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Abstract

In [2] the theory of hyperidentities and solid varieties was extended
to algebraic systems and solid model classes of algebraic systems. The
disadvantage of this approach is that it needs the concept of a formula
system. In this paper we present a different approach which is based on
the concept of a relational clone. The main result is a characterization
of solid model classes of algebraic systems. The results will be applied
to study the properties of the monoid of all hypersubstitutions of an
ordered algebra.
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1. Introduction

A first application of the theory of hyperidentities and solid model
classes can be found in [2]. The main problem of this approach is that the ap-
plication of a hypersubstitution to an algebraic system does not give an alge-
braic system, but a structure which is called a formula system. In this paper
we want to avoid this problem. Here we define the application of a hypersub-
stitution to the fundamental relations of a given algebraic system to be ele-
ments of the relational clone generated by the set of fundamental relations.
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This leads to a derived algebraic system. It is not necessary to consider the
class of formula systems.

We notice that our approach is an example of the concept of an institu-
tion (see [7]). We describe how hypersubstitution can be used to come from
first order logic to a restricted version of second order logic.

An algebraic system of type (τ , τ ′) is a triple A := (A; (fA
i )i∈I , (γ

A
j )j∈J)

consisting of a set A, an indexed set (fA
i )i∈I of operations defined on A

where fA
i : Ani → A is ni-ary and an indexed set of relations γA

j ⊆ Anj

where γA
j is nj-ary. The pair (τ , τ ′) with τ = (ni)i∈I , τ ′ = (nj)j∈J of

sequences of integers ni, nj ∈ N
+ := N\{0}, is called the type of the algebraic

system. For algebraic systems of type (τ , τ ′) subsystems, homomorphic
images, congruences and direct products can be defined and most theorems
known from Universal Algebra are valid also in this situation ([5]).

Terms and formulas are expressions in a first-order language which are
used to describe properties of algebraic systems and to classify algebraic
systems. Our definition of terms and formulas goes back to [5] (see also [2]).
Let Xn = {x1, . . . , xn} be a finite set of variables, let X = {x1, . . . , xn, . . . }
be countably infinite, let (fi)i∈I be an indexed set of operation symbols and
let (γj)j∈J be an indexed set of relation symbols. Then the set Wτ (Xn) of
all n-ary terms of type τ and the set F(τ ,τ ′)(Wτ (Xn)) of all n-ary formulas
of type (τ , τ ′) are defined in the usual way by the following conditions:

(i) Every xk ∈ Xn is an n-ary term of type τ .

(ii) If t1, . . . , tnk
are n-ary terms of type τ and if fk is an nk-ary operation

symbol of type τ , then fk(t1, . . . , tnk
) is an n-ary term of type τ .

Let Wτ (X) :=
⋃

n≥1
Wτ (Xn) be the set of all terms of type τ . To define for-

mulas of type (τ , τ ′) we need the logical connectives ∨ and ¬, the quantifier
∃ and the equation symbol ≈.

Definition 1.1. Let n ≥ 1. An n-ary formula of type (τ , τ ′) is defined in
the following inductive way:

(i) If t1, t2 are n-ary terms of type τ , then the equation t1 ≈ t2 is an n-ary
formula of type (τ , τ ′). All variables in t1 ≈ t2 are free.
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(ii) If t1, . . . , tnj
are n-ary terms of type τ and if γj is an nj-ary relation

symbol, then γj(t1, . . . , tnj
) is an n-ary formula of type (τ , τ ′). All

variables in such a formula are free.

(iii) If F is an n-ary formula of type (τ , τ ′), then ¬F is an n-ary formula
of type(τ , τ ′). All free variables in F are also free in ¬F . All bound
variables in F are also bound in ¬F .

(iv) If F1 and F2 are n-ary formulas of type (τ , τ ′) such that variables
occurring simultaneously in both formulas are free in each of them,
then F1 ∨ F2 is an n-ary formula of type (τ , τ ′). If a variable occurs
in F1 and F2 and is not free in both formulas, then F1 ∨ F2 is not a
formula. Variables that are free in at least one of the formulas F1 or
F2 are also free in F1 ∨ F2. Variables that are bound in either F1 or
F2 are also bound in F1 ∨ F2.

(v) If F is an n-ary formula of type (τ , τ ′) and xi ∈ Xn occurs freely in
F , then ∃xi(F ) is an n-ary formula of type (τ , τ ′). The variable xi is
bound in the formula ∃xi(F ) and all other free or bound variables in
F are of the same nature in ∃xi(F ).

Let F(τ ,τ ′)(Wτ (Xn)) be the set of all n-ary formulas of type (τ , τ ′) and let
F(τ ,τ ′)(Wτ (X)) :=

⋃
n≥1 F(τ ,τ ′)(Wτ (Xn)) be the set of all formulas of type

(τ , τ ′).

All free or bound variables occur in Xn or X, resp.. Our definition of
formulas follows [5], pp. 115–116.

2. Clones of term operations and relational

clones of algebraic systems

We denote by On(A) the set of all n-ary operations defined on A and let
Reln(A) be the set of all n-ary relations defined on A. Then O(A) :=⋃

n≥1 On(A), Rel(A) :=
⋃

n≥1 Reln(A) are the sets of all operations and

the set of all relations defined on A. Let Sn,A
m be the usual superposition

operation for operations, i.e. for m-ary operations tA
1 , . . . , tAn and for an

n-ary operation sA on A we define:
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Sn,A
m

(
sA, tA1 , . . . , tAn

)(
a1, . . . , am

)

:= sA
(
tA1

(
a1, . . . , am

)
, . . . , tAn

(
a1, . . . , am

))

for all a1, . . . , am ∈ A,m, n ∈ N
+. The projection operations en,A

k ∈ On(A)

are defined by en,A
k (a1, . . . , an) := ak, 1 6 k 6 n. Then one obtains a many-

sorted algebra ((On(A))n≥1, (S
n,A
m )m,n≥1, (e

n,A
k )1≤k≤n,n∈N+) which is called

clone of all operations defined on A. This algebra satisfies the superasso-
ciative identity ;

Sp,A
m

(
sA, Sn,A

m

(
tA1 , s1

A, . . . , sn
A
)
, . . . , Sn,A

m

(
tp

A, s1
A, . . . , sn

A
))

= Sn,A
m

(
Sp,A

n

(
sA, t1

A, . . . , tp
A
)
, s1

A, . . . , sn
A),

(
m,n, p = 1, 2, . . .

)
.

Sometimes one speaks of a clone (of operations) as a set of operations defined
on the same set A, closed under all superposition operations Sn,A

m ,m, n ≥ 1,
and containing all projections.

The clone generated by the fundamental operations {f A
i |i ∈ I} of the

algebraic system A = (A; (fA
i )i∈I , (γ

A
j )j∈J) is called the clone of term oper-

ations of A and is denoted by T (A). We note that the elements of T (A) can
be obtained as induced term operations of A. If (Wτ (X))A denotes the set of
all induced term operations, then T (A) = (Wτ (X))A. It is well-known that
for algebraic constructions like the formation of subsystems and homomor-
phic images the term operations of A play a similar role as the fundamental
operations.

Now we are looking for a clone of relations which is generated by the
fundamental relations of the algebraic system A. We will use the concept of
a relational algebra (see [6]). Usually one considers the following operations
on sets of relations:

Definition 2.1. Assume that a1, a2, . . . , an, an+1, . . . , an+m are elements of
the set A.

(1) The operation ξ : Reln(A) → Reln(A) defines the cyclic permutation
of the inputs by ρ 7→ ξρ with

ξρ := {(a1, a2, . . . , an)| (a2, . . . , an, a1) ∈ ρ}.
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(2) The operation τ : Reln(A) → Reln(A) exchanges the first and the
second input of each n-tuple belonging to the relation ρ by ρ 7→ τρ
with

τρ := {(a1, a2, . . . , an)| (a2, a1, a3, . . . , an) ∈ ρ}.

(3) The operation 4 : Reln(A) → Reln−1(A) identifies the first and the
second input of each n-tuple in ρ by

4ρ := {(a1, a2, . . . , an−1)| (a1, a1, a2, . . . , an−1) ∈ ρ}.

(4) ◦ : Relm(A) × Reln(A) → Reln+m−2(A) is the relational product of
the relations ρ1 and ρ2 and is defined by (ρ1, ρ2) 7→ ρ1 ◦ ρ2 with

ρ1 ◦ ρ2 := {(a1, a2, . . . , an−1, an, an+1, . . . , an+m−2)| ∃b ∈ A,

(a1, a2, . . . , an−1, b) ∈ ρ2 and (b, an, an+1, . . . , an+m−2) ∈ ρ1}.

(5) The operation ∇ : Reln(A) → Reln+1(A) allows the addition of a
fictitious coordinate and is defined by ρ 7→ ∇ρ with

∇ρ := {(a1, a2, . . . , an+1)| (a2, a3, . . . , an+1) ∈ ρ}.

(6) The projection operations prα1,...,αr : Reln(A) → Relr(A) are defined
by ρ 7→ prα1,...,αr(ρ) with

prα1,...,αr(ρ) := {(aα1
, . . . , aαr) ∈ Ar|∀j ∈ {1, . . . , n}\ {α1, . . . , αr}

∃aj ∈ A, ((a1, . . . an) ∈ ρ)}.

(7) × : Reln(A) × Relm(A) → Reln+m(A) is the cartesian product of two
relations ρ1, ρ2 and is defined by (ρ1, ρ2) 7→ ρ1 × ρ2 with

ρ1 × ρ2 := {(a1, a2, . . . , an, an+1, . . . , an+m)| (a1, . . . , an) ∈ ρ1and

(an+1, . . . , an+m) ∈ ρ2}.

(8) ∩ : Reln(A) × Reln(A) → Reln(A) is the intersection of two relations
and is defined by (ρ1, ρ2) 7→ ρ1 ∩ ρ2 with

ρ1 ∩ ρ2 := {(a1, . . . , an)| (a1, . . . , an) ∈ ρ1 and (a1, . . . , an) ∈ ρ2}.

(9) Let ε be an equivalence relation on {1, . . . , n}. Then δε
n is defined by

δε
n := {(a1, . . . , an) ∈ An| (i, j) ∈ ε ⇒ ai = aj}.

To select δε
n from Reln(A) can be regarded as a nullary operation.

Let δ
{1; 2,3}
3 be the ternary relation of the form δε

n where ε is given by the

partition {{1}, {2, 3}}. The algebra Rel(A) := (Rel(A); ξ, τ ,4, ◦, δ
{1; 2,3}
3 )
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of type (1, 1, 1, 2, 0) is called the full relational algebra on A. Any subalgebra
of Rel(A) is called a relational algebra on A. It turns out (see [6]) that
relational algebras are also closed under the operations ∇, prα1,...,αr ,× and ∩
and that they contain all relations δε

n. Let Q be the universe of a relational
algebra and let R be a non-empty subset of Q. Then we can form the
relational subalgebra of the relational algebra Q which is generated by R,
i.e. the relational algebra with the universe 〈R〉 :=

⋂
{B|B is a relational

subalgebra of Q and R ⊆ B}.
Let A = (A; (fA

i )i∈I , (γ
A
j )j∈J) be an algebraic system of type (τ , τ ′).

Then the relational subalgebra of Rel(A) which is generated by the set
{γA

j |j ∈ J} is said to be the relational clone of the algebraic system A and

is denoted by R(A). More precisely, the set 〈{γA
j |j ∈ J}〉 can be inductively

defined by the following steps:

(1) If ρA ∈ {γA
j |j ∈ J}, then ρA ∈ 〈{γA

j |j ∈ J}〉.

(2) Assume that ρA, ρA
1 , ρA

2 ∈ 〈{γA
j |j ∈ J}〉, then ξρA, τρA,4ρA and

(ρA
1 ◦ ρA

2 ) ∈ 〈{γA
j |j ∈ J}〉.

Since δ
{1; 2,3}
3 belongs to the fundamental operations of every relational al-

gebra, this relation is contained in 〈{γA
j |j ∈ J}〉.

3. Hypersubstitutions for algebraic systems

Hypersubstitutions are originally defined as mappings which send operation
symbols of a given type τ to terms and preserve arities. Every hypersubsti-
tution σ can inductively be extended to a mapping σ̂ : Wτ (X) → Wτ (X).
In [2] hypersubstitutions were defined for algebraic systems of type (τ , τ ′) as
mappings σ : {fi|i ∈ I}2 ∪ {γj|j ∈ J} → F(τ ,τ ′)(Wτ (X)). The disadvantage
of this approach is that it needs the set F(τ ,τ ′)(Wτ (X)) of all formulas of
type (τ , τ ′). Our new approach maps fundamental operations to elements
of T (A) and fundamental relations to elements of R(A).

Definition 3.1. Let σF : {fA
i |i ∈ I} → T (A) be a mapping assigning to

every ni-ary fundamental operation fA
i of type τ an ni-ary term operation

σF (fA
i ). Any such mapping σF will be called a concrete hypersubstitution.

Every concrete hypersubstitution induces a mapping σ̂F : T (A) → T (A) on
the set of all term operations of type τ , as follows:
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(1) If tA = en,A
k , then σ̂F [en,A

k ] := en,A
k .

(2) If tA = fA
i (tA1 , . . . , tAni

) and tA1 , . . . , tAni
∈ On(A), then

σ̂F [fA
i (tA1 , . . . , tAni

)] := Sni,A
n (σF (fA

i ), σ̂F [tA1 ], . . . , σ̂F [tAni
]).

Definition 3.2. Let σR : {γA
j |j ∈ J} → R(A) be a mapping assigning to

every nj-ary fundamental relation γA
j of type τ ′ an nj-ary relation σR(γA

j )
of the relational clone. Any such mapping σR will be called a relational
hypersubstitution.

Every relational hypersubstitution of type τ ′ induces a mapping σ̂R : R(A) →
R(A) on the relational clone, as follows:

(1) If ρA ∈ {γA
j |j ∈ J}, then σ̂R[ρA] := σR(ρA) and

σ̂R[δ
{1; 2,3}
3 ] := δ

{1; 2,3}
3 .

(2) If ρA ∈ 〈{γA
j |j ∈ J}〉\{γA

j |j ∈ J} and if we inductively assume that

σ̂R[ρA], σ̂R[ρA
1 ], σ̂R[ρA

2 ] are already defined, then

σ̂R[ξρA] := ξ(σ̂R[ρA]), σ̂R[τρA] := τ(σ̂R[ρA]),

σ̂R[4ρA] := 4(σ̂R[ρA]), σ̂R[ρA
1 ◦ ρA

2 ] := σ̂R[ρA
1 ] ◦ σ̂R[ρA

2 ].

Definition 3.3. Any mapping σ : {fA
i |i ∈ I} ∪ {γA

j |j ∈ J} → T (A)∪R(A)

with σ(fA
i ) := σF (fA

i ) for all i ∈ I and σ(γA
j ) := σR(γA

j ) for all j ∈ J is
called hypersubstitution for the algebraic system A. Let Relhyp

A
(τ , τ ′) be

the set of all hypersubstitutions for the algebraic system A.

Clearly any such hypersubstitution can be written as a pair σ := (σF , σR).
Using the extensions σ̂F and σ̂R we can define an extension σ̂ : T (A) ∪
R(A) → T (A) ∪ R(A) by σ̂ := (σ̂F , σ̂R). If σ1, σ2 ∈ Relhyp

A
(τ , τ ′), then

a product can be defined by σ1 ◦hr σ2 := σ̂1 ◦ σ2. For σ̂1 ◦ σ2 we have
σ̂1 ◦ σ2 = ((σ̂1)F , (σ̂1)R) ◦ ((σ2)F , (σ2)R) = ((σ̂1)F ◦ (σ2)F , (σ̂1)R ◦ (σ2)R).
Next we prove that the extension of this product is equal to the composition
of the extensions.

Lemma 3.4. For any σ1, σ2 ∈ Relhyp
A
(τ , τ ′) we have (σ1 ◦hr σ2)̂ = σ̂1 ◦ σ̂2.
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Proof. Because of the last remark we have to show that (σ1 ◦hr σ2)̂ =
((σ1 ◦hr σ2)̂F ,(σ1 ◦hr σ2)̂R)=((σ̂1)F , (σ̂1)R) ◦ ((σ̂2)F , (σ̂2)R)=((σ̂1)F ◦ (σ̂2)F ,
(σ̂1)R ◦ (σ̂2)R), i.e. that (σ1 ◦hr σ2)̂F = (σ̂1)F ◦ (σ̂2)F and (σ1 ◦hr σ2)̂R =
(σ̂1)R ◦ (σ̂2)R. For the functional part we will give a proof by induction on
the complexity of the definition of term operations.

(1) If tA = en,A
k , then (σ1 ◦hr σ2)̂F [en,A

k ]

= en,A
k

= (σ̂2)F [en,A
k ]

= (σ̂1)F [(σ̂2)F [en,A
k ]]

= ((σ̂1)F ◦ (σ̂2)F )[en,A
k ].

(2) If tA = fA
i (tA1 , . . . , tAni

) for i ∈ I and if we assume that

(σ1 ◦hr σ2)̂F [tAj ] = ((σ̂1)F ◦ (σ̂2)F )[tAj ] for every j ∈ {1, . . . , ni}.

Then

(σ1 ◦hr σ2)̂F [fA
i (tA1 , . . . , tAni

)]

= Sni,A
n ((σ1 ◦hr σ2)F (fA

i ), (σ1 ◦hr σ2)̂F [tA1 ], . . . , (σ1 ◦hr σ2)̂F [tAni
])

= Sni,A
n (((σ̂1)F ◦ (σ2)F )(fA

i ), ((σ̂1)F ◦ (σ̂2)F )[tA1 ], . . . , ((σ̂1)F ◦ (σ̂2)F )[tAni
])

= Sni,A
n ((σ̂1)F [(σ2)F (fA

i )], (σ̂1)F [(σ̂2)F [tA1 ]], . . . , (σ̂1)F [(σ̂2)F [tAni
]])

= (σ̂1)F [Sni,A
n ((σ2)F (fA

i ), (σ̂2)F [tA1 ], . . . , (σ̂2)F [tAni
])

(using that (σ̂1)F is compatible with the operation Sni,A
n , see e.g [1])

= (σ̂1)F [(σ̂2)F [fA
i (tA1 , . . . , tAni

)]]

= ((σ̂1)F ◦ (σ̂2)F )[fA
i (tA1 , . . . , tAni

)].

For the relational part we will give a proof by induction on the complexity
of the definition of a relational clone.
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(1) If ρA ∈ {γA
j | j ∈ J}, then

(σ1 ◦hr σ2)̂R[ρA] = ((σ1)R ◦ (σ2)R)[ρA]

= ((σ̂1)R ◦ (σ2)R)(ρA)

= (σ̂1)R[(σ2)R(ρA)]

= (σ̂1)R[(σ̂2)R[ρA]]

= ((σ̂1)R ◦ (σ̂2)R)(ρA).

(2) Assume that ρA ∈ 〈{γA
j | j ∈ J}〉\{γA

j | j ∈ J} and let us inductively

assume that (σ1 ◦hr σ2)̂R[ρA] = ((σ̂1)R ◦ (σ̂2)R) [ρA], (σ1 ◦hr σ2)̂R[ρA
1 ] =

((σ̂1)R ◦ (σ̂2)R)[ρA
1 ], (σ1 ◦hr σ2)̂R[ρA

2 ] = ((σ̂1)R ◦ (σ̂2)R)[ρA
2 ]. Then

(σ1 ◦hr σ2)̂R[ξρA] = ξ((σ1 ◦hr σ2)̂R[ρA])

= ξ((σ̂1)R ◦ (σ̂2)R[ρA])

= ξ((σ̂1)R[(σ̂2)R[ρA]])

= (σ̂1)R[ξ((σ̂2)R[ρA])]

= (σ̂1)R[(σ̂2)R[ξρA]]

= ((σ̂1)R ◦ (σ̂2)R)[ξρA].

The inductive steps for τ and 4 may be handled similarly.

(σ1 ◦hr σ2)̂R[ρA
1 ◦ ρA

2 ] = (σ1 ◦hr σ2)̂R[ρA
1 ] ◦ (σ1 ◦hr σ2)̂R[ρA

2 ]

= (((σ̂1)R ◦ (σ̂2)R)(ρA
1 )) ◦ (((σ̂1)R ◦ (σ̂2)R)(ρA

2 ))

= (σ̂1)R[(σ̂2)R[ρA
1 ]] ◦ (σ̂1)R[(σ̂2)R[ρA

1 ]]

= (σ̂1)R[(σ̂2)R[ρA
1 ] ◦ (σ̂2)R[ρA

2 ]]

= (σ̂1)R[(σ̂2)R[ρA
1 ◦ ρA

2 ]]

= ((σ̂1)R ◦ (σ̂2)R)[ρA
1 ◦ ρA

2 ].

Finally we have

(σ1 ◦hr σ2)̂R[δ
{1; 2,3}
3 ]=δ

{1; 2,3}
3 =(σ̂2)R[δ

{1; 2,3}
3 ]=((σ̂1)R ◦ (σ̂2)R)[δ

{1; 2,3}
3 ].
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An identity element with respect to the multiplication ◦hr can be defined by
σid := ((σid)F , (σid)R) with (σid)F (fA

i ) := fA
i for all i ∈ I and (σid)R(γA

j ) :=

γA
j for all j ∈ J .

By induction on the complexity of the definition of a term operation
tA ∈ T (A) and of the definition of an element ρA ∈ R(A) one can prove:

Lemma 3.5. For any tA ∈ T (A) and for any ρA ∈ R(A) the following
equations are satisfied: (σ̂id)F [tA] = tAand (σ̂id)R[ρA] = ρA.

Then as a consequence of Lemma 3.4 and Lemma 3.5 we obtain.

Theorem 3.6. For any algebraic system A of type (τ , τ ′), (Relhyp
A
(τ , τ ′),

◦hr, σid) is a monoid.

Proof. Associativity of the operation ◦hr follows from Lemma 3.4 by
(σ1 ◦hr σ2) ◦hr σ3=(σ1 ◦hr σ2)̂ ◦ σ3=(σ̂1 ◦ σ̂2) ◦ σ3=σ̂1 ◦ (σ̂2 ◦ σ3)=σ̂1 ◦
(σ2 ◦hr σ3)= σ1 ◦hr (σ2 ◦hr σ3). σid is an identity element since for any σ ∈
Relhyp

A
(τ , τ ′) we get σid◦hrσ =σ̂id◦σ=((σ̂id)F , (σ̂id)R)◦(σF , σR)=((σ̂id)F ◦

σF , (σ̂id)R ◦ σR). From Lemma 3.5 we obtain for any fA
i , i ∈ I, that

((σ̂id)F ◦ σF )(fA
i )=(σ̂id)F [σF (fA

i )]=σF (fA
i ), i.e. (σ̂id)F ◦ σF =σF and for

any γA
j , j ∈ J we have ((σ̂id)R ◦ σR)(γA

j )= (σ̂id)R[σR(γA
j )]=σR(γA

j ) i.e.
(σ̂id)R ◦ σR=σR. This gives σid ◦hr σ = σ. The equation σ ◦hr σid = σ
is clear.

4. Extension of hypersubstitutions to mappings

defined on the realizations of formulas

Classes of algebraic systems can be described as model classes of sets of
formulas. For a given set of formulas the model class of this set consists
precisely of those algebraic systems which satisfy all formulas of the given
set. Since we want to use a stronger concept of satisfaction we have to apply
hypersubstitutions to formulas. The first step is to define a mapping which
maps a relation defined on a set A and an nj-tuple of operations on A to a

relation defined on On(A). The operation R
nj ,A
n with

R
nj ,A
n : Relnj (A) × (On(A))nj → Relnj (On(A))
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by (γA
j , fA

1 , . . . , fA
nj

) 7→ R
nj ,A
n (γA

j , fA
1 , . . . , fA

nj
) where R

nj ,A
n (γA

j , fA
1 , . . . , fA

nj
)

is true iff for all a1, . . . , an ∈ A we have (fA
1 (a1, . . . , an),. . . , fA

nj
(a1, . . . , an))∈

γA
j maps each nj-ary relation γA

j and each nj-tuple of n-ary operations on A

to an nj-ary relation RA
γj

on On(A) where (fA
1 , . . . , fA

nj
) ∈ RA

γj
iff for every

n-tuple a = (a1, . . . , an) ∈ A we have (fA
1 (a), . . . , fA

nj
(a)) ∈ γA

j . For the

properties of the operations R
nj ,A
n , n, nj ∈ N

+ see [2].

The operations R
nj ,A
n can especially be applied to the fundamental rela-

tions and term operations of the algebraic system A = (A; (f A
i )i∈I , (γ

A
j )j∈J)

of type (τ , τ ′). Then the extension to arbitrary relations of the relation
algebra generated by {γA

j |j ∈ J} can be defined as follows:

(1) R
nj ,A
n (ξρA, tA1 , . . . , tAnj

) := ξR
nj ,A
n (ρA, tA1 , . . . , tAnj

),

(2) R
nj ,A
n (τρA, tA1 , . . . , tAnj

) := τR
nj ,A
n (ρA, tA1 , . . . , tAnj

),

(3) R
nj ,A
n (4ρA, tA1 , . . . , tAnj

) := 4R
nj ,A
n (ρA, tA1 , . . . , tAnj

),

(4) R
nj ,A
n (ρA

1 ◦ρ
A
2 , tA1 ,. . . , tAnj

) := R
nj ,A
n (ρA

1 , tA1 ,. . . , tAnj
)◦R

nj ,A
n (ρA

2 , tA1 ,. . . , tAnj
),

(5) R3,A
n

(
δ
{1; 2,3},A
3 , tA1 , tA2 , tA3

)
:= δ

{1; 2,3}, On(A)
3 .

Besides formulas of type (τ , τ ′) we now define formulas of type (τ , τ ′′) intro-
ducing to each relation from 〈{γA

j |j ∈ J}〉 a new relation symbol Rl. This
gives an indexed set (Rl)l∈L of relation symbols where Rl is nl-ary. Let τ ′′

be the new type of all these relation symbols.

Let F(τ ,τ ′′)(Wτ (Xn)) be the set of all n-ary formulas of type (τ , τ ′′) and
let F(τ ,τ ′′)(Wτ (X)) :=

⋃
n≥1 F(τ ,τ ′′)(Wτ (Xn)) be the set of all formulas of

type (τ , τ ′′). Now we will define the realization of an n-ary formula of type
(τ , τ ′′) as a relation defined on On(A).

Definition 4.1. Let A = (A; (fA
i )i∈I , (γ

A
j )i∈J) be an algebraic system of

type (τ , τ ′). The realization of a formula F of type (τ , τ ′′) on A is defined
as follows :

(i) If F has the form s ≈ t, then (s ≈ t)A := sA = tA where sA, tA are the
term operations induced by the terms s, t on the algebra (A; (f A

i )i∈I).
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(ii) If F has the form Rl(t1, . . . , tnl
), then

Rl(t1, . . . , tnl
)A := Rnl,A

n (RA

l , tA1 , . . . , tAnl
).

Here RA
l is an element of the relational algebra generated by

{γA
j |j ∈ J}

(iii) If the formula has the form ¬F , then (¬F )A := ¬F A

(where ¬F A is true iff F A is not true).

(iv) If the formula has the form F1 ∨ F2, then (F1 ∨ F2)
A := F A

1 ∨ F A
2

(where F A
1 ∨ F A

2 is true iff F A
1 is true or F A

2 is true).

(v) If the formula has the form ∃xi(F ), then (∃xi(F ))A := ∃xi(F )A (where
∃xi(F )A is true iff there exists an ai such that after substituting ai for
xi the realization F A becomes true).

Let (F(τ ,τ ′′)(Wτ (Xn)))A be the set of all realizations of n-ary formulas of

type (τ , τ ′′) and let (Wτ (Xm))A be the set of all m-ary term operations
induced by terms of type τ on the algebra (A; (f A

i )i∈I) of type τ . Then for
all m,n ∈ N+ an operation

Ṙn,A
m : (F(τ ,τ ′′)(Wτ (Xn)))A × ((Wτ (Xm))A → Relnj (Om(A))

is inductively defined in the following way:

Definition 4.2. Let A be an algebraic system of type (τ , τ ′). For any
FA ∈ (F(τ ,τ ′′)(Wτ (Xn))A and any n-tuple of m-ary term operations

Ṙn,A
m (F A, tA1 , . . . , tAn ) is defined inductively by the following steps :

(i) If F A has the form sA = tA, then Ṙn,A
m (sA = tA, tA1 , . . . , tAn )

:= Sn,A
m (sA, tA1 , . . . , tAn ) = Sn,A

m (tA, tA1 , . . . , tAn ).

(ii) If F has the form RA
l (s1, . . . , snl

), then Ṙn,A
m (RA

l (s1, . . . snl
)A, tA1 , . . . , tAn )

= RA

l (Sn,A
m (sA

1 , tA1 , . . . , tAn ), . . . , Sn,A
m (sA

nl
, tA1 , . . . , tAn )).

(iii) If F A has the form (¬F )A, then Ṙn,A
m ((¬F )A, tA1 , . . . , tAn )

:= ¬Ṙn,A
m (F A, tA1 , . . . , tAn ).



Hypersatisfaction of formulas in agebraic systems 135

(iv) If F A has the form (F1 ∨ F2)
A, then Ṙn,A

m ((F1 ∨ F2)
A, tA1 , . . . , tAn )

:= Ṙn,A
m (F A

1 , tA1 , . . . , tAn ) ∨ Ṙn,A
m (F A

2 , tA1 , . . . , tAn ).

(v) If F A has the form (∃xi(F ))A, then Ṙn,A
m ((∃xi(F ))A, tA1 , . . . , tAn )

:= ∃xi(Ṙ
n,A
m (F A, tA1 , . . . , tAn )).

The operation Ṙn,A
m ,m, n ∈ N

+ satisfies an equation similar to the supperas-
sociative identity mentioned in Section 2.

In Section 3 we defined extensions σ̂ of hypersubstitutions for the al-
gebraic system A as mappings σ̂ : T (A) ∪ R(A) → T (A) ∪ R(A). Now we
define another kind of extension of hypersubstitution σA which is also based
on a pair (σF , σR), σF : {fA

i |i ∈ I} → T (A), σR : {γA
j |j ∈ J} → R(A). We

need the fact that for any relation symbol Rl corresponding to a relation
in R(A) there exists a formula F such that the realization of F gives RA

l

(see [6]).

Definition 4.3. Let σ ∈ Relhyp
A
(τ , τ ′). Then we define a mapping

σ̇A : (F(τ ,τ ′′)(Wτ (X)))A → (F(τ ,τ ′′)(Wτ (X)))A

inductively as follows :

(i) σ̇A[sA = tA] := σ̂F [sA] = σ̂F [tA].

(ii) σ̇A[RA

l (tA1 , ..., tAnl
)] := Rnl,A

n (σ̂R[RA

l ], σ̂F [tA1 ], ..., σ̂F [tAnl
]).

Here σ̂R[RA

l ] is an element of the relational clone generated by

{γA
j |j ∈ J}.

(iii) σ̇A[¬F A] := ¬(σ̇A[F A]).

(iv) σ̇A[F A
1 ∨ F A

2 ] := σ̇A[F A
1 ] ∨ σ̇A[F A

2 ].

(v) σ̇A[∃xi(F
A)] := ∃xi(σ̇

A[F A]).

Theorem 4.4. Let σ ∈ Relhyp
A
(τ , τ ′), let m,n ∈ N

+. Then σ̇A is a
mapping from ((F(τ ,τ ′′)(Wτ (Xn))A)n≥1 to ((F(τ ,τ ′′)(Wτ (Xn))A)n≥1

with σ̇A[Ṙn,A
m (F A, sA

1 , . . . , sA
n )] = Ṙn,A

m (σ̇A[F A], σ̂F [sA
1 ], . . . , σ̂F [sA

n ]) for all
F ∈ F(τ ,τ ′′)(Wτ (Xn)) and s1, . . . , sn ∈ Wτ (Xn).
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Proof. We will give a proof by induction on the definition of the realization
of formula F A.

(i) If F A has the form tA1 = tA2 , then

σ̇A[Ṙn,A
m (tA1 = tA2 , sA

1 , . . . , sA
n )]

= σ̇A[Sn,A
m (tA1 , sA

1 , . . . , sA
n ) = Sn,A

m (tA2 , sA
1 , . . . , sA

n )]

= σ̂F [(Sn,A
m (tA1 , sA

1 , . . . , sA
n )] = σ̂F [Sn,A

m (tA2 , sA
1 , . . . , sA

n )]

= Sn,A
m (σ̂F [tA1 ], σ̂F [sA

1 ], . . . , σ̂F [sA
n ]) = Sn,A

m (σ̂F [tA2 ], σ̂F [sA
1 ], . . . , σ̂F [sA

n ])

= Ṙn,A
m (σ̂F [tA1 ] = σ̂F [tA2 ], σ̂F [sA

1 ], . . . , σ̂F [sA
n ])

= Ṙn,A
m (σ̇A[tA1 = tA2 ], σ̂F [sA

1 ], . . . , σ̂F [sA
n ]).

(ii) If F A has the form RA

l (tA1 , . . . , tAnl
), then

σ̇A[Ṙn,A
m (RA

l (tA1 , . . . , tAnl
), sA

1 . . . , sA
n )]

= σ̇A[RA
l (Sn,A

m (tA1 , sA
1 . . . , sA

n ), . . . , Sn,A
m (tAnl

, sA
1 , . . . sA

n ))]

= Rnl,A
m (σ̂R[RA

l ], σ̂F [Sn,A
m (tA1 , sA

1 , . . . , sA
n )], . . . , σ̂F [Sn,A

m (tAnl
, sA

1 , . . . , sA
n )])

= Rnl,A
m (σ̂R[RA

l ], Sn,A
m (σ̂F [tA1 ], σ̂F [sA

1 ], . . . , σ̂F [sA
n ]), . . . ,

Sn,A
m (σ̂F [tAnl

], σ̂F [sA
1 ], . . . , σ̂F [sA

n ]))

= Ṙn,A
m (Rnl,A

m (σ̂R([RA

l ], σ̂F [tA1 ], . . . , σ̂F [tAnl
]), σ̂F [sA

1 ], . . . , σ̂F [sA
n ])

by Lemma 4.3

= Ṙn,A
m (σ̇A[RA

l (tA1 , . . . , tAnl
)], σ̂F [sA

1 ] . . . , σ̂F [sA
n ]).

(iii) If F A has the form ¬F A and assume that

σ̇A[Ṙn,A
m (F A, sA

1 , . . . , sA
n )] = Ṙn,A

m (σ̇A[F A], σ̂F [sA
1 ], . . . , σ̂F [sA

n ]), then

σ̇A[Ṙn,A
m (¬F A, sA

1 , . . . , sA
n )]

= ¬(σ̇A[Ṙn,A
m (F A, sA

1 , . . . , sA
n )])

= ¬(Ṙn,A
m (σ̇A[F A], σ̂F [sA

1 ], . . . , σ̂F [sA
n ]))

= Ṙn,A
m (σ̇A[¬F A], σ̂F [sA

1 ], . . . , σ̂F [sA
n ]).

The inductive steps for F A = F A
1 ∨F A

2 and F A = ∃xi(F
A) may be handled

similarly.
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The next lemma shows that the ·-extension of a hypersubstitution is com-
patible with the product.

Lemma 4.5. Let σ1, σ2 ∈ Relhyp
A
(τ , τ ′). Then we have (σ1 ◦hr σ2)̇

A =
σ̇1

A ◦ σ̇2
A.

Proof. We will give a proof by induction on the definition of the realization
of the formula F A.

(i) If F A has the form sA = tA, then

(σ1 ◦hr σ2)̇
A [sA = tA]

= ((σ1 ◦hr σ2)F̂ [sA] = (σ1 ◦hr σ2)F̂ [tA])

= (((σ̂1)F ◦ (σ̂2)F )[sA] = (((σ̂1)F ◦ (σ̂2)F ))[tA])

= ((σ̂1)F [(σ̂2)F [sA]] = (σ̂1)F [(σ̂2)F )[tA]])

= (σ̇1
A[(σ̂2)F [sA] = (σ̂2)F [tA]])

= (σ̇1
A[σ̇2

A[sA = tA]]

= (σ̇1
A ◦ σ̇2

A)[sA = tA].

(ii) If F A has the form RA

l (tA1 , . . . , tAnl
), then

(σ1 ◦hr σ2)̇
A [RA

l (tA1 , . . . , tAnl
)]

= Rnl,A
m ((σ1 ◦hr σ2)̂R(RA

l ), (σ1 ◦hr σ2)̂F [tA1 ], . . . , (σ1 ◦hr σ2)̂F [tAnl
])

= Rnl,A
m ((σ̂1)R[(σ̂2)R(RA

l )], (σ̂1)F [(σ̂2)F [tA1 ]], . . . , (σ̂1)F [(σ̂2)F [tAnl
]])

= σ̇1
A[Rnl,A

m ((σ̂2)R(RA
l ), (σ̂2)F [tA1 ], . . . , (σ̂2)F [tAnl

])]

= σ̇1
A[σ̇2

A[RA

l (tA1 , . . . , tAnl
)]]

= (σ̇1
A ◦ σ̇2

A)[RA
l (tA1 , . . . , tAnl

)].

(iii) If F A has the form ¬F A and if we assume that

(σ1 ◦hr σ2)̇
A[F A] = (σ̇1

A ◦ σ̇2
A)[F A], then
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(σ1 ◦hr σ2)̇
A[¬F A]

= ¬((σ1 ◦hr σ2)̇
A[F A])

= ¬((σ̇1
A ◦ σ̇2

A)[F A])

= ¬(σ̇1
A[σ̇2

A[F A]])

= σ̇1
A[¬(σ̇2

A[F A])]

= σ̇1
A[σ̇2

A[¬F A]]

= (σ̇1
A ◦ σ̇2

A)[¬F A].

Cases (iv) and (v) may be handled similarly.

We can also show that the extension of the identity hypersubstitution maps
all realizations of formulas to themselves.

Lemma 4.6. For σid ∈ Relhyp
A
(τ , τ ′) we have σ̇A

id[F
A] = F A for all F A ∈

(F(τ ,τ ′′)(Wτ (X)))A.

Proof. The proof is by a straightforward induction on the realization of a
formula F A.

(i) If F A has the form sA = tA, then σ̇A
id[s

A = tA] = ((σ̂id)F [sA] =

(σ̂id)F [tA]) = (sA = tA).

(ii) If F A has the form RA

l (tA1 , . . . , tAnl
), then

σ̇A[RA

l (tA1 , . . . , tAnl
)]= Rnl,A

m ((σ̂id)R(RA

l ), (σ̂id)F ([tA1 ]), . . . , (σ̂id)F [tAnl
])

= Rnl,A
m (RA

l , tA1 , . . . , tAnl
) = RA

l (tA1 , . . . , tAnl
).

(iii) If F A has the form ¬F A and assume that σ̇A
id[F

A] = F A, then

σ̇A
id[¬F A] = ¬(σ̇A

id[F
A]) = ¬F A.

(iv) If F A has the form F A
1 ∨F A

2 and assume that σ̇A
id[F

A
j ] = F A

j ; j ∈ {1, 2},

then σ̇A
id[F

A
1 ∨ F A

2 ] = σ̇A
id[F

A
1 ] ∨ σ̇A

id[F
A
2 ] = F A

1 ∨ F A
2 .

(v) If F A has the form ∃xi(F
A) and assume that σ̇A

id[F
A] = F A, then

σ̇A
id[∃xi(F

A)] = ∃xi(σ̇
A
id[F

A]) = ∃xi(F
A).
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5. Application of hypersubstitutions to algebraic systems

The main result of this section is Theorem 5.5, which is the basis of the
so-called “conjugate property” and connects the application of hypersub-
stitution to an algebraic system with that to the realization of a formula.
It should be mentioned that this parallels the satisfaction condition in the
theory of institutions (see [7] and [8]).

If FA ⊆ (F(τ ,τ ′′)(Wτ (X)))A is a set of realizations of formulas of type
(τ , τ ′′) on the algebraic system A, then we define

χF
h : P((F(τ ,τ ′′)(Wτ (X)))A) → P((F(τ ,τ ′′)(Wτ (X)))A) by

χF
h (FA) := {σ̇A[F A] | σ ∈ Relhyp

A
(τ , τ ′), F A ∈ FA}.

Then
χF

h (FA) :=
⋃

σ∈Relhyp
A

(τ ,τ ′)

⋃

F A∈FA

σ̇A[F A].

Lemma 5.1. χF
h has the properties of a completely additive closure operator.

Proof. By Lemma 4.6 σ̇A
id[F

A] = F A and this shows that χF
h is extensive.

By definition

χF
h (FA) :=

⋃

σ∈Relhyp
A

(τ ,τ ′)

⋃

F A∈FA

σ̇A[F A]

and therefore χF
h is completely additive and thus monotone, i.e., if FA

1 ⊆
FA

2 ⊆ F(τ ,τ ′′)(Wτ (X))A, then χF
h (FA

1 ) ⊆ χF
h (FA

2 ). By extensivity χF
h (FA) ⊆

χF
h (χF

h (FA)). If conversely F A
1 ∈ χF

h (χF
h (FA)) then there are σ1, σ2

∈ Relhyp
A
(τ , τ ′) and F A

2 ∈ FA such that F A
1 = σ̇1

A[σ̇2
A[F A

2 ]]. By Lemma
4.5 this means F A

1 = (σ1 ◦hr σ2)̇
A[F A

2 ] for (σ1 ◦hr σ2) ∈ Relhyp
A
(τ , τ ′) and

therefore (σ1 ◦hr σ2)̇
A[F A

2 ] ∈ χF
h (FA). Then χF

h (χF
h (FA)) ⊆ χF

h (FA).

Every hypersubstitution for algebraic systems can be applied to algebraic
systems A = (A; (fA

i )i∈I , (γ
A
j )j∈J). For σ ∈ Relhyp

A
(τ , τ ′) we define the

derived algebraic system σ(A) := (A; (σF (fA
i ))i∈I , (σR(γA

j ))j∈J). For each
algebraic system of type (τ , τ ′) and each σ ∈ Relhyp

A
(τ , τ ′) we define a

closure operator

χA
h : P((Algsys(τ , τ ′)) → P((Algsys(τ , τ ′)) by

χA
h (K) := {σ(A)| σ ∈ Relhyp

A
(τ , τ ′)}

and for K ⊆ Algsys(τ , τ ′) we have χA
h (K) :=

⋃
A∈K

χA
h (A). Then we have
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Lemma 5.2. χA
h has the properties of a completely additive closure operator.

Although the proof is very similar to that of Lemma 5.1, we will not omit
it since there are a few differences.

Proof. Additivity follows from the definition and monotonicity follows from
additivity. Let σid be the identity hypersubstitution for algebraic systems.
Then σid(A)=(A; ((σid)F (fA

i ))i∈I , ((σid)R(γA
j ))j∈J)=(A; (fA

i )i∈I , (γ
A
j )j∈J).

As a consequence, χA
h is extensive. The inclusion χA

h (K) ⊆ χA
h (χA

h (K))
follows from extensivity. If A ∈ χA

h (χA
h (K)), then there are σ, σ′ ∈

Relhyp
A
(τ , τ ′) and an algebraic system A′ ∈ K such that

A = σ(σ′(A′))

= (A; (σ̂F [σ′
F (fA

i )])i∈I , (σ̂R[σ′
R(γA

j )])j∈J)

= (A; ((σ ◦hr σ′)F (fA
i ))i∈I , ((σ ◦hr σ′)R(γA

i ))j∈J).

Lemma 5.3. For any term t ∈ Wτ (X) and for any RA ∈ 〈{γA
j |j ∈ J}〉 we

have

σ̂F [tA] = tσ(A) , σ̂R[RA] = Rσ(A).

Proof. σ̂F [tA] = tσ(A) can be obtained from [4], Lemma 3.2.1. Next we
have to show by induction on the definition of the relational clone that
σ̂R[RA] = (R)σ(A) .

If ρA ∈ {γA
j | j ∈ J}, then σ̂R[ρA] = σR(ρA) = ρσ(A) by definition of

the derived algebraic system.

Assume that for ρA ∈ 〈{γA
j | j ∈ J}〉\{γA

j | j ∈ J} we have already

σ̂R[ρA] = ρσ(A), σ̂R[ρA
1 ] = ρ

σ(A)
1 , σ̂R[ρA

2 ] = ρ
σ(A)
2 . Then we get

σ̂R[ξρA] = ξ(σ̂R[ρA]) = ξ(ρσ(A)).

σ̂R[τρA] = τ(σ̂R[ρA]) = τ(ρσ(A)).

σ̂R[4ρA] = 4(σ̂R[ρA]) = 4(ρσ(A)).

σ̂R[ρA
1 ◦ ρA

2 ] = σ̂R[ρA
1 ] ◦ σ̂R[ρA

2 ] = ρ
σ(A)
1 ◦ ρ

σ(A)
2 .

σ̂[δ
{1; 2,3},A
3 ] = δ

{1; 2,3},σ(A)
3 .
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Lemma 5.4. Let A = (A; (fA
i )i∈I , (γ

A
j )j∈J) be an algebraic system of type

(τ , τ ′). Then for each F A ∈ (F(τ ,τ ′′)(Wτ (X)))A we have

F σ(A) = σ̇A[F A].

Proof. We will give a proof by induction on the definition of the realization
of a formula.

(i) Let F A be the formula tA1 = tA2 , then

σ̇A[(tA1 = tA2 )]

= (σ̂F [tA1 ] = σ̂F [tA2 ])

= (t
σ(A)
1 = t

σ(A)
2 )

= (t1 ≈ t2)
σ(A)

where t
σ(A)
1 , t

σ(A)
2 are the term operations induced by terms t1, t2, respec-

tively, on the algebra (A; (σF (fi)
A)i∈I).

(ii) If F A has the form RA

l (tA1 , . . . , tAnl
) then

σ̇A[RA
l (tA1 , . . . , tAnl

)]

= Rnl,A
n ((σ̂R(RA

l ), σ̂F [t1]
A, . . . , σ̂F [tnl

]A)

= Rnl,A
n ((RA

l )σ(A), t
σ(A)
1 , . . . , t

σ(A)
nl

)

= (RA

l (t1, . . . , tnl
))σ(A).

(iii) If F A has the form ¬F A and assume that F σ(A) = σ̇A[F A], then

σ̇ [¬F A]

= ¬σ̇A[F A]

= ¬F σ(A)

= (¬F )σ(A).

The inductive steps for F A = F A
1 ∨F A

2 and F A = ∃xi(F
A) may be handled

similarly.

Now we prove:
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Theorem 5.5. Let A be an algebraic system of type (τ , τ ′) and let F A be
the realization of a formula of type (τ , τ ′). Let σ ∈ Relhyp

A
(τ , τ ′). Then

σ̇A[F A] is true in A iff F σ(A) is true in σ(A).

Proof. In fact, using Lemma 5.4 we have that σ̇A[F A] is true in A iff F σ(A)

is true in σ(A).

Because of its properties we say that (χA
h , χF

h ) forms a conjugate pair of
completely additive closure operators.

6. Solid model classes

An algebraic system A = (A; (fA
i )i∈I , (γ

A
j )j∈J) of type (τ , τ ′) satisfies a

formula F ∈ F(τ ,τ ′)(Wτ (X)) if for any replacements of the free variables in
F by elements from A and for any replacements of the operation symbols
and relation symbols in F by the corresponding fundamental operations and
relations of A the arising realization F A is satisfied. In this case we write
A |= F .

Let Algsys(τ , τ ′) be the class of all algebraic systems of type (τ , τ ′).
Then the satisfaction relation |= defines a Galois connection between
Algsys(τ , τ ′) and F(τ ,τ ′)(Wτ (X)) by

ModF:={A ∈ Algsys(τ , τ ′) | ∀F ∈ F (A |= F )} for subsets

F ⊆ F(τ ,τ ′)(Wτ (X))

and

ThK := {F ∈ F(τ ,τ ′)(Wτ (X)) | ∀A ∈ K (A |= F )} for subclasses

K ⊆ Algsys(τ , τ ′).

Then (Th,Mod) satisfies the conditions of a Galois-connection. The collec-
tion of all fixed points with respect to ThMod and with respect to ModTh,
respectively form complete lattices.
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Definition 6.1. Let A be an algebraic system of type (τ , τ ′) and let F A be
the realization of a formula of type (τ , τ ′) in A. Then we say that the formula
F hypersatisfies A if σ̇A[F A] is true in A, for all σ ∈ Relhyp

A
(τ , τ ′). In

this case we write

A |=H F .

We notice that F is a formula of type (τ , τ ′′), but that σ̇A[F A] is the real-
ization of a formula of type (τ , τ ′).

The relation |=H defines a second Galois connection (HTh,HMod)
by

HModF := {A ∈ Algsys(τ , τ ′) | ∀F ∈ F(A |=H F )}

for subsets F ⊆ F(τ ,τ ′)(Wτ (X)) and

HThK := {F ∈ F(τ ,τ ′)(Wτ (X)) | ∀A ∈ K(A |=H F )}

for subclasses K ⊆ Algsys(τ , τ ′).

Moreover, the fixed points of the closure operators HThHMod and
HModHTh form two more complete lattices. The fixed points of the oper-
ator HModHTh are called solid model classes.

The relationships between these two Galois connections and the conju-
gate pair (χA

h , χF
h ) of completely additive closure operators can be described

by using the general theory of conjugate pairs of additive closure operators
([4]). One of the results which can be obtained using this theory is the
characterization of solid model classes and the fixed points with respect to
the closure operator HThHMod.

Theorem 6.2. Let K be a class of algebraic systems of type (τ , τ ′) of the
form K = ModF for some set F of formulas of type (τ , τ ′). Then the
following four propositions are equivalent:

(i) K = HModHThK.

(ii) χA
h [K] = K.
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(iii) ThK = HThK.

(iv) χF
h [ThK] = ThK.

Dually, the four propositions (i′), (ii′), (iii′) and (iv′) are also pairwise equiv-
alent :

(i′) F = HThHModF.

(ii′) χF
h [F] = F.

(iii′) ModF = HModF.

(iv′) χA
h [ModF] = ModF.

This means that K is a solid model class iff it is a fixed point with respect to
the closure operator HModHThK iff all derived algebraic systems belong
to K iff it is closed under the application of the operator χA

h . From the
general theory of conjugate pairs of additive closure operators follows also
that the collection of all solid model classes of type (τ , τ ′) forms a complete
sublattice of the lattice of all model classes of this type.

7. Example

As an example we consider the algebraic system A = (A;max,min,≤) of
type ((2, 2), (2)) where ≤ is a partial order relation on A which is invari-
ant under the binary operations min and max with respect to ≤. For
the operations min,max we introduce the operation symbols f1 and f2,
respectively and for ≤ we use the relation symbol γ. Clearly, the algebra
A′ = (A;max,min) is a distributive lattice. Then the two-generated free al-
gebra of the variety V (A′) generated by A′ contains only 4 elements, namely

W(2,2)(X2)/IdV(A′)

= {[x1]IdV(A′), [x2]IdV(A′), [f1(x1, x2)]IdV(A′), [f2(x1, x2)]IdV(A′)}.

The set {e2,A
1 , e2,A

2 , fA
1 = min, fA

2 = max} is the set of all binary term
operations of A′. The relational clone of A is {≤,≤−1, A2,∆A}. Then
all concrete hypersubstitutions are given by mappings from {f A

1 , fA
2 } to

W(2,2)(X2)/IdV(A′). This means that we have the following 16 concrete
hypersubstitutions:
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(σ1)F : fA
1 7→ e2,A

1 (σ2)F : fA
1 7→ e2,A

1

fA
2 7→ e2,A

1 , fA
2 7→ e2,A

2 ,

(σ3)F : fA
1 7→ e2,A

1 (σ4)F : fA
1 7→ e2,A

1

fA
2 7→ fA

1 , fA
2 7→ fA

2 ,

(σ5)F : fA
1 7→ e2,A

2 (σ6)F : fA
1 7→ e2,A

2

fA
2 7→ e2,A

1 , fA
2 7→ e2,A

2 ,

(σ7)F : fA
1 7→ e2,A

2 (σ8)F : fA
1 7→ e2,A

2

fA
2 7→ fA

1 , fA
2 7→ fA

2 ,

(σ9)F : fA
1 7→ fA

1 (σ10)F : fA
1 7→ fA

1

fA
2 7→ e2,A

1 , fA
2 7→ e2,A

2 ,

(σ11)F : fA
1 7→ fA

1 (σ12)F : fA
1 7→ fA

1

fA
2 7→ fA

1 , fA
2 7→ fA

2 ,

(σ13)F : fA
1 7→ fA

2 (σ14)F : fA
1 7→ fA

2

fA
2 7→ e2,A

1 , fA
2 7→ e2,A

2 ,

(σ15)F : fA
1 7→ fA

2 (σ16)F : fA
1 7→ fA

2

fA
2 7→ fA

1 , fA
2 7→ fA

2 .

The 4 relational hypersubstitutions are the 4 mappings
{γA

j } → {≤,≤−1, A2,∆A} given by

(σ1)R : γA 7→ ≤, (σ2)R : γA 7→ ≤−1,

(σ3)R : γA 7→ A2, (σ4)R : γA 7→ ∆A.



146 K. Denecke and D. Phusanga

Then the set RelhypA((2, 2), (2)) consists of 64 elements which are given by
the following table.

(σ1)R (σ2)R (σ3)R (σ4)R

(σ1)F σ1 σ2 σ3 σ4

(σ2)F σ5 σ6 σ7 σ8

(σ3)F σ9 σ10 σ11 σ12

(σ4)F σ13 σ14 σ15 σ16

(σ5)F σ17 σ18 σ19 σ20

(σ6)F σ21 σ22 σ23 σ24

(σ7)F σ25 σ26 σ27 σ28

(σ8)F σ29 σ30 σ31 σ32

(σ9)F σ33 σ34 σ35 σ36

(σ10)F σ37 σ38 σ39 σ40

(σ11)F σ41 σ42 σ43 σ44

(σ12)F σ45 σ46 σ47 σ48

(σ13)F σ49 σ50 σ51 σ52

(σ14)F σ53 σ54 σ55 σ56

(σ15)F σ57 σ58 σ59 σ60

(σ16)F σ61 σ62 σ63 σ64.

Let us give two examples for the application of an extension of a hyper-
substitution to a formula which is satisfied in A. Consider ≤ (e2,A

1 , e2,A
1 ).

Then

σ̇A
1 [≤ (e2,A

1 , e2,A
1 )]

= R2,A
2 ((σ1)R(≤), (σ̂1)F [e2,A

1 ], (σ̂1)F [e2,A
1 ]) =≤ (e2,A

1 , e2,A
1 ).

In a similar way, we proceed for all other hypersubstitutions and see that
the resulting formulas are always satisfied in A. This shows that γ(x1, x1)
is a hyperformula.
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As a second example consider fA
1 (e2,A

1 , e2,A
1 ) = e2,A

1 . Then

σ̇A
1 [fA

1 (e2,A
1 , e2,A

1 ) = e2,A
1 ]

= (σ1)F (fA
1 )((σ̂1)F [e2,A

1 ], (σ̂1)F [e2,A
1 ]) = (σ̂1)F [e2,A

1 ]

= e2,A
1 (e2,A

1 , e2,A
1 ) = e2,A

1

= e2,A
1 = e2,A

1 .

In a similar way, we proceed in all other cases. This shows that f1(x1, x1) ≈
x1 is a hyperformula.

By definition of the multiplication in RelhypA((2, 2), (2)) the multiplication
tables of the concrete hypersubstitutions and of the relational hypersub-
stitutions determine completely the multiplication in RelhypA((2, 2), (2)).
These tables are given by

◦h (σ1)F (σ2)F (σ3)F (σ4)F (σ5)F (σ6)F (σ7)F (σ8)F

(σ1)F (σ1)F (σ2)F (σ3)F (σ4)F (σ5)F (σ6)F (σ7)F (σ8)F

(σ2)F (σ2)F (σ2)F (σ1)F (σ2)F (σ5)F (σ6)F (σ5)F (σ6)F

(σ3)F (σ3)F (σ2)F (σ1)F (σ3)F (σ5)F (σ6)F (σ5)F (σ7)F

(σ4)F (σ4)F (σ2)F (σ1)F (σ4)F (σ5)F (σ6)F (σ5)F (σ8)F

(σ5)F (σ5)F (σ2)F (σ2)F (σ1)F (σ5)F (σ6)F (σ5)F (σ5)F

(σ6)F (σ6)F (σ2)F (σ2)F (σ6)F (σ5)F (σ6)F (σ6)F (σ6)F

(σ7)F (σ7)F (σ2)F (σ2)F (σ3)F (σ5)F (σ6)F (σ6)F (σ6)F

(σ8)F (σ8)F (σ2)F (σ2)F (σ4)F (σ5)F (σ6)F (σ6)F (σ8)F

(σ9)F (σ9)F (σ2)F (σ3)F (σ1)F (σ5)F (σ6)F (σ7)F (σ5)F

(σ10)F (σ10)F (σ2)F (σ3)F (σ2)F (σ5)F (σ6)F (σ7)F (σ6)F

(σ11)F (σ11)F (σ2)F (σ3)F (σ3)F (σ5)F (σ6)F (σ7)F (σ7)F

(σ12)F (σ12)F (σ2)F (σ3)F (σ4)F (σ5)F (σ6)F (σ7)F (σ8)F

(σ13)F (σ13)F (σ2)F (σ4)F (σ1)F (σ5)F (σ6)F (σ7)F (σ5)F

(σ14)F (σ14)F (σ2)F (σ4)F (σ6)F (σ5)F (σ6)F (σ8)F (σ6)F

(σ15)F (σ15)F (σ2)F (σ8)F (σ3)F (σ5)F (σ6)F (σ8)F (σ7)F

(σ16)F (σ16)F (σ2)F (σ4)F (σ4)F (σ5)F (σ6)F (σ8)F (σ8)F
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◦h (σ9)F (σ10)F (σ11)F (σ12)F (σ13)F (σ14)F (σ15)F (σ16)F

(σ1)F (σ9)F (σ10)F (σ11)F (σ12)F (σ13)F (σ14)F (σ15)F (σ16)F

(σ2)F (σ1)F (σ2)F (σ1)F (σ2)F (σ5)F (σ6)F (σ5)F (σ6)F

(σ3)F (σ1)F (σ2)F (σ1)F (σ3)F (σ3)F (σ10)F (σ9)F (σ11)F

(σ4)F (σ1)F (σ2)F (σ1)F (σ4)F (σ13)F (σ14)F (σ13)F (σ16)F

(σ5)F (σ5)F (σ1)F (σ6)F (σ5)F (σ1)F (σ2)F (σ2)F (σ1)F

(σ6)F (σ5)F (σ6)F (σ6)F (σ6)F (σ5)F (σ6)F (σ6)F (σ6)F

(σ7)F (σ5)F (σ6)F (σ6)F (σ7)F (σ9)F (σ6)F (σ10)F (σ11)F

(σ8)F (σ5)F (σ6)F (σ6)F (σ8)F (σ13)F (σ14)F (σ14)F (σ16)F

(σ9)F (σ9)F (σ10)F (σ11)F (σ10)F (σ1)F (σ2)F (σ3)F (σ1)F

(σ10)F (σ9)F (σ10)F (σ11)F (σ10)F (σ5)F (σ6)F (σ7)F (σ6)F

(σ11)F (σ9)F (σ10)F (σ11)F (σ11)F (σ9)F (σ14)F (σ11)F (σ11)F

(σ12)F (σ9)F (σ10)F (σ11)F (σ12)F (σ13)F (σ14)F (σ15)F (σ16)F

(σ13)F (σ13)F (σ14)F (σ16)F (σ13)F (σ1)F (σ2)F (σ4)F (σ1)F

(σ14)F (σ13)F (σ14)F (σ16)F (σ10)F (σ5)F (σ6)F (σ8)F (σ6)F

(σ15)F (σ13)F (σ14)F (σ16)F (σ15)F (σ9)F (σ10)F (σ12)F (σ11)F

(σ16)F (σ13)F (σ14)F (σ16)F (σ16)F (σ13)F (σ14)F (σ16)F (σ16)F

◦r (σ1)R (σ2)R (σ3)R (σ4)R

(σ1)R (σ1)R (σ2)R (σ3)R (σ4)R

(σ2)R (σ2)R (σ1)R (σ3)R (σ1)R

(σ3)R (σ3)R (σ3)R (σ3)R (σ3)R

(σ4)R (σ4)R (σ4)R (σ4)R (σ4)R

Idempotent elements in RelhypA((2, 2), (2)) are pairs (σF , σR), where σF

and σR are idempotent.

We get that
σ1, σ3, σ4,σ5, σ7, σ8, σ13, σ15, σ16, σ17, σ19, σ20, σ21,σ23, σ24, σ29, σ31,
σ32,σ33, σ35,σ36, σ37, σ39, σ40, σ41,σ43, σ44, σ45, σ47, σ48, σ61, σ63, σ64

are all idempotent elements.

The following multiplication tables show that the idempotent relational
hypersubstitutions and the idempotent concrete hypersubstitutions form
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subsemigroups. Consequently, the set of all idempotent elements of
RelhypA((2, 2), (2)) forms a subsemigroup of RelhypA((2, 2), (2)).

◦r (σ1)R (σ3)R (σ4)R

(σ1)R (σ1)R (σ3)R (σ4)R

(σ3)R (σ3)R (σ3)R (σ3)R

(σ4)R (σ4)R (σ4)R (σ4)R

◦h (σ1)F (σ2)F (σ4)F (σ5)F (σ6)F (σ8)F (σ9)F (σ10)F (σ11)F (σ12)F (σ16)F

(σ1)F (σ1)F (σ2)F (σ4)F (σ5)F (σ6)F (σ8)F (σ9)F (σ10)F (σ11)F (σ12)F (σ16)F

(σ2)F (σ2)F (σ2)F (σ2)F (σ5)F (σ6)F (σ6)F (σ1)F (σ2)F (σ1)F (σ2)F (σ6)F

(σ4)F (σ4)F (σ2)F (σ4)F (σ5)F (σ6)F (σ8)F (σ1)F (σ2)F (σ1)F (σ4)F (σ16)F

(σ5)F (σ5)F (σ2)F (σ1)F (σ5)F (σ6)F (σ5)F (σ5)F (σ1)F (σ6)F (σ5)F (σ1)F

(σ6)F (σ6)F (σ2)F (σ6)F (σ5)F (σ6)F (σ6)F (σ5)F (σ6)F (σ6)F (σ6)F (σ6)F

(σ8)F (σ8)F (σ2)F (σ4)F (σ5)F (σ6)F (σ8)F (σ5)F (σ6)F (σ6)F (σ8)F (σ16)F

(σ9)F (σ9)F (σ2)F (σ1)F (σ5)F (σ6)F (σ5)F (σ9)F (σ10)F (σ11)F (σ10)F (σ1)F

(σ10)F (σ10)F (σ2)F (σ2)F (σ5)F (σ6)F (σ6)F (σ9)F (σ10)F (σ11)F (σ10)F (σ6)F

(σ11)F (σ11)F (σ2)F (σ3)F (σ5)F (σ6)F (σ7)F (σ9)F (σ10)F (σ11)F (σ11)F (σ11)F

(σ12)F (σ12)F (σ2)F (σ4)F (σ5)F (σ6)F (σ7)F (σ8)F (σ10)F (σ11)F (σ12)F (σ16)F

(σ16)F (σ16)F (σ2)F (σ4)F (σ5)F (σ6)F (σ8)F (σ13)F (σ14)F (σ16)F (σ16)F (σ16)F

Every idempotent element of a semigroup (S; ·) is regular, i.e. satisfies
a · b · a = a for some b ∈ S. We want to determine all regular elements
of RelhypA((2, 2), (2)). Again we have only to check the concrete hyper-
substitutions and the relational hypersubstitutions. All relational hyper-
substitutions except (σ2)R are idempotent. But (σ2)R satisfies (σ2)

3
R =

(σ2)R ◦r (σ1)R = (σ2)R. Thus, every relational hypersubstitution satisfies
σ3

R = σR and is regular.
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Now we consider the non-idempotent concrete hypersubstitutions

(σ3)F , (σ7)F , (σ13)F , (σ14)F , (σ15)F .

Then we have

((σ3)F )3 = (σ3)F ◦h (σ1)F = (σ3)F

((σ13)F )3 = (σ13)F ◦h (σ1)F = (σ13)F

((σ15)F )3 = (σ15)F ◦h (σ12)F = (σ15)F

This shows that (σ3)F , (σ13)F , (σ15)F are regular. For (σ7)F and (σ14)F we
get

(σ7)F = (σ7)F ◦h (σ15)F ◦h (σ7)F

(σ14)F = (σ14)F ◦h (σ3)F ◦h (σ14)F .

This shows that RelhypA((2, 2), (2)) is a regular semigroup which contains
the set of all idempotent elements as a subsemigroup, i.e. RelhypA((2, 2), (2))
is an orthodox semigroup. Further, on can check that ((σ7)F )3 = ((σ7)F )2

and ((σ14)F )3 = ((σ14)F )2. Therefore the elements of the semigroup
RelhypA((2, 2), (2)) have order 1 or 2.
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