(Sn(f(u1, . . . , un), σ̂f(u1,...,un)

[v1], . . . , σ̂f(u1,...,un)[vn])) > vb(f(u1, . . . , un)).

Lemma 4.4. Let σt ∈ HypG(n) where t /∈ X and x1, . . . , xn ∈ var(t). Then
for any s ∈ W(n)(X), vb(σ̂t[s]) ≥ vb(s).

Proof.We will proceed by induction on the complexity of the term s. If s ∈
X, then vb(σ̂t[s]) = vb(s). Assume that s = f(u1, . . . , un) and vb(σ̂t[ui]) ≥
vb(ui) for all 1 ≤ i ≤ n. Then vb(σ̂t[s]) = vb(Sn(t, σ̂t[u1], . . . , σ̂t[un])) ≥
vb(f(u1, . . . , un)) since x1, . . . , xn ∈ var(t) and vb(σ̂t[ui]) ≥ vb(ui) for all
1 ≤ i ≤ n.

Lemma 4.5. Let σf(u1,...,un)◦Gσf(v1,...,vn)=σw where vb(f(u1, . . . , un)) > n.
If x1, . . . , xn ∈ var(f(u1, . . . , un)), then w is a longer term than f(v1, . . . , vn).

Proof. We write σ = σf(u1,...,un). From σf(u1,...,un) ◦G σf(v1,...,vn) = σw,
thus we get w = Sn(f(u1, . . . , un), σ̂[v1], . . . , σ̂[vn]). Since x1, . . . , xn ∈
var(f(u1, . . . , un)), thus σ̂[vi] is used in w for all 1 ≤ i ≤ n. We will proceed
by induction on the complexity of the term f(v1, . . . , vn). If v1, . . . , vn ∈ X,
then vb(w) = vb(f(u1, . . . , un)) > n = vb(f(v1, . . . , vn)). Assume that the
claim holds for any term of length not less than n but less than k, and
f(v1, . . . , vn) has length k. Since vb(f(v1, . . . , vn)) = k > n, thus there exists
i ∈ {1, . . . , n} such that vb(vi) ≥ n. By induction, we get vb(σ̂[vi]) > vb(vi).
By Lemma 4.4, any other vj has vb(σ̂[vj ]) ≥ vb(vj). Since all the σ̂[vi] are
used in w for all 1 ≤ i ≤ n, thus w is longer than f(v1, . . . , vn).
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Lemma 4.6. Let σs, σt ∈ HypG(n).

(i) var((σs ◦G σt)(f)) ∩Xn ⊆ var(t) ∩Xn.

(ii) If s uses only one variable, then the term for σs ◦G σt uses only one
variable (not necessarily the same variable as s).

Proof. We will proceed by induction on the complexity of the term t.

(i) If t ∈ X, then (σs◦Gσt)(f) = t. So var((σs ◦Gσt)(f))∩Xn ⊆ var(t)∩
Xn. Assume that t = f(t1, . . . , tn) and var(σ̂s[ti])∩Xn ⊆ var(ti)∩Xn for all
1 ≤ i ≤ n. So var((σs ◦Gσt)(f))∩Xn = var(Sn(s, σ̂s[t1], . . . , σ̂s[tn]))∩Xn ⊆
∪n
i=1(var(σ̂s[ti])) ∩ Xn = ∪n

i=1(var(σ̂s[ti]) ∩ Xn) ⊆ ∪n
i=1(var(ti) ∩ Xn) =

∪n
i=1var(ti) ∩Xn = var(t) ∩Xn.

(ii) If t ∈ X, then (σs◦Gσt)(f) = t. So the term for σs◦Gσt uses only one
variable. Assume that t = f(t1, . . . , tn) and σ̂s[ti] uses only one variable for
all 1 ≤ i ≤ n. So (σs ◦G σt)(f) = Sn(s, σ̂s[t1], . . . , σ̂s[tn]). If var(s) = {xi}
for some xi ∈ Xn, then var(σs ◦G σt)(f) = var(σ̂s[ti]). If var(s) = {xi}
where i > n, then var(σs ◦G σt)(f) = var(s).

We conclude this section by extending the results from [8] to the case of
HypG(n) on properties of the composition operation with a lemma describ-
ing the special role of the terms π[t] and Cα[t] from Definition 4.2.

Lemma 4.7. For t ∈ W(n)(X).

(i) Let π be any permutation on J . Then σπ ◦G σt = σπ[t].

(ii) Let α be any function on J . Define the generalized hypersubstitu-
tion σα by mapping the fundemental f to the term f(xα(1), . . . , xα(n)).
Then σt ◦G σα = σCα[t]

.

Proof. (i) We will proceed by induction on the complexity of the term
t. If t ∈ X, then by Lemma 2.1(i), σπ ◦G σt = σt = σπ[t]. Assume that
t = f(t1, . . . , tn) and σ̂π[ti] = π[ti] for all 1 ≤ i ≤ n. So (σπ ◦G σt)(f) =
Sn(f(xπ(1), . . . , xπ(n)), σ̂π[t1], . . . , σ̂π[tn]) = f(σ̂π[tπ(1)], . . . , σ̂π[tπ(n)])
= f(π[tπ(1)], · · · , π[tπ(n)]) = π[f(t1, · · · , tn)] = π[t].

(ii) We have (σt◦Gσα)(f) = Sn(t, xα(1), . . . , xα(n)) = Cα[t]. So σt◦Gσα =
σCα[t]

.
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5. Green’s ralations on HypG(n)

Let S be a semigroup and 1 /∈ S. We extend the binary operation from S
to S ∪ {1} by define x1 = 1x = x for all x ∈ S ∪ {1}. Then S ∪ {1} is a
semigroup with identity 1.

Let S be a semigroup. Then we define,

S1 =







S if S has an identity,

S ∪ {1} otherwise.

Let S be a semigroup and ∅ 6= A ⊆ S. We now set

(A)l = ∩{L|L is a left ideal of S containing A}

(A)r = ∩{R|R is a right ideal of S containing A}

(A)i = ∩{I|I is an ideal of S containing A}.

Then (A)l,(A)r and (A)i are left ideal, right ideal and ideal of S, respectively.
And we call (A)l ((A)r, (A)i) the left ideal (right ideal, ideal) of S generated
by A.

It is easy to see that

(A)l = S1A = SA ∪A

(A)r = AS1 = A ∪ SA

(A)i = S1AS1 = SAS ∪ SA ∪AS ∪A.

For a1, a2, . . . , an ∈ S, we write (a1, a2, . . . , an)l instead of ({a1, a2, . . . , an})l
and call it the left ideal of S generated by a1, a2, . . . , an. Similarly, we can
define (a1, a2, . . . , an)r and (a1, a2, . . . , an)i. If A is a left ideal of S and
A = (a)l for some a ∈ S, we then call A the principal left ideal generated
by a. We can define principal right ideal and principal ideal in the same
manner.

Let S be a semigroup. We define the relations L,R,H,D and J on S
as follow:
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aLb ⇔ (a)l = (b)l

aRb ⇔ (a)r = (b)r

H = L ∩R

D = L ◦ R

aJ b ⇔ (a)i = (b)i.

Then we have, for all a, b ∈ S

aLb ⇔ Sa ∪ {a} = Sb ∪ {b}

⇔ S1a = S1b

⇔ a = xb and b = ya for some x, y ∈ S1

aRb ⇔ aS ∪ {a} = bS ∪ {b}

⇔ aS1 = bS1

⇔ a = bx and b = ay for some x, y ∈ S1

aHb ⇔ aLb and aRb

aDb ⇔ (a, c) ∈ L and (c, b) ∈ R for some c ∈ S

aJ b ⇔ SaS ∪ Sa ∪ aS ∪ {a} = SbS ∪ Sb ∪ bS ∪ {b}

⇔ S1aS1 = S1bS1

⇔ a = xby and b = zau for some x, y, z, u ∈ S1.

Remark 5.1. Let S be a semigroup. Then the following statements hold.

1. L,R,H,D and J are equivalent relations.

2. H ⊆ L ⊆ D ⊆ J and H ⊆ R ⊆ D ⊆ J .
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We call the relations L,R,H,D and J the Green’s relations on S. For each
a ∈ S, we denote L-class, R-class, H-class, D-class and J -class containing
a by La, Ra,Ha,Da and Ja, respectively.

Green’s relations on Hyp(n) have been studied by S.L. Wismath [8],
and Green’s relations on HypG(2) were study by W. Puninagool and S.
Leeratanavalee [5]. In this section, we describe some classes of the monoid
of generalized hypersubstitutions of type τ = (n) with n > 1.

Theorem 5.2. Any σxi
∈ PG(n) is L-related only to itself, but is R-related,

D-related and J -related to all elements of PG(n), and not related to any
other generalized hypersubstitutions. Moerover, the set PG(n) forms a com-
plete R-, D- and J -class.

Proof. By Lemma 2.1(i), for any σxi
∈ PG(n), σ ◦G σxi

= σxi
for all

σ ∈ HypG(n). This shows that any σxi
∈ PG(n) can be L-related only to

itself. Since σxi
◦G σxj

= σxj
for all σxi

, σxj
∈ PG(n), so any two elements

in PG(n) are R-related. From R ⊆ D ⊆ J , we see that any two elements in
PG(n) areD- and J -related. Moreover by Lemma 2.1, σs◦Gσxi

◦Gσt ∈ PG(n)
for all σs, σt ∈ HypG(n), and σxi

∈ PG(n). This implies if σ /∈ PG(n), then
σ cannot be J -related to every element in PG(n). So PG(n) is the J -class
of its elements. Since any two elements in PG(n) are R- and D-related,
R ⊆ J ,D ⊆ J and PG(n) is the J -class of its elements, and thus PG(n)
forms a complete R-, D-class.

Theorem 5.3. Any σt ∈ G(n) is R-related only to itself, but is L-related,
D-related and J -related to all elements of G(n), and not related to any other
generalized hypersubstitutions. Moreover, the set G(n) forms a complete L-,
D- and J -class.

Proof. Let σt ∈ G(n). Assume that σs ∈ HypG(n) where σsRσt. By
Theorem 5.2, s /∈ X. Then there exists σp ∈ HypG(n) such that σs =
σt ◦G σp. Since s /∈ X and σs = σt ◦G σp, thus by Lemma 2.1(ii), p /∈ X.
Since σt ∈ G(n) and p /∈ X, thus by Lemma 3.1, σt ◦G σp = σt. So σs = σt.
Thus σt is R-related only to itself.

Let σs, σt ∈ G(n). By Lemma 3.1, σs◦Gσt = σs and σt◦Gσs = σt. Thus
σsLσt. So any two elements in G(n) are L-related. Since L ⊆ D ⊆ J , thus
any two elements in G(n) are D- and J -related. Assume that σt ∈ G(n)
and σs ∈ HypG(n) where σsJ σt. By Theorem 5.2, s /∈ X. Then there
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exist σp, σq ∈ HypG(n) such that σp ◦G σt ◦G σq = σs. Since s /∈ X and
σp ◦G σt ◦G σq = σs, thus by Lemma 2.1, p, q /∈ X. Since σt ∈ G(n) and
q /∈ X, thus by Lemma 3.1, σt ◦G σq = σt. Since x1, . . . , xn /∈ var(t),
thus by Lemma 4.6 (i), x1, . . . , xn are not variables occurring in the term
(σp ◦G σt)(f) = (σp ◦G σt ◦G σq)(f). Thus x1, . . . , xn /∈ var(s) and so σs ∈
G(n). So G(n) is the J -class of its elements. Since any two elements in
G(n) are L- and D- related, L ⊆ J ,D ⊆ J and G(n) is the J -class of its
elements, and thus G(n) forms a complete L-, D-class.

Lemma 5.4. Let σs, σt ∈ HypG(n) \ (PG(n) ∪ G(n)). Then σsRσt if and
only if s = Cα[t] for some bijection α on J .

Proof. Assume that s = Cα[t] for some bijection α on J . So σα and σα−1

are inverse generalized hypersubstitutions. So by Lemma 4.7(ii), σt ◦G σα =
σCα[t]

= σs and σs ◦G σα−1 = σt. Thus σsRσt. Conversely, assume that
σsRσt. Then there exist p, q ∈ W(n)(X) \ X such that σs ◦G σp = σt and
σt ◦G σq = σs. Let p = f(p1, . . . , pn) and q = f(q1, . . . , qn). So we have two
equations

(1) Sn(s, σ̂s[p1], . . . , σ̂s[pn]) = t

(2) Sn(t, σ̂t[q1], . . . , σ̂t[qn]) = s.

Now, if neither of these equations satisfies the condition (Q) of Lemma 4.3,
we would have the length of the term t is longer than the length of the term
s and also the length of s is longer than the length of t, which is clearly
impossible. Thus, at least one of two equations must fit the condition (Q).
But if one equation fits the condition (Q), Lemma 4.3 tells us that s and
t have the same length, and therefore, the second equation also fits the
condition (Q). By Lemma 4.3, if xi ∈ var(t) ∩ Xn, then qi ∈ X. If such
qi /∈ Xn, then from (2) we get qi ∈ var(s). So Sn(s, σ̂s[p1], . . . , σ̂s[pn]) 6= t
which contradicts to (1). Thus such qi ∈ Xn. Let α(i) = j if xi ∈ var(t)∩Xn

and qi = xj . This defines a partial function on J . It is clear that α is
injective. Extending this map to a bijection on J , which we shall also call
α. So s = Cα[t].

Lemma 5.5. Let t ∈ W(n)(X) and π be a permutation on J . Then π−1

[π[t]] = t.
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Proof. We will proceed by induction on the complexity of the term t. If
t ∈ X then π−1[π[t]] = π−1[t] = t. Assume that t = f(t1, . . . , tn) and
π−1[π[ti]] = ti for all 1 ≤ i ≤ n. So π−1[π[t]] = π−1[π[f(t1, . . . , tn)]] =
π−1[f(π[tπ(1)], . . . , π[tπ(n)])] = f(π−1[π[tπ(π−1(1))]], . . . , π

−1[π[tπ(π−1(n))]]) =
f(π−1[π[t1]], . . . , π

−1[π[tn]]) = f(t1, . . . , tn) = t.

Lemma 5.6. Let σt ∈ HypG(n) \ PG(n). Then, for any permutation π on
J , σt is L-related to the generalized hypersubstitution σπ[t].

Proof. We know from Lemma 4.7(i) that σπ ◦G σt = σπ[t]. From Lemma
4.7(i) and Lemma 5.4, σπ−1 ◦G σπ[t] = σπ−1[π[t]] = σt. So σtLσπ[t].

Lemma 5.7. Two idempotents σs and σt in HypG(n) \PG(n) are L-related
if and only if var(s) ∩Xn = var(t) ∩Xn.

Proof. Assume that σsLσt. Then there exist u, v ∈ W(n)(X) such that
σu◦Gσt = σs and σv◦Gσs = σt. By Lemma 4.6(i), var(s)∩Xn ⊆ var(t)∩Xn

and var(t) ∩Xn ⊆ var(s) ∩Xn. So var(s)∩Xn = var(t) ∩Xn. Conversely,
we use the fact that for any two idempotents e and f in any semigroup, eLf
if and only if ef = e and fe = f . Since var(s) ∩ Xn = var(t) ∩ Xn, by
Theorem 3.2 we can prove that σt ◦G σs = σt and σs ◦G σt = σs.

Theorem 5.8. Let σt be an idempotent in HypG(n)\(PG(n)∪G(n)). Then
Lσt = {σπ[w]|π is a permutation of J,w /∈ X, var(w)∩Xn = var(t)∩Xn and
σw is an idempotent}.

Proof. Let σπ[w] ∈ HypG(n) where π is a permutation of J,w /∈ X, var(w)∩
Xn = var(t) ∩ Xn and σw is an idempotent. By Lemma 5.7, σwLσt.
By Lemma 5.6, σwLσπ[w]. So σπ[w]Lσt. Let t = f(u1, . . . , un) and s =
f(v1, . . . , vn) with σsLσt. Then there exists f(b1, . . . , bn) ∈ W(n)(X) such
that σf(b1,...,bn) ◦G σf(v1,...,vn) = σf(u1,...,un). We write σ = σf(b1,...,bn). From
σf(b1,...,bn) ◦G σf(v1,...,vn) = σf(u1,...,un), we get Sn(f(b1, . . . , bn),
σ̂[v1], . . . , σ̂[vn]) = f(u1, . . . , un). If xi ∈ var(t) ∩ Xn, then ui = xi since
σt is an idempotent. So bi = xj for some xj ∈ Xn. This implies σ̂[vj ] = xi
and then vj = xi. Let β be a partial function on J defined by β(i) = j if
xi ∈ var(t) ∩ Xn and vj = xi. If β(i) = β(k) = j, then vj = xi = xk. So
i = k and β is injective. So β can be extended to a permutation α on J .
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Let w = f(p1, . . . , pn) where pi = xi if xi ∈ var(t) ∩ Xn and pi = α[vα(i)]
if xi /∈ var(t) ∩ Xn. We will show that var(w) ∩ Xn = var(t) ∩ Xn, σw is
an idempotent and s = f(v1, . . . , vn) = π[w] where w = α−1. We show
first that var(w) ∩ Xn = var(t) ∩ Xn. Since σsLσt, thus by Lemma 5.7,
var(s)∩Xn = var(t)∩Xn. Let xj ∈ var(w)∩Xn. Then xj ∈ var(pi) for some
i ∈ J and xj ∈ Xn. If pi = xi where xi ∈ var(t)∩Xn, then xj = xi ∈ var(t).
If pi = α[vα(i)], then xj ∈ var(pi) = var(α[vα(i)]) = var(vα(i)) ⊆ var(s).
But var(s)∩Xn = var(t)∩Xn, so xj ∈ var(t). Let xj ∈ var(t)∩Xn. Then
pj = xj and so xj ∈ var(s) ∩Xn. Next we show that σw is an idempotent.
Let xi ∈ var(w) ∩Xn. Then xi ∈ var(t) ∩Xn. So pi = xi. Thus σw is an
idempotent. Finally we show that s = f(v1, . . . , vn) = π[w] where π = α−1.
To do this we will show that for all 1 ≤ k ≤ n, vk = π[pπ(k)]. Let 1 ≤ k ≤ n.
If there exists i ∈ J such that β(i) = k, then α(i) = k and π(k) = α−1(k) =
i. So pi = xi = vk. Thus π[pπ(k)] = π[pi] = π[xi] = xi = vk. If no such
index i exists, then π[pπ(k)] = π[α[vα(π(k))]] = π[α[vα(α−1(k))]] = π[α[vk]] =
α−1[α[vk]] = vk.

Corollary 5.9. Let σt be an idempotent in HypG(n)\(PG(n)∪G(n)). Then
Dσt = {σw|w = Cα[π[s]] for some α bijection on J , π a permutation on
J, s /∈ X, and σs an idempotent with var(s) ∩Xn = var(t) ∩Xn}.

Theorem 5.10. Let σt be an idempotent in HypG(n)\(PG(n)∪G(n)). Then
its J -class is equal to its D-class.

Proof. Let t = f(u1, . . . , un) and let c be the number of distinct variables
in Xn which occur in t. Let s = f(v1, . . . , vn) with σsJ σt. Then there exist
f(a1, . . . , an), f(b1, . . . , bn), f(p1, . . . , pn), f(r1, . . . , rn) ∈ W(n)(X) such that

(1) σf(a1,...,an) ◦G σf(v1,...,vn) ◦G σf(b1,...,bn) = σf(u1,...,un)

(2) σf(p1,...,pn) ◦G σf(u1,...,un) ◦G σf(r1,...,rn) = σf(v1,...,vn).

Let f(q1, . . . , qn) be the term for σf(v1,...,vn) ◦G σf(b1,...,bn). We write σ =
σf(a1,...,an). From (1), we get Sn(f(a1, . . . , an), σ̂[q1], . . . , σ̂[qn])=f(u1, . . . , un).
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If xk ∈ var(t) ∩ Xn, then uk = xk since σt is an idempotent. So ak = xj
for some xj ∈ Xn. This implies σ̂[qj ] = xk and then qj = xk. Let α be a
function from J(t) to J defined by α(k) = j if xk ∈ var(t)∩Xn and ak = xj
where J(t) = {k ∈ J |xk ∈ var(t)}. So α can be extended to a permutation
on J .

We write σ1=σf(v1,...,vn). Since f(q1, . . . , qn) is the term for σf(v1,...,vn)◦G
σf(b1,...,bn), thus Sn(f(v1, . . . , vn), σ̂1[b1], . . . , σ̂1[bn]) = f(q1, . . . , qn). For
each k ∈ J(t), qα(k) = xk. So vαk

= xl for some xl ∈ Xn. So σ̂1[bl] = xk
and then bl = xk. Let β : α(J(t)) → J defined by β(α(k)) = l where
k ∈ J(t) and vα(k) = xl. So β can be extended to a permutation on J .
Since α and β are injective, thus at least c distinct variables in Xn occur
as vi in entries of s = f(v1 . . . , vn). We claim that the only variables in
Xn which occur in s are those c variables. Let f(c1, . . . , cn) be the term for
σf(u1,...,un) ◦G σf(r1,...,rn).

We write σ2 = σf(p1,...,pn). From (2), we get Sn(f(p1, . . . , pn), σ̂2[c1], . . . ,
σ̂2[cn]) = f(v1, . . . , vn). Since at least c distinct variables in Xn occur as vi
in entries s = f(v1 . . . , vn), thus at least c distinct variables in Xn occur as
pi in entries s = f(p1 . . . , pn) and then at least c distinct variables in Xn

occur as ci in entries f(c1 . . . , cn).
We write σ3=σf(u1,...,un). Since f(c1, . . . , cn) is the term for σf(u1,...,un)◦G

σf(r1,...,rn), thus Sn(f(u1, . . . , un), σ̂3[r1], . . . , σ̂3[rn]) = f(c1, . . . , cn). But
f(u1, . . . , un) has only c distinct variables in Xn. Thus all the r′js used
in the composition in (2) are variables in Xn. So the number of distinct
variables in Xn which occur in f(v1, . . . , vn) is at most c. Thus the number
of distinct variables inXn which occur in f(v1, . . . , vn) is c and every variable
in Xn which occurs in it occurs as a vi. Let w1 = C(β◦α)−1 [f(v1, . . . , vn)].
So var(w1) ∩ Xn = var(t) ∩ Xn. From Lemma 5.4, we get σw1Rσs. Let
w2 = α[w1]. From Lemma 5.4, σw2Lσw1 . We will show that σw2 is an
idempotent. Let w1 = C(β◦α)−1 [f(v1, . . . , vn)] = f(d1, . . . , dn). For each
xk ∈ var(t) ∩ Xn, vα(k) = xβ(α(k)). So dα(k) = xk. From w2 = α[w1], we
get w2 = α[f(d1, . . . , dn)] = f(α[dα(1)], . . . , α[dα(n)]) and var(w2) ∩ Xn =
var(t) ∩Xn. Let xj ∈ var(w2) ∩Xn. Then xj ∈ var(t) ∩Xn. So α[dα(j)] =
α[xj ] = xj. So σw2 is an idempotent. By Lemma 5.7, σw2Lσt. So σw1Lσt.
Thus σsDσt.

Corollary 5.11. Let σs, σt be idempotents in HypG(n) \ (PG(n) ∪ G(n)).
Then σs and σt are J - or D-related if and only if the number of distinct
variables in Xn which occur in s and t are equal.
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Proof. One direction follows immediately from Corollary 5.9. Conversely,
let s = f(u1, . . . , un), t = f(v1, . . . , vn), var(s) ∩ Xn = {xk1 , . . . , xkc} and
var(t) ∩ Xn = {xl1 , . . . , xlc}. Since σs, σt are idempotents, thus ukj = xkj
and vlj = xlj for all 1 ≤ j ≤ c. Let s′ = f(u′1, . . . , u

′

n), t
′ = f(v′1, . . . , v

′

n)
where u′kj = xkj and v′lj = xlj for all 1 ≤ j ≤ c and other u′j = xk1 , v

′

j = xl1 .

By Lemma 5.7, σsLσs′ and σtLσt′ . Let π(lj) = kj for all 1 ≤ j ≤ c. Then
π is injective. So π can be extended to a permutation on J , which we will
also call π. So π[s′] = f(p1, . . . , pn) where plj = xkj for all 1 ≤ j ≤ c and
other pj = xk1 . Let α(kj) = lj for all 1 ≤ j ≤ c. So α can be extended
to a bijection on J , which we will also call α. So Cα[π[s′]] = t′. Thus
σsJ σs′J σCα[π[s′]]=t′J σt.

Acknowledgements

This research was supported by the Graduate School and the Faculty of
Science, Chiang Mai University, Thailand.

References
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