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1. Introduction

Let Xn = {1, 2, . . . , n} be an n - element set ordered in the usual way. The
monoid PTn of all partial transformations of Xn is a very interesting object.
In this paper we will multiply transformations from the right to the left
and use the corresponding notation for the right to the left composition of
transformations: x(αβ) = (xα)β, for x ∈ Xn. We say that a transformation
α ∈ PTn is isotone (order-preserving) if x ≤ y =⇒ xα ≤ yα for all x, y from
the domain of α, antitone (order-reversing) if x ≤ y =⇒ yα ≤ xα for all
x, y from the domain of α and monotone if it is isotone or antitone.

In the present paper, we study the structure of the semigroups IOn

of all isotone partial injections and IMn of all monotone partial injections
of Xn. From the definition of monotone transformations, it is clear that
IOn ⊆ IMn.

Some semigroups of transformations have been studied since the sixties.
In fact, presentations of the semigroup On of all isotone transformations and
of the semigroup POn of all isotone partial transformations (excluding the
permutation in both cases) were established by Aı̆zens̆tat ([1]) in 1962 and
by Popova ([16]), respectively, in the same year. Some years later (1971),
Howie ([14]) studied some combinatorial and algebraic properties of On and,
in 1992, Gomes and Howie ([13]) established some more properties of On,
namely its rank and idempotent rank. In recent years it has been studied in
different aspects by several authors (for example [4, 15, 17, 18]). The monoid
IOn of all isotone partial injections of Xn has been the object of study since
1997 by Fernandes in various papers ([7, 8, 9]). Some basic properties of
IOn, in particular, a description of Green’s relations, congruences and a
presentation, were obtained in [2]. Ganyushkin and Mazorchuk ([12]) studied
some properties of IOn as describe ideals, systems of generators, maximal
subsemigroups and maximal inverse subsemigroups of IOn.

In [10], Fernandes, Gomes and Jesus gave a presentation of both the
semigroups Mn of all monotone transformations of Xn and the semigroup
PMn of all monotone partial transformations. Dimitrova and Koppitz ([4])
considered the maximal subsemigroups of Mn and its ideals. Delgado and
Fernandes ([3]) have computed the abelian kernels of the semigroup IMn.
Fernandes, Gomes and Jesus ([11]) exhibited some properties as well as a pre-
sentation for the semigroup IMn. Dimitrova and Koppitz ([5]) characterized
the maximal subsemigroups of IMn.
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In this paper we consider the ideals of the semigroups IOn and IMn. In
Section 2 we describe the maximal subsemigroups of the ideals of the semi-

group IOn. Each of the considered ideals has exactly 2(n

r
) − 2 maximal

subsemigroups. In Section 3 we characterize the maximal subsemigroups of
the ideals of the semigroup IMn. It happens that each of the considered

ideals has exactly 2(n

r
)+1 − 3 maximal subsemigroups.

We will try to keep the standard notation. For every partial transfor-
mation α by dom α and im α we denote the domain and the image of α, re-
spectively. If α is injective, the number rank α := |dom α| = |im α| is called
the rank of α. Clearly, rank αβ ≤ min{rank α, rank β} and im β = im αβ
as well as dom α = dom αβ if im α = dom β. From the definition of iso-
tone and antitone transformation, it follows that every element α ∈ IMn

is uniquely determined by dom α and im α satisfying |dom α| = |im α|.
Moreover, for every A,B ⊂ Xn of the same cardinality there exists one
isotone transformation α ∈ IOn ⊆ IMn and one antitone transformation
β ∈ IMn such that dom α = dom β = A and im α = im β = B. We will
denote by αA,B the unique isotone element α ∈ IMn for which A = dom α
and B = im α, and by βA,B the unique antitone element β ∈ IMn for which
A = dom β and B = im β. The elements αA,A, A ∈ Xn, exhaust all idempo-
tents in IOn as well as in IMn. For the elements βA,A, we have β2

A,A = αA,A.
In case A = B = Xn, we will use the notations αn and βn instead of αXn,Xn

and βXn,Xn

.

The Green’s relations L, R, J and H on IOn as well as on IMn are
characterized as follows:

αLβ ⇐⇒ im α = im β

αRβ ⇐⇒ dom α = dom β

αJβ ⇐⇒ rank α = rank β

H = L ∩ R.

Obviously, every H-class in IOn contains exactly one element and every H-
class in IMn \ {α ∈ IMn : rank α ≤ 1} contains exactly two elements. In
the set {α ∈ IMn : rank α ≤ 1}, every H-class contains exactly one element.
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2. Maximal subsemigroups of the ideals of IOn

The semigroup IOn is the union of the J-classes J0, J1, . . . , Jn, where

Jr := {α ∈ IOn : rank α = r} for r = 0, . . . , n.

It is well known that the ideal I(n, r) (r = 0, . . . , n) of the semigroup IOn

is the union of J-classes J0, J1, . . . , Jr, i.e.

I(n, r) = {α ∈ IOn : rank α ≤ r}.

Every principal factor on IOn is a Rees quotient I(n, r)/I(n, r − 1) (1 ≤
r ≤ n) of which we think as Jr ∪ {0} (as it is usually convenient), where the
product of two elements of Jr is taken to be zero if it falls into I(n, r − 1).

Let us denote by Λr the collection of all subsets of Xn of cardinality r.

The R -, L - and H - classes in Jr have the following form:

RA := {α ∈ I(n, r) : dom α = A}, A ∈ Λr;

LB := {α ∈ I(n, r) : im α = B}, B ∈ Λr;

HA,B := {αA,B} = RA ∩ LB , A,B ∈ Λr.

Clearly, each RA - class (LA - class), A ∈ Λr contains exactly one idempotent
αA,A. Thus if Er is the set of all idempotents in the class Jr, then |Er| =

(

n
r

)

.

Since the product αβ for all α, β ∈ Jr belongs to the class Jr if and only
if im α = dom β, it is obvious that

Lemma 1.

1. LBRA =

{

Jr, if A = B,

0, if A 6= B.

2. αA,BαC,D =

{

αA,D, if B = C,

0, if B 6= C.

Proposition 1 [7]. 〈Jr〉 = I(n, r), for 0 ≤ r ≤ n − 1.
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Now we begin with the description of the maximal subsemigroups of the
ideals of the semigroup IOn.

Let us denote by Dec(Λr) the set of all decompositions (N1, N2) of Λr,
i.e. N1 ∪ N2 = Λr and N1 ∩ N2 = ∅ where N1, N2 6= ∅.

Definition 1. Let (N1, N2) ∈ Dec(Λr) (r = 1, . . . , n − 1). Then we put

S(N1,N2) := I(n, r − 1) ∪ {αA,B : A ∈ N1 or B ∈ N2}.

The maximal subsemigroups of the ideal I(n, n) = IOn were described by
Ganyushkin and Mazorchuk:

Theorem 1 [12]. A subsemigroup S of IOn is maximal if and only if S =
I(n, n − 1) or S = {αn} ∪ S(N1,N2), where (N1, N2) ∈ Dec(Λn−1).

In the following, we will consider the maximal subsemigroups of the ideals
I(n, r) for r = 1, . . . , n − 1.

Lemma 2. Every maximal subsemigroup in I(n, r) contains the ideal

I(n, r − 1).

Proof. Let S be a maximal subsemigroup of I(n, r). Assume that Jr ⊆ S,
then according to Proposition 1 it follows that I(n, r) = 〈Jr〉 ⊆ S, i.e.
S = I(n, r), a contradiction. Thus Jr * S. Then S ∪ I(n, r − 1) is a proper
subsemigroup of I(n, r) since I(n, r−1) is an ideal, and hence S∪I(n, r−1) =
S by maximality of S. This implies I(n, r−1) ⊆ S.

Theorem 2. Let 1 ≤ r ≤ n−1. Then a subsemigroup S of I(n, r) is maximal

if and only if there is an element (N1, N2) ∈ Dec(Λr) with S = S(N1,N2).

Proof. Let S = S(N1,N2) for some (N1, N2) ∈ Dec(Λr). Then

S = I(n, r − 1) ∪ {αA,B : A ∈ N1 or B ∈ N2}.

Therefore, if αA,B /∈ S then A ∈ N2 and B ∈ N1, and thus αB,A ∈ S.



158 I. Dimitrova and J. Koppitz

From Lemma 1 it follows that S is a semigroup. Really, let αA,B, αC,D ∈ S,
i.e. A,C ∈ N1 or B,D ∈ N2 or A ∈ N1, D ∈ N2. Then we have αA,BαC,D =
αA,D ∈ S for B = C and αA,BαC,D = 0 ∈ I(n, r − 1) ⊆ S for B 6= C.

Now we will show that S is maximal. Let αC,D ∈ I(n, r)\S, i.e. C /∈ N1

and D /∈ N2. Then D ∈ N1, since N1 ∪ N2 = Λr and so αD,P ∈ S for
all P ∈ Λr and thus RD = {αD,P : P ∈ Λr} ⊆ S. Moreover, we have
αC,P = αC,DαD,P , for all P ∈ Λr, by Lemma 1. Thus we obtain the R-class
RC = {αC,P : P ∈ Λr} ⊆ 〈S ∪ {αC,D}〉. Moreover, C ∈ N2 and so LC =
{αP,C : P ∈ Λr} ⊆ S. Using Lemma 1, we have LCRC = Jr ⊆ 〈S∪{αC,D}〉.
Thus, we obtain that 〈S ∪ {αC,D}〉 = I(n, r). Therefore, S is a maximal
subsemigroup of the ideal I(n, r).

For the converse part let S be a maximal subsemigroup of the ideal
I(n, r). From Lemma 2, we have that I(n, r− 1) ⊆ S. Then S = I(n, r − 1)
∪ T , where T ⊆ Jr.

Let αA,B /∈ S. Then 〈S∪{αA,B}〉 = I(n, r). Let now P,Q ∈ Λr. Suppose
that αP,Q /∈ S. Then αP,Q ∈ 〈S ∪ {αA,B}〉 and αP,Q = αP,AαA,BαB,Q.
Moreover, αP,A = αP,AαA,BαB,A and αB,Q = αB,AαA,BαB,Q. This shows
that we need αP,A and αB,Q to generate αP,A and αB,Q, respectively, with
elements of S ∪ {αA,B}. Hence αP,A, αB,Q ∈ S.

Assume that αQ,P /∈ S. Then αQ,P = αQ,AαA,BαB,P and by the same
arguments, we obtain that αQ,A, αB,P ∈ S.

Further, from αQ,P = αQ,AαA,P it follows that αA,P /∈ S. But αP,Q /∈
〈S ∪ {αA,P }〉 since αP,Q = αP,AαA,P αP,Q. This contradicts the maximality
of S and thus αQ,P ∈ S. Hence if αP,Q /∈ S then αQ,P ∈ S for any P,Q ∈ Λr.
Therefore, for N1 = {B : αA,B /∈ S} and N2 = {A : αA,B /∈ S} we have that
S = S(N1,N2).

There are exactly 2(n

r
) − 2 maximal subsemigroups of the ideal I(n, r), for

r = 1, . . . , n − 1 and 2n − 1 maximal subsemigroups of I(n, n).

3. Maximal subsemigroups of the ideals of IMn

The semigroup IMn is the union of the J-classes J0, J1, . . . , Jn, where

Jr := {α ∈ IMn : rank α = r} for r = 0, . . . , n.
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It is well known that the ideal I(n, r) (r = 0, . . . , n) of the semigroup IMn

is the union of J-classes J0, J1, . . . , Jr, i.e.

I(n, r) = {α ∈ IMn : rank α ≤ r}.

Every principal factor on IMn is a Rees quotient I(n, r)/I(n, r−1) (1 ≤ r ≤
n) of which we think as Jr ∪ {0}, where the product of two elements of Jr is
taken to be zero if it falls into I(n, r − 1).

The R -, L - and H - classes in Jr have the following form:

RA := {α ∈ I(n, r) : dom α = A}, A ∈ Λr;

LB := {α ∈ I(n, r) : im α = B}, B ∈ Λr;

HA,B := {αA,B, βA,B} = RA ∩ LB , A,B ∈ Λr.

The L-class, R-class and H-class, respectively, containing the element α ∈
IMn will be denoted by Lα, Rα, and Hα, respectively.

Since the product αβ for all α, β ∈ Jr belongs to the class Jr if and only
if im α = dom β, it is easy to show that

Lemma 3.

1. LBRA =

{

Jr, if A = B,

0, if A 6= B.

2. HA,BHC,D =

{

HA,D, if B = C,

0, if B 6= C.

Let U be a subset of the semigroup IMn. We denote by U i (respectively
Ua) the set of all isotone (respectively antitone) transformations in the set
U . An immediate but important property is that the product of two isotone
transformations or two antitone transformations is an isotone, and the prod-
uct of an isotone transformation with an antitone transformation, or vice
versa, is an antitone one.

Proposition 2. Jr ⊆ 〈Ja
r 〉 and Jr ⊆ 〈J i

r ∪ {βA,B}〉, for all A,B ∈ Λr.
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Proof. Let A,B ∈ Λr. Then for all C ∈ Λr, we have αA,B = βA,CβC,B.
Therefore, Jr ⊆ 〈Ja

r 〉.
From Li

AβA,B = La
B and La

BRi
B = Ja

r , we have Jr ⊆ 〈J i
r ∪ {βA,B}〉.

Proposition 3. 〈Jr〉 = I(n, r), for 0 ≤ r ≤ n − 1.

Proof. Clearly 〈J0〉 = I(n, 0). In [5], it was shown that J i
r−1 ⊆ J i

rJ
i
r and

Ja
r−1 ⊆ J i

r−1J
a
r J i

r−1 for 1 ≤ r ≤ n − 1. Since I(n, r) = J0 ∪ J1 ∪ · · · ∪ Jr, we
have 〈Jr〉 = I(n, r).

From Proposition 2 and Proposition 3 we have

Corollary 1. Let 1 ≤ r ≤ n − 1. Then 〈J a
r 〉 = 〈J i

r ∪ {βA,B}〉 = I(n, r), for

all A,B ∈ Λr.

Now we begin with the description of the maximal subsemigroups of the
ideals of the semigroup IMn.

Clearly, the ideal I(n, 1) of IMn coincides with the ideal I(n, 1) of IOn.
Thus the maximal subsemigroups of this ideal are characterized in Theorem
2 and there are exactly 2n − 2 such semigroups.

Now we will consider the maximal subsemigroups of the ideals I(n, r)
for r = 2, . . . , n − 1.

Lemma 4. Every maximal subsemigroup in I(n, r) contains the ideal

I(n, r − 1).

The proof is similar as that in Lemma 2.

Theorem 3 Let 2 ≤ r ≤ n−1. Then a subsemigroup S of I(n, r) is maximal

if and only if it belongs to one of the following three types:

(1) S(1) := I(n, r − 1) ∪ J i
r;

(2) S
(2)
(N1,N2)

:=
⋃

{Hα : α ∈ S(N1,N2)}, for (N1, N2) ∈ Dec(Λr);

(3) S
(3)
(N1,N2)

:= I(n, r − 1) ∪ {αA,B : A,B ∈ N1 or A,B ∈ N2} ∪

∪ {βA,B : A ∈ N1, B ∈ N2 or A ∈ N2, B ∈ N1} for (N1, N2) ∈ Dec(Λr).
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Proof.

(1) It is obvious that S(1) = I(n, r − 1)∪ J i
r is a semigroup, since I(n, r − 1)

is an ideal and (J i
r)

2 ⊆ Ii(n, r) ⊆ I(n, r−1)∪J i
r . From Proposition 2, we

have that Jr ⊆ 〈J i
r ∪{βA,B}〉 for all βA,B ∈ Ja

r . Since I(n, r)\S(1) = Ja
r ,

we obtain 〈S(1) ∪ {βA,B}〉 = I(n, r) for all βA,B ∈ Ja
r . Therefore, S(1) is

maximal in I(n, r).

(2) Let S = S
(2)
(N1,N2)

for some (N1, N2) ∈ Dec(Λr). Then

S = I(n, r − 1) ∪ {HA,B : A ∈ N1 or B ∈ N2}.

From Lemma 3 it follows that S is a semigroup. Really, let HA,B,HC,D ⊆
S, i.e. A,C ∈ N1 or B,D ∈ N2 or A ∈ N1, D ∈ N2. Then we have
HA,BHC,D = HA,D ⊆ S for B = C and HA,BHC,D ⊆ I(n, r − 1) ⊆ S for
B 6= C.

Now we will show that S is maximal. Let HC,D = {αC,D, βC,D} ⊆
I(n, r) \ S, i.e. C /∈ N1 and D /∈ N2. Then D ∈ N1, since N1 ∪ N2 = Λr

and so HD,P ∈ S for all P ∈ Λr and thus RD =
⋃

P∈Λr

HD,P ⊆ S.
Moreover, we have

HC,P = HC,DHD,P , for P ∈ Λr,

by Lemma 3. Thus we obtain the R-class RC =
⋃

P∈Λr

HC,P ⊆ 〈S ∪
HC,D〉. Moreover, C ∈ N2 and so LC =

⋃

P∈Λr

HP,C ⊆ S. Using Lemma
3, we have LCRC = Jr ⊆ 〈S ∪ HC,D〉. Since αC,D = βC,DβD,D and
βC,D = αC,DβD,D, where βD,D ∈ RD ⊆ S, we obtain that 〈S∪{αC,D}〉 =
I(n, r) and 〈S ∪ {βC,D}〉 = I(n, r). Therefore, S is a maximal subsemi-
group of the ideal I(n, r).

(3) Let S = S
(3)
(N1,N2)

for some (N1, N2) ∈ Dec(Λr). From Lemma 3, it follows
that S is a semigroup. We will show that S is maximal. Let

V := I(n, r) \ S = {βA,B : A,B ∈ N1 or A,B ∈ N2} ∪

∪ {αA,B : A ∈ N1, B ∈ N2 or A ∈ N2, B ∈ N1}

and let γ ∈ V . Then for the transformation γ we have four possibilities:



162 I. Dimitrova and J. Koppitz

Let γ ∈ {βA,B : A,B ∈ N1}. Then αC,A ∈ S (since A ∈ N1) and so
αC,AβA,B = βC,B ∈ 〈S ∪ {γ}〉 for all C ∈ N1. Also, we have βC,A ∈ S and
thus βC,AβA,B = αC,B ∈ 〈S ∪ {γ}〉 for all C ∈ N2. Since αC,B ∈ S for
all C ∈ N1 and βC,B ∈ S for all C ∈ N2, we obtain LB =

⋃

C∈Λr

HC,B ⊆
〈S ∪{γ}〉. Further, βB,B ∈ LB and βB,BβB,D = αB,D for all D ∈ N2 as well
as βB,BαB,D = βB,D for all D ∈ N1. Thus since αB,D ∈ S for all D ∈ N1

and βB,D ∈ S for all D ∈ N2, we obtain RB =
⋃

D∈Λr

HB,D ⊆ 〈S ∪ {γ}〉.
From Lemma 3, we have LBRB = Jr and therefore 〈S ∪ {γ}〉 = I(n, r).

– For γ ∈ {βA,B : A,B ∈ N2}, the proof is similar.

– Let γ ∈ {αA,B : A ∈ N1, B ∈ N2}. Then αC,A ∈ S (since A ∈ N1)
and so αC,AαA,B = αC,B ∈ 〈S ∪ {γ}〉 for all C ∈ N1. Also, we have
βC,A ∈ S and thus βC,AαA,B = βC,B ∈ 〈S ∪ {γ}〉 for all C ∈ N2. Since
αC,B ∈ S for all C ∈ N2 and βC,B ∈ S for all C ∈ N1, we obtain LB =
⋃

C∈Λr

HC,B ⊆ 〈S ∪ {γ}〉. Further, βB,B ∈ LB and βB,BαB,D = βB,D

for all D ∈ N2 as well as βB,BβB,D = αB,D for all D ∈ N1. Thus since
αB,D ∈ S for all D ∈ N2 and βB,D ∈ S for all D ∈ N1, we obtain
RB =

⋃

l∈Λr

HB,D ⊆ 〈S ∪{γ}〉. From Lemma 3, we have LBRB = Jr and
therefore 〈S ∪ {γ}〉 = I(n, r).

– For γ ∈ {αA,B : A ∈ N2, B ∈ N1}, the proof is similar.

Altogether, this shows that S is maximal.

For the converse part let S be a maximal subsemigroup of the ideal
I(n, r). From Lemma 4, we have that I(n, r− 1) ⊆ S. Then S = I(n, r − 1)
∪ T , where T ⊆ Jr. We consider two cases for the set T .

1. Let T = J i
r. Then S = I(n, r − 1) ∪ J i

r = S(1).

2. Let now T 6= J i
r. Assume that J i

r ⊆ T . Then T = J i
r ∪ T ′ where

∅ 6= T ′ ⊆ Ja
r . From Corollary 1, we have S = I(n, r), a contradiction.

Thus J i
r * T . We also have that Ja

r * T since 〈Ja
r 〉 = I(n, r).

Admit that HA,B ⊆ S or HA,B ∩ S = ∅, for all A,B ∈ Λr. Assume that
Si = S∩I i(n, r) is not a maximal subsemigroup of I i(n, r). Then there is an
isotone transformation αA,B ∈ I(n, r)\S such that 〈Si∪{αA,B}〉 is a proper
subset of I i(n, r). Therefore, there exists an αC,D ∈ I(n, r) \ S such that
αC,D /∈ 〈Si ∪ {αA,B}〉. But 〈S ∪ {αA,B}〉 = I(n, r) since S is maximal and
αC,D = βC,AαA,BβB,D. Moreover, βC,A = βC,AαA,BαB,A = αC,AαA,BβB,A

and βB,D = βB,AαA,BαB,D = αB,AαA,BβB,D. This shows that we need
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βC,A or αC,A and βB,D or αB,D to generate βC,A and βB,D, respectively,
with elements of S ∪ {αA,B}. This implies that βC,A, αC,A, βB,D, αB,D ∈ S,
since we assume that HA,B ⊆ S or HA,B ∩ S = ∅, for all A,B ∈ Λr. Hence
αC,D = αC,AαA,BαB,D ∈ 〈Si ∪ {αA,B}〉, a contradiction. Therefore, we
obtain that Si is maximal in I i(n, r). Since all maximal subsemigroups of the

ideal I i(n, r) are of type S(N1,N2) we have S = ∪{Hα : α ∈ Si} = S
(2)
(N1,N2),

for some (N1, N2) ∈ Dec(Λr).

Now, admit that |HA,B ∩ S| = 1, for some A,B ∈ Λr. Suppose that
αA,B /∈ S and βA,B ∈ S. Then from αA,B = βA,BβB,B and αA,B =
βA,AβA,B, it follows that βA,A, βB,B /∈ S. Moreover, from βA,BαB,A =
βA,A /∈ S, we get αB,A /∈ S. Assume that βB,A /∈ S. Then βB,A ∈ 〈S ∪
{αB,A}〉, because of the maximality of S, and since βB,A = βB,BαB,AαA,A =
αB,BαB,AβA,A, we obtain βA,A ∈ S or βB,B ∈ S, a contradiction, and thus
βB,A ∈ S.

Further, let P,Q ∈ Λr. Suppose that αP,Q /∈ S. Then from αP,Q =
αP,AβA,BβB,Q, it follows that if αP,A ∈ S then βB,Q /∈ S and vice versa.
Also from αP,Q = βP,AβA,BαB,Q, it follows that if βP,A ∈ S then αB,Q /∈ S
and vice versa. Moreover, αP,Q ∈ 〈S ∪ {αA,B}〉 since S is maximal. Hence
αP,Q = αP,AαA,BαB,Q = βP,AαA,BβB,Q. Therefore, we have αP,A, αB,Q ∈ S
and βP,A, βB,Q /∈ S or vice versa.

Assume that βP,Q /∈ S. Then βP,Q ∈ 〈S ∪ {αA,B}〉 and so βP,Q =
αP,AαA,BβB,Q = βP,AαA,BαB,Q. But we obtain already that if αP,A, αB,Q ∈
S then βP,A, βB,Q /∈ S or vice versa. Therefore, βP,Q /∈ 〈S ∪ {αA,B}〉. This
contradicts the maximality of S and thus βP,Q ∈ S.

Further, from αP,Q = βP,QβQ,Q and αP,Q = βP,PβP,Q, it follows that
βP,P , βQ,Q /∈ S. Moreover, from βP,QαQ,P = βP,P /∈ S, we get αQ,P /∈
S. Assume that βQ,P /∈ S. Then βQ,P ∈ 〈S ∪ {αQ,P}〉, because of the
maximality of S, and since βQ,P = βQ,QαQ,PαP,P = αQ,QαQ,PβP,P , we
obtain βP,P ∈ S or βQ,Q ∈ S, a contradiction, and thus βQ,P ∈ S.

Analogously, if βP,Q /∈ S we have that βQ,P /∈ S and αP,Q, αQ,P ∈ S.

Suppose that αP,Q ∈ S for some P,Q ∈ Λr. Then βP,Q /∈ S. Otherwise,
from αA,B = αA,P βP,QβQ,B /∈ S it follows

i) αA,P /∈ S and βQ,B ∈ S, i.e. βA,P ∈ S and βQ,B ∈ S;

ii) αA,P ∈ S and βQ,B /∈ S, i.e. αA,P ∈ S and αQ,B ∈ S;

iii) αA,P /∈ S and βQ,B /∈ S, i.e. βA,P ∈ S and αQ,B ∈ S.
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Then αA,B = βA,P αP,QβQ,B = αA,P αP,QαQ,B = βA,P βP,QαQ,B, which con-
tradicts that αA,B /∈ S.

The proof when αA,B ∈ S and βA,B /∈ S is similar.

Finally, we obtain that

(1) αP,Q ∈ S ⇐⇒ βP,Q /∈ S

for P,Q ∈ Λr.

Let ρr := {(P,Q) : αP,Q ∈ S}. Obviously, ρr is an equivalence relation
on Λr with Λr/ρr = {N1, N2, . . . , Nm} (m ≥ 2). Indeed, ρr is reflexive since
Er ⊆ S, symmetric because of the previous considerations and transitive
since αP,QαQ,R = αP,R ∈ S for αP,Q, αQ,R ∈ S. Moreover, m ≥ 2 becomes
clear by J i

r * T . Assume that the decomposition contains more than two
elements, i.e. m > 2. Then there are N1, N2, N3 in our decomposition such
that A ∈ N1, B ∈ N2 and C ∈ N3. Thus αA,B = βA,CβC,B ∈ S, a con-

tradiction. Therefore, Λr/ρr = {N1, N2} and S = S
(3)
(N1,N2)

, because of (1).

There are exactly 2(n

r
) − 2 maximal subsemigroups of the ideal I i(n, r) and

exactly 2(n

r
)−2 maximal subsemigroups of type (3). Taking I(n, r − 1) ∪ J i

r

into account, we get 2(n

r
)+1 − 3 maximal subsemigroups of the ideal I(n, r),

for r = 2, . . . , n − 1.

Finally, we characterize the maximal subsemigroups of the ideal I(n, n) =
IMn.

For A ∈ Λn−1 we put A := {n + 1 − i : i ∈ A} and for N ⊆ P(Xn) we
set N := {A : A ∈ N}. Then we have

(2)

βA,AαA,B = βnαA,B = βA,B,

βA,AβA,B = βnβA,B = αA,B,

αB,AβA,A = αB,Aβn = βB,A,

βB,AβA,A = βB,Aβn = αB,A.
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Theorem 4. A subsemigroup S of IMn is maximal if and only if it belongs

to one of the following three types:

(1) T := I(n, n − 1) ∪ {αn};

(2) T(N1 ,N2) := Jn ∪ {Hα : α ∈ S(N1,N2)}, for (N1, N2) ∈ Dec(Λn−1)

with N1 = N1 and N2 = N2;

(3) T(N,N) := Jn ∪ I(n, n − 2) ∪ {αA,B : A,B ∈ N or A,B ∈ N}

∪ {βA,B : A ∈ N,B ∈ N or A ∈ N,B ∈ N} for (N,N ) ∈ Dec(Λn−1).

Proof. It is clear that T is a maximal subsemigroup of IMn. Further, we
put

Inv := {βA,A : A ∈ Λn−1}.

Let (N1, N2) ∈ Dec(Λn−1) be a decomposition with the required proper-
ties. Since Inv ⊆ T(N1,N2) and by (2) it is easy to verify that T(N1,N2) is
a subsemigroup of IMn. Since T(N1,N2) \ Jn is a maximal subsemigroup of
I(n, n − 1) by Theorem 3 and Jn ⊆ T(N1,N2), it follows that T(N1,N2) is a
maximal subsemigroup of IMn. Analogously, one can show that T(N,N) is a
maximal subsemigroup of IMn.

For the converse part, let S be maximal in IMn. Admit that Jn * S.
Then it is easy to see that S = T . Now suppose that Jn ⊆ S. Assume that
Inv * S. Then there is an A ∈ Λn−1 with βA,A /∈ S. Since S is maximal, we
have IMn = 〈S∪{βA,A}〉 = S∪{βA,A} by (2). Thus S = IMn\{βA,A}. But
βA,A = αA,BβB,A for some B ∈ Λn−1 with B 6= A. Since αA,B, βB,A ∈ S, we
have S = IMn, a contradiction. Hence Inv ⊆ S. Let Sn−1 := S∩I(n, n−1).
Assume that Sn−1 is not a maximal subsemigroup of I(n, n − 1). Clearly,
Sn−1 6= I(n, n − 1). Let γ ∈ I(n, n − 1) \ Sn−1. Then for all δ ∈ I(n, n − 1),
we have δ ∈ 〈S ∪ {γ}〉 = 〈Sn−1 ∪ {γ}〉 ∪ Jn by (2) and since Inv ⊆ S. This
shows that δ ∈ 〈Sn−1 ∪ {γ}〉 and thus 〈Sn−1 ∪ {γ}〉 = I(n, n − 1). Conse-
quently, Sn−1 is a maximal subsemigroup of I(n, n−1). Using Theorem 3 we

choose all decompositions (N1, N2) ∈ Dec(Λn−1) such that Inv ⊆ S
(2)
(N1,N2)

and Inv ⊆ S
(3)
(N1,N2)

, respectively. In this way we obtain the semigroups

T(N1 ,N2) and T(N,N).
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It is straightforward to calculate that there are exactly 2
n+1

2 − 1 maximal
subsemigroups of IMn if n is odd and exactly 3

2(2
n

2 ) − 1 maximal subsemi-
groups of IMn if n is even.
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