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1. INTRODUCTION

Let X,, = {1,2,...,n} be an n - element set ordered in the usual way. The
monoid PT, of all partial transformations of X,, is a very interesting object.
In this paper we will multiply transformations from the right to the left
and use the corresponding notation for the right to the left composition of
transformations: z(af) = (za)S, for z € X,,. We say that a transformation
a € PT,, is isotone (order-preserving) if x <y = ra < ya for all z,y from
the domain of «, antitone (order-reversing) if x <y — ya < za for all
x,y from the domain of a and monotone if it is isotone or antitone.

In the present paper, we study the structure of the semigroups 10,
of all isotone partial injections and IM,, of all monotone partial injections
of X,. From the definition of monotone transformations, it is clear that
10, C IM,.

Some semigroups of transformations have been studied since the sixties.
In fact, presentations of the semigroup O,, of all isotone transformations and
of the semigroup PO, of all isotone partial transformations (excluding the
permutation in both cases) were established by Aizenstat ([1]) in 1962 and
by Popova (|16]), respectively, in the same year. Some years later (1971),
Howie ([14]) studied some combinatorial and algebraic properties of O,, and,
in 1992, Gomes and Howie ([13]) established some more properties of O,,
namely its rank and idempotent rank. In recent years it has been studied in
different aspects by several authors (for example [4, 15, 17, 18]). The monoid
10,, of all isotone partial injections of X, has been the object of study since
1997 by Fernandes in various papers ([7, 8, 9]). Some basic properties of
10,,, in particular, a description of Green’s relations, congruences and a
presentation, were obtained in [2]. Ganyushkin and Mazorchuk ([12]) studied
some properties of 10,, as describe ideals, systems of generators, maximal
subsemigroups and maximal inverse subsemigroups of I0,,.

In [10], Fernandes, Gomes and Jesus gave a presentation of both the
semigroups M, of all monotone transformations of X,, and the semigroup
PM,, of all monotone partial transformations. Dimitrova and Koppitz (|4])
considered the maximal subsemigroups of M,, and its ideals. Delgado and
Fernandes ([3]) have computed the abelian kernels of the semigroup IM,,.
Fernandes, Gomes and Jesus ([11]) exhibited some properties as well as a pre-
sentation for the semigroup I'M,,. Dimitrova and Koppitz ([5]) characterized
the maximal subsemigroups of IM,.
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In this paper we consider the ideals of the semigroups IO, and IM,. In
Section 2 we describe the maximal subsemigroups of the ideals of the semi-
group 10,. Each of the considered ideals has exactly 2(*) — 2 maximal
subsemigroups. In Section 3 we characterize the maximal subsemigroups of
the ideals of the semigroup IM,. It happens that each of the considered

ideals has exactly 2(M)+1 3 maximal subsemigroups.

We will try to keep the standard notation. For every partial transfor-
mation « by dom « and im « we denote the domain and the image of «, re-
spectively. If a is injective, the number rank « := |[dom «| = [im «/ is called
the rank of a. Clearly, rank a8 < min{rank «,rank f} and im § = im af
as well as dom a = dom af if im @ = dom (. From the definition of iso-
tone and antitone transformation, it follows that every element a € IM,
is uniquely determined by dom « and im « satisfying |[dom «| = |im «f.
Moreover, for every A, B C X, of the same cardinality there exists one
isotone transformation o« € 10,, C IM, and one antitone transformation
B € IM, such that dom &« = dom § = A and im o« = im § = B. We will
denote by a4 g the unique isotone element o € IM,, for which A = dom «
and B = im «, and by (4 p the unique antitone element 3 € I M, for which
A =dom and B =im (. The elements a4 4, A € X,,, exhaust all idempo-
tents in 10,, as well as in IM,,. For the elements ﬁAA, we have @24714 = Q4.A.
In case A = B = X,,, we will use the notations o, and (3, instead of ax, x,

and ﬁXn,Xn'

The Green’s relations £, R, J and H on 10, as well as on IM,, are
characterized as follows:

alf < im a=im 3
aRf <= dom o = dom f3
adp <= rank a = rank
H=LNR
Obviously, every H-class in 10,, contains exactly one element and every H-

class in IM,, \ {« € IM,, : rank o < 1} contains exactly two elements. In
the set {a € IM,, : rank a < 1}, every H-class contains exactly one element.
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2. MAXIMAL SUBSEMIGROUPS OF THE IDEALS OF IO,
The semigroup I0,, is the union of the J-classes Jy, J1, ..., J,, where
Jp ={a € IO, :rank a =r} forr=0,...,n.

It is well known that the ideal I(n,r) (r = 0,...,n) of the semigroup 10,
is the union of J-classes Jy, J1,...,Jy, i.e.

I(n,r) ={a € IO, : rank a < r}.

Every principal factor on 10,, is a Rees quotient I(n,r)/I(n,r — 1) (1 <

r < n) of which we think as J, U {0} (as it is usually convenient), where the

product of two elements of J, is taken to be zero if it falls into I(n,r — 1).
Let us denote by A, the collection of all subsets of X, of cardinality r.
The R -, L - and H - classes in J, have the following form:

RA::{aEI(TL,’I”)IdOHlO[:A}, AEAT;
Lp:={a€I(n,r):im a= B}, BE€EA;
HA,B = {aA,B} =RaNLpg, A BE€EA,.

Clearly, each R4 - class (L4 - class), A € A, contains exactly one idempotent
aa, 4. Thusif E, is the set of all idempotents in the class J,, then |E,| = (:f)

Since the product af for all a, 8 € J, belongs to the class .J,. if and only
if im @ = dom f3, it is obvious that

Lemma 1.

Jr, if A= B,

I. LpRa—
B {o, if A+B.

aap, if B=C,

2. apBao,p = ,
0, if B#C.

Proposition 1 [7|. (J.) =1I(n,r), for0<r <n-—1.
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Now we begin with the description of the maximal subsemigroups of the
ideals of the semigroup 10,,.

Let us denote by Dec(A,) the set of all decompositions (N1, N3) of A,
i.e. N{UNy = A, and N7 N Ny = () where Ny, Ny # ().

Definition 1. Let (N1, Na) € Dec(Ay) (r=1,...,n—1). Then we put
Sni,Ng) = I(n,r —1)U{aap: A€ Nyor Be Na}.

The maximal subsemigroups of the ideal I(n,n) = I0,, were described by
Ganyushkin and Mazorchuk:

Theorem 1 [12|. A subsemigroup S of 10, is mazimal if and only if S =
I(n,n —1) or S = {an} U S, Ny, where (N1, N2) € Dec(Ap—1).

In the following, we will consider the maximal subsemigroups of the ideals
I(n,r) forr=1,...,n—1.

Lemma 2. FEvery mazimal subsemigroup in I(n,r) contains the ideal
I(n,r—1).

Proof. Let S be a maximal subsemigroup of I(n,r). Assume that J, C S,
then according to Proposition 1 it follows that I(n,r) = (J,) C S, ie.
S = I(n,r), a contradiction. Thus J, € S. Then SUI(n,r — 1) is a proper
subsemigroup of I(n, r) since I(n,r—1) is an ideal, and hence SUI(n,r—1) =

S by maximality of S. This implies I(n,r—1) C S.

Theorem 2. Let 1 <r < n—1. Then a subsemigroup S of I(n,r) is maximal
if and only if there is an element (N1, Na) € Dec(A) with S = S, n,)-

Proof. Let S = Sy, n,) for some (N1, Na) € Dec(A;). Then
S=I(n,r—1)U{aap:AecN;orBec Ny}

Therefore, if vy p ¢ S then A € Ny and B € Ny, and thus ap 4 € S.
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From Lemma 1 it follows that S is a semigroup. Really, let a4 B, ac,p € S,
ie. A,Ce€ NjorB,D¢c Nyor Aec Ni,D € Ny. Then we have ay pac,p =
aap € Sfor B=Cand agpacp=0€I(n,r—1)C S for B#C.

Now we will show that S is maximal. Let ac,p € I(n,r)\S, ie. C ¢ N;
and D ¢ Ny. Then D € Ny, since Ny U Ny = A, and so app € S for
all P € A, and thus Rp = {app : P € A} C S. Moreover, we have
ac,p = ac,pap,p, for all P € A, by Lemma 1. Thus we obtain the R-class
Re ={acp: P e A} C(SU{acp}). Moreover, C € Ny and so Lc =
{apc: P € A} CS. Using Lemma 1, we have Lo Rc = J, € (SU{ac,p}).
Thus, we obtain that (S U {acp}) = I(n,r). Therefore, S is a maximal
subsemigroup of the ideal I(n,r).

For the converse part let S be a maximal subsemigroup of the ideal
I(n,r). From Lemma 2, we have that I(n,r —1) C S. Then S = I(n,r — 1)
U T, where T' C J,.

Let ag g ¢ S. Then (SU{aa p}) = I(n,r). Let now P,Q € A,. Suppose
that apQ §é S. Then apg € <SU {aA7B}> and apQ = apAQABOBQ-
Moreover, apa = apaca papa and apg = apaas papg. This shows
that we need ap 4 and ap g to generate ap 4 and ap g, respectively, with
elements of S U {aa p}. Hence apa, apg € S.

Assume that ag p ¢ S. Then ag p = ag aaa pap p and by the same
arguments, we obtain that ag 4,app € S.

Further, from ag p = ag aaa p it follows that agp ¢ S. But apg ¢
(SU{aa,p}) since apg = apaaa papg. This contradicts the maximality
of S and thus ag p € S. Hence if apg ¢ S then ag p € S for any P,Q € A,.
Therefore, for Ny ={B :aap ¢ S} and No = {A: asp ¢ S} we have that
S = S(N1,N)- "

There are exactly 2(7) — 9 maximal subsemigroups of the ideal I(n,r), for
r=1,...,n—1and 2" — 1 maximal subsemigroups of I(n,n).

3. MAXIMAL SUBSEMIGROUPS OF THE IDEALS OF IM,,
The semigroup IM,, is the union of the J-classes Jy, J1,..., J,, where

Jp i ={a € IM, :rank a =r} for r =0,...,n.
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It is well known that the ideal I(n,r) (r = 0,...,n) of the semigroup 1M,
is the union of J-classes Jy, J1,...,Jy, i.e.

I(n,r) ={a € IM, : rank o < r}.

Every principal factor on I'M,, is a Rees quotient I(n,r)/I(n,r—1) (1 <r <
n) of which we think as J, U {0}, where the product of two elements of .J, is
taken to be zero if it falls into I(n,r — 1).

The R -, L - and H - classes in J,. have the following form:

Ry :={a€l(n,r):dom a= A}, A€

LB = {aEI(n,T) :im Oé:B}, BEAT;

Hap:={oap,Bspt=RanNLp, A BEeEA,.

The L-class, R-class and H-class, respectively, containing the element o €
IM,, will be denoted by L., R, and H,, respectively.

Since the product af for all a, 8 € J,. belongs to the class .J,. if and only
if im a = dom (3, it is easy to show that

Lemma 3.
Jr, if A= B,

1. LgRy =
0, if A#B.

Hap, if B=C,

2 Hasllop { 0, if B£C.

Let U be a subset of the semigroup IM,. We denote by U’ (respectively
U®) the set of all isotone (respectively antitone) transformations in the set
U. An immediate but important property is that the product of two isotone
transformations or two antitone transformations is an isotone, and the prod-
uct of an isotone transformation with an antitone transformation, or vice
versa, is an antitone one.

Proposition 2. J, C (J%) and J. C (J:U{B4p}), for all A,B € A,.
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Proof. Let A,B € A;. Then for all C € A, we have aap = B4 B¢ p-
Therefore, J, C (J).
From L4834 p = L% and LE Ry = J¢, we have J, C (JE U {B4 5}).
|

Proposition 3. (J,) =I(n,r), for 0 <r <n—1.

Proof. Clearly (Jo) = I(n,0). In [5], it was shown that J' ; C JiJ! and

@ CJiJeJl  for 1 <r<n—1. Since I(n,r) = JoUJy U---UJ,, we
have (J,) = I(n,r). u

From Proposition 2 and Proposition 3 we have

Corollary 1. Let 1 <r <n—1. Then (J%) = (J:U{Bap}) = I(n,r), for
all A, B € A,.

Now we begin with the description of the maximal subsemigroups of the
ideals of the semigroup IM,,.

Clearly, the ideal I(n, 1) of IM,, coincides with the ideal I(n, 1) of 1O,,.
Thus the maximal subsemigroups of this ideal are characterized in Theorem
2 and there are exactly 2™ — 2 such semigroups.

Now we will consider the maximal subsemigroups of the ideals I(n,r)
forr=2,...,n—1.

Lemma 4. Fvery mazimal subsemigroup in I(n,r) contains the ideal
I(n,r—1).

The proof is similar as that in Lemma 2.

Theorem 3 Let2 <r <n—1. Then a subsemigroup S of I(n,r) is maximal
if and only if it belongs to one of the following three types:

(1) S .= I(n,r —1)UJ}
(2) S, nyy = U{Ha s 0 € Sy, gy} for (N1, Na) € Dec(A,);
(3) 88 i=TI(n,r—1)U{aap: A, BEN, or A, BE Ny} U

(N1,N2) -

U{Bap:A€N,BENyor Ac Ny, B € N1} for (N1, Na) € Dec(A).
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Proof.

(1) It is obvious that S = I(n,r — 1) U J! is a semigroup, since I(n,r — 1)
is an ideal and (J})? C I*(n,7) C I(n,r —1)UJ:. From Proposition 2, we
have that J, C (JEU{B4 p}) for all B, 5 € J2. Since I(n,r)\SWM = Ja,
we obtain (S U {Bag}) =I(n,r) for all B, 5 € J. Therefore, S s
maximal in I(n,r).

(2) Let S = 5@

(N1, ) for some (N1, N2) € Dec(A,). Then

S=1I(n,r—1)U{Hap: A€ Njor Be Ny}.

From Lemma 3 it follows that S is a semigroup. Really, let H 4 g, Hc,p C
S,ie. A,C € Nyor B,D € Ny or A € N;,D € No. Then we have
HapHeop=Hap CSfor B=Cand HypHcp C I(n,r—1) C S for
B #C.

Now we will show that S is maximal. Let Hep = {ac,p,Bcp} C
I(n,r)\ S, ie. C ¢ Ny and D ¢ Ny. Then D € Ny, since Ny U Ny = A,
and so Hpp € S for all P € A, and thus Rp = (Jpey, Hpp C S.
Moreover, we have

Hep=HcpHpp, for PeA,,

by Lemma 3. Thus we obtain the R-class Rc = (Upcp, Hop C (SU
Hc p). Moreover, C' € N2 and so Lo = Upey, Hpo © S. Using Lemma
3, we have LcRc = J, € (SU Hg,p). Since acp = BepBp p and
Bep = ac,pBp p, where B p € Rp C S, we obtain that (SU{ac,p}) =
I(n,r) and (SU{Bc p}) = I(n,r). Therefore, S is a maximal subsemi-
group of the ideal I(n,r).

(3) Let S = S’((?\Zl N2) for some (N1, No) € Dec(A,). From Lemma 3, it follows
that S is a semigroup. We will show that S is maximal. Let

Vi=1I(n,r)\S={Bap:A,B€ N or A,Be Ny} U

U {aap:AeN,BeNyor Ae Ny,B e Ny}

and let v € V. Then for the transformation v we have four possibilities:
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Let v € {Bap : A,B € Ni}. Then aca € S (since A € Np) and so
acaBap = Bep € (SU{y}) for all C € Ny. Also, we have 3¢ 4 € S and
thus 8o 4Bap = acp € (SU{y}) for all C € Ny. Since agp € S for
all C € Ny and B¢ p € S for all C € Na, we obtain Lp = Ugecp, Hos C
(SU{v}). Further, Bg g € Lp and Bp pBp p = ap,p for all D € Ny as well
as fp gapp = Bpp for all D € Ny. Thus since app € S for all D € Ny
and Bp p € S for all D € Ny, we obtain Rp = (Jpecp, He.p € (SU{7}).
From Lemma 3, we have LgRp = J, and therefore (S U {y}) = I(n,r).

~For vy € {45 A, B € Na}, the proof is similar.

~Let v € {aap : A € Ni,B € No}. Then agga € S (since A € Ny)
and so acaaap = acp € (SU{y}) for all C € N;. Also, we have
Boa €S and thus Bo qaap = Bop € (SU{y}) for all C € Ny. Since
acp € S forall €' € Ny and B¢ g € S for all C € Ny, we obtain Lp =
Ucen, Hep © (SU{y}). Further, 8pp € Lp and Bg papp = Bpp
for all D € N3 as well as B gpBp p = ap,p for all D € N;. Thus since
app € S forall D € Ny and fgp € S for all D € Nj, we obtain
Rp = UleAr Hpp C (SU{v}). From Lemma 3, we have LgRp = J, and
therefore (S U{~}) = I(n,r).

—~For v € {aap: A€ Ny, B € Ny}, the proof is similar.

Altogether, this shows that S is maximal.

For the converse part let S be a maximal subsemigroup of the ideal
I(n,r). From Lemma 4, we have that I(n,r—1) C S. Then S = I(n,r — 1)
U T, where T' C J,.. We consider two cases for the set T'.

1. Let T = J! Then S = I(n,r —1)UJ: = SO,

2. Let now T # Ji. Assume that J. C T. Then T = J' U T’ where
0 # T C J* From Corollary 1, we have S = I(n,r), a contradiction.
Thus J! ¢ T. We also have that J* ¢ T since (J%) = I(n,r).

Admit that Hap € S or HypNS = 0, for all A,B € A,. Assume that
St = SNI%(n,r) is not a maximal subsemigroup of I*(n,r). Then there is an
isotone transformation a4 g € I(n,r)\ S such that (S*U{a g}) is a proper
subset of I'(n,r). Therefore, there exists an acp € I(n,r)\ S such that
acp ¢ (S'U{aap}). But (SU{aap}) = I(n,r) since S is maximal and
ac,p = Be aaa,BPp p. Moreover, o 4 = Bo aa,BOB A = 0C,AQABPB A
and ﬁB7D = ﬁB7AaA7BaB,D = aBﬂAaA,BﬁB,D. This shows that we need
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Bec,a or aca and Bpp or app to generate B¢ 4 and Bp p, respectively,
with elements of S U {aa p}. This implies that 8¢ 4,ac ., 8 p;aBp €S,
since we assume that Hqp C S or HypNS =0, for all A, B € A,. Hence
acp = acacapapp € (S°U {aap}), a contradiction. Therefore, we
obtain that S* is maximal in I*(n, 7). Since all maximal subsemigroups of the
ideal I'(n,r) are of type S(n, n,) we have S = U{H, : a € S'} = S((]2\217N2),
for some (N1, Na2) € Dec(A,).

Now, admit that [Haqp N S| = 1, for some A, B € A,. Suppose that
aap ¢ S and Byp € S. Then from anp = B4 plpp and aap =
BaaBap, it follows that B4 4,855 ¢ S. Moreover, from 8, papa =
Baa ¢S, we get apa ¢ S. Assume that B 4 ¢ S. Then Bp 4 € (SU
{ap,a}), because of the maximality of S, and since 35 4 = B pap aca s =
appap ABa s, we obtain B4 4 € S or B g € 5, a contradiction, and thus
537‘4 e=s.

Further, let P,Q € A,. Suppose that apg ¢ S. Then from apg =
apaBapBpg, it follows that if apa € S then Bp o ¢ S and vice versa.
Also from apqg = Bp B4 paB,q, it follows that if Bp 4 € S then apg ¢ S
and vice versa. Moreover, apg € (S U {4 p}) since S is maximal. Hence
ap@ = apacaBapQ = Bpacaplpg- Therefore, we have apa,apg € S
and Bp 4,08p,¢ ¢ S or vice versa.

Assume that fpo ¢ S. Then Bpgy € (SU{aap}) and so Bpgy =
C!P7ACMA7BﬁB7Q = ﬁRAOéA,BCVB,Q- But we obtain already that if ap 4,ap g €
S then Bp 4,8p ¢ ¢ S or vice versa. Therefore, p o ¢ (S U{aap}). This
contradicts the maximality of S and thus Spg, € S.

Further, from apq = BpoBg,q and apqg = BppBpg, it follows that
Bpp:Bgg & S- Moreover, from Bpoagpr = Bpp ¢ S, we get agp ¢
S. Assume that 8o p ¢ S. Then By p € (S U{aq,pr}), because of the
maximality of S, and since Bg p = Bg oo .rapr = agqaq.rBpp, We
obtain Bpp € S or B g € S, a contradiction, and thus g p € S.

Analogously, if 8p ¢ S we have that 8 p ¢ S and apg,aqgr € S.

Suppose that apg € S for some P,Q € A,.. Then Bp ¢ S. Otherwise,
from aqp = aapBpgBg.p ¢ S it follows

i) apap ¢ Sand Bgp €S, ie BypeSandBgpeES;
ii) app € S and BQ,B ¢ S, ie. QA pE S and aQ,B € S

i) aap ¢ Sand By p ¢S ie Bap€SandagpeES.
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Then as p = ﬂAPap,QBQB = A, POPQOQB = 5A,P5P,Q(1Q,Ba which con-
tradicts that aa p ¢ S.

The proof when g p € S and B4 g ¢ S is similar.

Finally, we obtain that

(1) ap €S <= fpg ¢S

for P,Q € A,.

Let p, == {(P,Q) : apg € S}. Obviously, p, is an equivalence relation
on A, with A,/p, = {N1, Na,...,Np} (m > 2). Indeed, p, is reflexive since
E, C S, symmetric because of the previous considerations and transitive
since apgagr = apr € S for apg,agr € S. Moreover, m > 2 becomes
clear by J! ¢ T. Assume that the decomposition contains more than two
elements, i.e. m > 2. Then there are N1, No, N3 in our decomposition such
that A € Ny, B € Ny and C' € N3. Thus asp = 840005 € S, a con-

tradiction. Therefore, A,/p, = {N1, N2} and S = S((?\;LNQ), because of (1).

There are exactly 2(?) — 2 maximal subsemigroups of the ideal I*(n,r) and
exactly 2(%) — 2 maximal subsemigroups of type (3). Taking I(n,r — 1) U J:
into account, we get 2()+1 _ 3 maximal subsemigroups of the ideal I(n,r),
forr=2,....,n—1.

Finally, we characterize the maximal subsemigroups of the ideal I(n,n) =
IM,.

For A€ Ap—y weput A:={n+1—i:i€ A} and for N C P(X,,) we
set N:={A:Ae N} Then we have

Baaczp = Bnoap = Pap
BaaPap = Bnbap = @aB,
ap,Afaz =B Al =Bpa

Bp.aPazx=Ppabn = g7
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Theorem 4. A subsemigroup S of IM,, is maximal if and only if it belongs
to one of the following three types:

(1) T:=I(n,n—1)U{ank;

(2) Tinvy No) = Jn U{Ho : a € Sy ny) s for (N1, N2) € Dec(Ay—1)

with Nl = N1 and NQ = NQ;

3) Tiyw) = mUIn,n-2)U{aap: A, BEN or A, B €N}

U {Bap:AeN,BeN orAc N,Be N} for (N,N) € Dec(Ap_1).

Proof. It is clear that T is a maximal subsemigroup of IM,,. Further, we
put

Invi={B,z: A€ Ay}

Let (N1, N3) € Dec(A,—1) be a decomposition with the required proper-
ties. Since Inv C T(y, n,) and by (2) it is easy to verify that Ty, n,) is
a subsemigroup of IM,. Since T(n, n,) \ Jn is a maximal subsemigroup of
I(n,n — 1) by Theorem 3 and J, C T(n, n,), it follows that T(n, ) is a
maximal subsemigroup of I M,,. Analogously, one can show that T (N,N) is a
maximal subsemigroup of IM,,.

For the converse part, let S be maximal in IM,. Admit that J, ¢ S.
Then it is easy to see that S = T. Now suppose that J,, € S. Assume that
Inv € S. Then there is an A € A,y with 3,4 ¢ S. Since S is maximal, we
have IM,, = (SU{B,z}) = SU{B4 1} by (2). Thus S = IM,\{B, 7} But
Bz = aaBg for some B € A,,_1 with B # A. Since g,z € S, we
have S = I M, a contradiction. Hence Inv C S. Let Sp_1 := SNI(n,n—1).
Assume that S,_; is not a maximal subsemigroup of I(n,n — 1). Clearly,
Sp—1# I(n,n—1). Let vy € I(n,n—1)\ S,—1. Then for all § € I(n,n — 1),
we have § € (SU{v}) = (Sn—1U{7}) U J, by (2) and since Inv C S. This
shows that § € (S,—1 U {v}) and thus (S,—1 U{v}) = I(n,n —1). Conse-
quently, S,,—1 is a maximal subsemigroup of I(n,n—1). Using Theorem 3 we
choose all decompositions (N7, Na) € Dec(A,—1) such that Inv C s

(N1,N2)
and Inv C S((?\;l Na)? respectively. In this way we obtain the semigroups
|

Ty, N, and T(N,W)'
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It is straightforward to calculate that there are exactly 2" — 1 maximal
subsemigroups of IM,, if n is odd and exactly 3 7) — 1 maximal subsemi-
groups of I'M,, if n is even.
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