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Abstract

In [2] the theory of hyperidentities and solid varieties was extended
to algebraic systems and solid model classes of algebraic systems. The
disadvantage of this approach is that it needs the concept of a formula
system. In this paper we present a different approach which is based on
the concept of a relational clone. The main result is a characterization
of solid model classes of algebraic systems. The results will be applied
to study the properties of the monoid of all hypersubstitutions of an
ordered algebra.
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1. INTRODUCTION

A first application of the theory of hyperidentities and solid model
classes can be found in [2]. The main problem of this approach is that the ap-
plication of a hypersubstitution to an algebraic system does not give an alge-
braic system, but a structure which is called a formula system. In this paper
we want to avoid this problem. Here we define the application of a hypersub-
stitution to the fundamental relations of a given algebraic system to be ele-
ments of the relational clone generated by the set of fundamental relations.
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This leads to a derived algebraic system. It is not necessary to consider the
class of formula systems.

We notice that our approach is an example of the concept of an institu-
tion (see [7]). We describe how hypersubstitution can be used to come from
first order logic to a restricted version of second order logic.

An algebraic system of type (1,7') is a triple A := (A4; (f/Y)ier, (’}/;'q)jej)
consisting of a set A, an indexed set ( ffl)ie 7 of operations defined on A
where fZ.A : A" — A is n;-ary and an indexed set of relations 734 C A™
where 734 is nj-ary. The pair (7,7') with 7 = (n;)ier, 7 = (nj)jes of
sequences of integers n;,n; € N := N\{0}, is called the type of the algebraic
system. For algebraic systems of type (7,7’) subsystems, homomorphic
images, congruences and direct products can be defined and most theorems
known from Universal Algebra are valid also in this situation ([5]).

Terms and formulas are expressions in a first-order language which are
used to describe properties of algebraic systems and to classify algebraic
systems. Our definition of terms and formulas goes back to [5] (see also [2]).
Let X, = {z1,...,2,} be a finite set of variables, let X = {x1,...,2p,...}
be countably infinite, let (f;);c; be an indexed set of operation symbols and
let (7,)jes be an indexed set of relation symbols. Then the set W.(X,,) of
all n-ary terms of type 7 and the set F(, .)(W, (X)) of all n-ary formulas
of type (7,7') are defined in the usual way by the following conditions:

(i) Every z € X,, is an n-ary term of type 7.

(i) If¢q,...,tp, are n-ary terms of type 7 and if fj is an ng-ary operation
symbol of type 7, then f(t1,...,t,,) is an n-ary term of type 7.

Let W, (X) := |J W,(X,) be the set of all terms of type 7. To define for-
n>1
mulas of type (7,7’) we need the logical connectives V and —, the quantifier

3 and the equation symbol ~.

Definition 1.1. Let n > 1. An n-ary formula of type (7,7’) is defined in
the following inductive way:

(i) If t1,t9 are n-ary terms of type 7, then the equation t; ~ to is an n-ary
formula of type (7,7’). All variables in ¢; = ty are free.
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(ii) If t1,...,t,, are n-ary terms of type 7 and if 7, is an nj-ary relation
symbol, then ~;(t1,...,t,;) is an n-ary formula of type (7,7'). All
variables in such a formula are free.

(iii) If F is an n-ary formula of type (7,7’), then —F is an n-ary formula
of type(r,7’). All free variables in F' are also free in —=F. All bound
variables in F' are also bound in —F'.

(iv) If Fy and F, are n-ary formulas of type (7,7’) such that variables
occurring simultaneously in both formulas are free in each of them,
then F} V Fy is an n-ary formula of type (7,7’). If a variable occurs
in 7 and F5 and is not free in both formulas, then F} V F5 is not a
formula. Variables that are free in at least one of the formulas F; or
F5 are also free in F; V F5. Variables that are bound in either Fy or
F5 are also bound in Fy V F5.

(v) If F is an n-ary formula of type (7,7') and z; € X,, occurs freely in
F, then 3x;(F) is an n-ary formula of type (7,7’). The variable z; is
bound in the formula Jz;(F') and all other free or bound variables in
F are of the same nature in Jz;(F).

Let F(; . (Wr(Xn)) be the set of all n-ary formulas of type (7,7) and let
ForrmyWr (X)) == Upst Firry(Wr(X5)) be the set of all formulas of type

(r,7").

All free or bound variables occur in X,, or X, resp.. Our definition of
formulas follows [5], pp. 115-116.

2. CLONES OF TERM OPERATIONS AND RELATIONAL
CLONES OF ALGEBRAIC SYSTEMS

We denote by O™(A) the set of all n-ary operations defined on A and let
Rel™(A) be the set of all n-ary relations defined on A. Then O(A) :=
U1 0™(A), Rel(A) = U, >, Rel"(A) are the sets of all operations and
the set of all relations defined on A. Let SZ,L{A be the usual superposition

operation for operations, i.e. for m-ary operations t{l,...,tﬁl and for an
n-ary operation s on A we define:
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S;L{A(SA,t{l, e ,tﬁ) (al, ... ,am)

= sA(t{l(al, co. ,am), e ,tf(al, co. ,am))
for all a1,...,a,m € A,m,n € N*t. The projection operations eZ’A € O"(A)
are defined by eZ’A(al, .oyap) = ag,1 <k < n. Then one obtains a many-

sorted algebra ((O™(A))n>1, (S%A)mﬂnzl, (€Z’A)1gkgn,neN+) which is called
clone of all operations defined on A. This algebra satisfies the superasso-
ciative identity ;

ShA (SA, SpA (tiq, s1 ., SnA), .,8nA (tpA, st snﬂ))

= S,?{A(Sg’A(sA,tlA,...,tpA),slA,...,snA), (m,n,p =1,2,... )

Sometimes one speaks of a clone (of operations) as a set of operations defined
on the same set A, closed under all superposition operations Sﬁ{A, m,n > 1,
and containing all projections.

The clone generated by the fundamental operations {f{|i € I} of the
algebraic system A = (A; (f{)ier, (’}/;'q)jej) is called the clone of term oper-
ations of A and is denoted by T'(A). We note that the elements of T'(A) can
be obtained as induced term operations of A. If (W, (X))* denotes the set of
all induced term operations, then T'(A) = (W, (X))*. It is well-known that
for algebraic constructions like the formation of subsystems and homomor-
phic images the term operations of A play a similar role as the fundamental
operations.

Now we are looking for a clone of relations which is generated by the
fundamental relations of the algebraic system A. We will use the concept of
a relational algebra (see [6]). Usually one considers the following operations
on sets of relations:

Definition 2.1. Assume that ai,a9,...,0n,Gnt1,-- -, Aptm are elements of
the set A.

(1) The operation £ : Rel™(A) — Rel™(A) defines the cyclic permutation
of the inputs by p — £p with

fp = {(al,CLQ,..- 7a‘n)| (a27"' ’an’al) < p}
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(2) The operation 7 : Rel™(A) — Rel™(A) exchanges the first and the
second input of each n-tuple belonging to the relation p by p — 7p
with

7p:={(a1,a9,...,a,)| (a2,a1,as,...,a,) € p}.

(3) The operation A : Rel™(A) — Rel"'(A) identifies the first and the
second input of each n-tuple in p by
Ap = {(al, ag, . .. ,an_1)| (al,al,ag, - ,an_l) S p}.

(4) o : Rel™(A) x Rel"(A) — Rel™™™~2(A) is the relational product of
the relations p; and p, and is defined by (p;, ps) — p; © py with
P10 Py = {(al7a27 <oy n—1,0n; 41, - - - 7an+m—2)| db e A7
(a1,a2,...,an-1,b) € py and (b, an,ani1,- .., Gngm—2) € p1}-

(5) The operation V : Rel"(A) — Rel"1(A) allows the addition of a
fictitious coordinate and is defined by p — Vp with
Vp:={(a1,a2,...,an4+1)| (az,as,...,an41) € p}.

(6) The projection operations prg,. . q, : Rel"(A) — Rel"(A) are defined
by p = pras, .o (p) with
Praq,..ar(P) ={(Cay,- . aq,) € ATV € {1,....n}\ {a1,..., o}

Ja; € A, ((a1,...a,) € p)}.

(7) x : Rel™(A) x Rel™(A) — Rel™™(A) is the cartesian product of two
relations p;, py and is defined by (p;, py) — p; X py with

pP1 X Pg = {(alu a2,...,0n,Apt1,--- 7an+m)‘ (al7 o 7an) € pla‘nd
(an-f—lv s 7an+m) € p2}'

(8) N: Rel™(A) x Rel™(A) — Rel™(A) is the intersection of two relations
and is defined by (pq, ps) — p1 N py with
P1 N Po = {(alu s 7an)‘ (al7 s 7an) € P and (a17 s 7an) € p2}

(9) Let € be an equivalence relation on {1,...,n}. Then ¢, is defined by
8, ={(a1,...,a,) € A" (i,j) € € = a; = a;}.

To select 05, from Rel™(A) can be regarded as a nullary operation.

Let 5:{,,1; 23} be the ternary relation of the form §;, where ¢ is given by the
partition {{1},{2,3}}. The algebra Rel(A) := (Rel(A); f,T,A,O,(S:gl; 2’3})
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of type (1,1, 1,2,0) is called the full relational algebra on A. Any subalgebra
of Rel(A) is called a relational algebra on A. It turns out (see [6]) that
relational algebras are also closed under the operations V,prqy, . ., % and N
and that they contain all relations d5. Let ) be the universe of a relational
algebra and let R be a non-empty subset of (). Then we can form the
relational subalgebra of the relational algebra Q which is generated by R,
i.e. the relational algebra with the universe (R) := (\{B|B is a relational
subalgebra of Q and R C B}.

Let A = (4; (f{Y)ier, (’y}q)jej) be an algebraic system of type (7,7').
Then the relational subalgebra of Rel(A) which is generated by the set
{’y;-q| j € J} is said to be the relational clone of the algebraic system A and
is denoted by R(A). More precisely, the set ({'734| j € J}) can be inductively
defined by the following steps:

(1) If pt e {vi € I}, then p™ e ({y7}j € J}).
(2) Assume that p”, pit, pgt € ({'yjA|j € J}), then &pt, mpt, Ap? and

(p1topg) e ({vf'li e J}).

Since (55{,)1; 23} belongs to the fundamental operations of every relational al-
gebra, this relation is contained in <{734\j e J}).

3. HYPERSUBSTITUTIONS FOR ALGEBRAIC SYSTEMS

Hypersubstitutions are originally defined as mappings which send operation
symbols of a given type 7 to terms and preserve arities. Every hypersubsti-
tution o can inductively be extended to a mapping o : W (X) — W (X).
In [2] hypersubstitutions were defined for algebraic systems of type (7,7) as
mappings o : {fi|i € I}* U{v;|j € J} — F(; ;) (W-(X)). The disadvantage
of this approach is that it needs the set F . (W (X)) of all formulas of
type (7,7'"). Our new approach maps fundamental operations to elements
of T(A) and fundamental relations to elements of R(A).

Definition 3.1. Let or : {f{!|i € I} — T(A) be a mapping assigning to
every n;-ary fundamental operation fZ-A of type 7 an n;-ary term operation
op( fZ-A). Any such mapping o will be called a concrete hypersubstitution.

Every concrete hypersubstitution induces a mapping o : T(A) — T(A) on
the set of all term operations of type 7, as follows:
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(1) It t4 = e | then Gplep™] := e
(2) et = fAR, .. ) and ¢, ...t € O™(A), then

SRl ] = SN o (fY), G R[], .., ar[tR).

Definition 3.2. Let op : {'y;ﬂj € J} — R(A) be a mapping assigning to
every nj-ary fundamental relation 'y]f-l of type 7’ an nj-ary relation o R(’y;»q)
of the relational clone. Any such mapping or will be called a relational
hypersubstitution.

Every relational hypersubstitution of type 7’ induces a mapping o : R(A) —
R(A) on the relational clone, as follows:

(1) If pte {’y]f-l\j € J}, then Gg[pt]:=ogr(p™) and
8R[6§17 2,3}] = 5§1, 2,3}
‘A A . A . . . .
(2) If p* € ({777 € JTH\{77'ls € J} and if we inductively assume that

orlp™, TrlpfY, Frlps are already defined, then
GrlEp™] = E(@r[p™), Grlrp) = 7(@rl™)),

orlOp? == AGR[PY),  Grlpft o pd] =T rp{] 0 Trlp3.

Definition 3.3. Any mapping o : {f!|i € [} U {’yf\j eJ}—>TA)UR(A)
with o(f) == op(f!) for all i € I and a(’y]f-l) = O'R(’)/]‘A) for all j € J is
called hypersubstitution for the algebraic system A. Let Relhyp , (7,7') be
the set of all hypersubstitutions for the algebraic system .A.

Clearly any such hypersubstitution can be written as a pair ¢ := (0 p,0R).
Using the extensions op and or we can define an extension o : T(A) U
R(A) - T(A)UR(A) by ¢ := (p,0r). If 01,02 € Relhyp, (7,7'), then
a product can be defined by o1 oy, 09 := 01 0 09. For &1 o 09 we have
51002 = (1)1, G1)R) 0 (02)r (2)1) = (1) © (02)m, B1)r © (02)R).
Next we prove that the extension of this product is equal to the composition
of the extensions.

Lemma 3.4. For any 01,09 € Relhyp, (1,7") we have (o1 op, 02) =G1053.
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Proof. Because of the last remark we have to show that (o op, 02) =

(01 0nr 02) ps(01 0nr 02) g)=((G1) P, (1)) © ((G2) F, (G2) R)=((G1)F © (T2)F,
(a\l)R o (82)1%); i.e. that (0’1 Ohr O'Q)F = (a\l)F (e} (82)}7‘ and (0'1 Ohr UQ)R =
(61)r © (02)r. For the functional part we will give a proof by induction on

the complexity of the definition of term operations.

(1) If t4 = GZ’A, then (01 op 02)p [eZ’A]

_en,A
=€

~ A
= (G2)rle, ]

= (@1)r[@)rlep ]
= (@)ro @)
(2) If th = fA, ... 7)) for i € I and if we assume that
(01 0mr 02) o [t;-q] =((G1)Fo (82)F)[tjA] for every j € {1,...,n;}.

Then

(01 onr 02) e A 1)
= Sn (01 onr 02) F(F1), (01 onr 02)p [t -, (01 onr 020 [12])
= SEA((E1)F o (02)P) (FY). (B1)F 0 @R, - . (B1)F 0 (G2)P)[EL])
= S (@) Pl(o2)p(FY], GFIG) R - (G (G2 r L)
= @[S (02 (F1), G2)rlH], -, (G2)r[tr])
(using that (71)p is compatible with the operation Spi™, see e.g [1])
= @) F[G) LA )]
= ((G1)r o G2)R)FAHY - 1))

For the relational part we will give a proof by induction on the complexity
of the definition of a relational clone.
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(1) If p* e {y]' | j € J}, then

(01 onr 02) glp™] = ((01) R © (02)R)[P"]

(2) Assume that p* € ({'y}q | j € J}>\{7fL | j € J} and let us inductively
assume that (01 onr 02)g[0"] = (@1)r 0 @2)r) [P, (01 0 32)plpfl] =

((@1)r o (@2)r)lpf'], (01 9n 02)glp3] = (G1)r © (32)R)[p4]. Then

A

~—

(01 onr 02) l€p™] = (01 0nr 02) glp

The inductive steps for 7 and A may be handled similarly.

(01 onr 32) glptt 0 3] = (01 onr 32) glp1Y © (01 onr 2) glp3]
=((@ G2)r) (1) o ((G1)R © (G2)r)(p3))
(@1)r[(@2)rlpf]] 0 (G1)r[(G2)RlPT]

= (31)rl(@2)rlp1] o (G2)r[P3]]
( i
(

o p31]

Finally we have

(o1 OhrO-Q)AR[égl;23}] 5{1 2,3} _ =(G2)n [(5{1 23}] (G1)ro (G2)r )[5:{))1; 2,3}]. -
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An identity element with respect to the multiplication oy, can be defined by
oid = ((0ia) F, (0ia) r) With (04q) p(f{Y) := f{ for alli € I and (aid)R('yjA) =
'y]A for all j € J.

By induction on the complexity of the definition of a term operation
t" € T(A) and of the definition of an element p** € R(A) one can prove:

Lemma 3.5. For any t* € T(A) and for any p* € R(A) the following
equations are satisfied: (G;q)p[t"] = t*and (Giq)r[p"] = p™.

Then as a consequence of Lemma 3.4 and Lemma 3.5 we obtain.

Theorem 3.6. For any algebraic system A of type (7,7'), (Relhyp , (1,7'),
Ohr, 0id) 1S a monoid.

Proof. Associativity of the operation op,. follows from Lemma 3.4 by
(01 opyr 02) opr 03=(01 oy 02) 0 03=(G1 0 G3) 0 03=01 o (02 0 03)=01 ©
(02 opy 03)= 01 Opy (02 Oy 03). 044 is an identity element since for any o €
Relhyp, (1,7") we get 04q0n,0 =0:000=((Gia)F, (Tia)r)o (0 F, o R)=((Tiq) F O
or,(Cig)r © or). From Lemma 3.5 we obtain for any fZ-A,i € I, that
(@ia)r 0 or)(f)=(Gia)rlor(f))=0r(fi), ie. (Gia)r o op=0F and for
any ’y}q,j € J we have ((0;9)r © O'R)(’}/;q): (ﬁid)R[aR(’y;ﬂ)]:aR('yf) ie.
(Gid)r © or=0pR. This gives 0;4 oy 0 = 0. The equation o op, ;g = o
is clear. [ |

4. EXTENSION OF HYPERSUBSTITUTIONS TO MAPPINGS
DEFINED ON THE REALIZATIONS OF FORMULAS

Classes of algebraic systems can be described as model classes of sets of
formulas. For a given set of formulas the model class of this set consists
precisely of those algebraic systems which satisfy all formulas of the given
set. Since we want to use a stronger concept of satisfaction we have to apply
hypersubstitutions to formulas. The first step is to define a mapping which
maps a relation defined on a set A and an nj-tuple of operations on A to a

relation defined on O™(A). The operation R with

R Rel™i (A) x (O"(A))" — Rel™ (O™(A))
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A A
by (78 {8 FA) o BAGA A ) where R )
is trueiff for all ay, ..., a, € A wehave (f{*(a1,...,an),. .., ;f;(al,...,an))e

’y]f-l maps each n;-ary relation fy;»q and each n;-tuple of n-ary operations on A
to an nj-ary relation Rfj on O"(A) where (f{%,... ,f,f;) € Rfj iff for every
n-tuple ¢ = (a1,...,a,) € A we have (ff(a),...,f,fj(a_)) € ’yjA. For the

properties of the operations sz’A, n,n; € NT see [2].

The operations Ry’ A can especially be applied to the fundamental rela-
tions and term operations of the algebraic system A = (A; (f")ier, (’}/;'q)jej)
of type (7,7'). Then the extension to arbitrary relations of the relation
algebra generated by {%A| j € J} can be defined as follows:

A A
(1) Ra(€p ) == ERy (p™ L),

A A
(2) Ry (1ph, ... ,tﬁb) = TR (ph, tfh ),

)’ Vm
A A
(3) R A(ApM L ) = AR (A,

A A
(pft .. ,tﬁb)oRﬁf (pgt tft. Y,

71’],]‘

(4) sz’A(pflopfl, tfl,. .. ,tA,) = Ry

nj

(5) R%,A(éél; 2,3},A7tiq’t§17téq) — 5;1; 2,3}, O"(A)'
Besides formulas of type (7,7’) we now define formulas of type (7,7”) intro-
ducing to each relation from <{734\ j € J}) a new relation symbol R;. This
gives an indexed set (R;);cp of relation symbols where R; is nj-ary. Let 7”
be the new type of all these relation symbols.

Let F(; 1) (W7(Xy)) be the set of all n-ary formulas of type (7,7") and
let Frrn(Wr(X)) = Ups1 Firry(Wr(X5)) be the set of all formulas of
type (7,7"). Now we will define the realization of an n-ary formula of type
(1,7") as a relation defined on O™(A).

Definition 4.1. Let A = (A; (fM)ier, (’}/;L)Z'GJ) be an algebraic system of
type (7,7’). The realization of a formula F' of type (7,7”) on A is defined
as follows :

(i) If F has the form s ~ t, then (s ~ t)* := s = t where s, t* are the
term operations induced by the terms s, on the algebra (A; (f{Y)icr)-



134 K. DENECKE AND D. PHUSANGA

(ii) If F has the form Ry(ti,...,t,,), then
Ri(ty, ... tn)" = RIVAR 0.

Here RZA is an element of the relational algebra generated by
{(v'li € J}

(iii) If the formula has the form —F, then (—=F)# := -F#
(where =F* is true iff F is not true).

(iv) If the formula has the form Fy V Iy, then (Fy V Fo)* = F{* v Ft
(where F{'V Fyt is true iff F{* is true or Fy? is true).

(v) If the formula has the form 3xz;(F), then (3z;(F))”* := 3a;(F)”* (where
Ja;(F)* is true iff there exists an a; such that after substituting a; for
z; the realization F* becomes true).

Let (?(TJ//)(WT(X”)))A be the set of all realizations of n-ary formulas of
type (7,7"”) and let (W,(X,,))** be the set of all m-ary term operations
induced by terms of type T on the algebra (A; (f{);cr) of type 7. Then for
all m,n € NT an operation

R (F (o (W (X)) % (Wr (X)) — Rel™ (0™(A))
is inductively defined in the following way:

Definition 4.2. Let A be an algebraic system of type (7,7’). For any
FA ¢ (H’(T,T,,)(WT(XH))A and any n-tuple of m-ary term operations
R%A(F At tY) is defined inductively by the following steps :

i) If F4 has the form s/ = ¢4, then R%A sh=tAtf o th
1 n

7A ,A
= S (st = SO .

) then Rz R sy, ... s )4t . 821

n

(i) If F has the form R (s, .., 5n,

7A ,A
= RA(Sm (s{ st S (st ).

iii) If F4 has the form (=F)*A, then R (~F)A, ¢4, ... A
1

n
cn.A
=Ry (FA L .
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(iv) If FA has the form (Fy V )4, then RsA(Fy v o)A ¢4, .t
= RAFA A, NV REAES .

(v) If F* has the form (3z;(F))#, then R ((3ws(F)* ¢, ...t
= Fay (RN FA L, th).

n
The operation RZ{A, m,n € NT satisfies an equation similar to the supperas-
sociative identity mentioned in Section 2.

In Section 3 we defined extensions o of hypersubstitutions for the al-
gebraic system A as mappings ¢ : T'(A) U R(A) — T(A) U R(A). Now we
define another kind of extension of hypersubstitution * which is also based
on a pair (op,0R), op : {f{!i € [} = T(A), og: {’y] |7 € J} — R(A). We
need the fact that for any relation symbol R; corresponding to a relation
in R(A) there exists a formula F such that the realization of F' gives R
(see [6]).

Definition 4.3. Let o € Relhyp ,(7,7'). Then we define a mapping
o4 (F 7 oy (W (ON = (T oy (W (X))

inductively as follows :

(i) 64[s* = t4] == Gp[s"] = Tp[t"].

(i) G RMHY s )] == REA@RIR, G R[], T [E])-
Here GR[RZ | is an element of the relational clone generated by
{vili e J}.

(iii) 6A[—FA := ~(64[FA)).
(iv) oA[FV FyY = 6A[F v 64[FyY.
(v) 643z (F)] := Fay (6A[FA).

Theorem 4.4. Let 0 € Relhyp,(7,7'), let m,n € N*. Then ¢4 is a
mapping  from  (F oy (Wr (X)) nz1 to (Frm(We(Xn))nz1
with A REA(FA, st s = REAGAFA),5p[s0Y,...,op(sA]) for all
F e 9'(7.77.// ( (Xn ) and S1y...,8, €E W, Xn)
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Proof. We will give a proof by induction on the definition of the realization
of formula, FA.

(i) If F4 has the form tfl = tfl, then
aA[RZz“‘(t = tfsf, . s7h)]
A LA
[Sg”b (17 17"'78‘21):877711 (t‘A,S‘lA,...,S;le)]

GR(SmAMR, s s =ap[SmAWL, P ... s
= SEA@rtf], 5 plsf, ... Trlsi]) = SEAGEr), G plst, .. T rls)
= Ry Grltf] = 5r[ts), 5 pls1. ... Gr(s2)

'n7A . ~
= Ry (UA[t{L:téq],ap[sf],...,ap[sﬁ]).

(ii) If F/ has the form R(t,. .., m) then

AR (R, .. tA) st s
_ UA[RA(S;QA( )L SA A sfs)
— RIA(GRIRN, F[ A st s R[S s )
= Rnh (@ [ zA] g”b (@ [ ]O.F[S{L] 7317[5‘7/1[])7""
Sw@rtt), e rlsf, ... 5rls)
= Ry (R Gr(R lLawaL.u7aFw$D,anfL.u,anﬁD
by Lemma 4.3
= RN GARA .t Grls. .. ar[s2).
(iii) If F* has the form —F“ and assume that
FAIREAFA, P, . s = R (62 FA),op[sfY, ..., 5r[s?]), then
FAREA(FA st )]
= ~(GARMAFA L sM)
= (R (6AFA,Gpls,. ... Grlsh])
= Ry 6 [-FA,Gr(s),. .., Grlsh]).

The inductive steps for FA = F{'v Fy' and F* = 32;(F) may be handled
similarly. [ |
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The next lemma shows that the --extension of a hypersubstitution is com-
patible with the product.

Lemma 4.5. Let 01,09 € Relhyp,(7,7'). Then we have (o1 opy 02)4 =

O:lA o) O:QA.

Proof. We will give a proof by induction on the definition of the realization
of the formula F*A.

(i) If F* has the form s* = t*, then

(0'1 Ohr 0‘2).A [S‘A = t‘A]

ii) If F4 has the form RA(t4, ..., t2), then
1 1 n;

(01 onr o) [RA(H, ... 1)
— RIA((01 one 09 R(R), (01 0ne 02 R [H1, - -, (01 onr 02 [A])
= Ru N (G1)rl(G2) (R, G1)p(G2) p[t], - . ., G1) (G2 FItA]])
= A A[RIA(@)R(RE), (@) F[t, - G rlt))]
= o1 [RA . 7]
= (614 0 M [RA(HY, ... )]

(iii) If F* has the form =F" and if we assume that

(01 opy 02)A[FA] = (614 0 694)[F4], then
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Cases (iv) and (v) may be handled similarly. [ ]

We can also show that the extension of the identity hypersubstitution maps
all realizations of formulas to themselves.

Lemma 4.6. For o;q € Relhyp ,(7,7') we have 6:5[FA] = FA for all F4 €
(St(T,T//)(WT(X)))A‘

Proof. The proof is by a straightforward induction on the realization of a
formula FA.
(i) If F* has the form s* = ¢4, then 623[s* = t4] = ((Gia) r[s?] =
@) plt]) = (" = t4).
(i) If F* has the form R/'(t{',... t7), then
SARMH, - )= Rat ™ (Bia) (B, Gia) (1Y), -, Gia) P [E1))
= RV R ) = RAGE ...
(iii) If F** has the form =F“ and assume that ¢7[F4] = F4, then
of[~FA) = —(04[FA) = -F 4,
(iv) If F* has the form Fy'V Fy' and assume that d‘%[F]‘-A] = FjA;j € {1,2},
then ¢/ [F{' v FY) = 6 [FYY v o [F¥Y = F{t v F5t.
(v) If FA has the form 3z;(F*) and assume that 6/5[F4] = F4, then
& B (FN)] = 3ai (4 [FA) = Fay (FY).
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5. APPLICATION OF HYPERSUBSTITUTIONS TO ALGEBRAIC SYSTEMS

The main result of this section is Theorem 5.5, which is the basis of the
so-called “conjugate property” and connects the application of hypersub-
stitution to an algebraic system with that to the realization of a formula.
It should be mentioned that this parallels the satisfaction condition in the
theory of institutions (see [7] and [8]).

If 54 C (F(r)(Wr(X)))™ is a set of realizations of formulas of type
(7,7") on the algebraic system A, then we define

X 2 PUF oy (W (X)) = PUF 7,7 (W (X)))?) by
XE(FA) := {6A[FH | o € Relhyp, (1,7'), FA € FAY.

Then
NACIHES N U ¢4
o€Relhyp , (1,7') FA€FA

Lemma 5.1. Xf has the properties of a completely additive closure operator.

Proof. By Lemma 4.6 ¢7[F] = FA and this shows that x} is extensive.
By definition

deh= U U s

o€Relhyp , (1,7') FA€TA

and therefore Xf is completely additive and thus monotone, i.e., if i?lA C
Tyt C H’(T,T//)(WT(X))A, then y2 (1) C xI'(Fgh). By extensivity xI'(F4) C
XEOE(FY). If conversely FY' € xI(xE(F4)) then there are oy,09
€ Relhyp, (7,7') and F§* € 4 such that F{* = ¢14[02[F5"]]. By Lemma
4.5 this means F{' = (o1 op, 02)A[F5Y] for (01 opy 02) € Relhyp, (7,7') and
therefore (o1 op, oo A [FY] € xI'(FA). Then xF (xF (F4) C xE(FH). |

Every hypersubstitution for algebraic systems can be applied to algebraic
systems A = (A4; (f;q)iel,('yf)jej). For o € Relhyp,(7,7") we define the
derived algebraic system o (A) := (A; (0 p(f1))icr, (O'R(’)/]A))jej). For each
algebraic system of type (7,7) and each o € Relhyp,(7,7') we define a

closure operator
X+ P((Algsys(r,7")) — P((Algsys(r,7')) by
X‘}?(fK) :={o(A)| o € Relhyp, (t,7")}

and for X C Algsys(r,7'") we have yii(X) := X7 (A). Then we have
AeXK
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Lemma 5.2. Xf has the properties of a completely additive closure operator.

Although the proof is very similar to that of Lemma 5.1, we will not omit
it since there are a few differences.

Proof. Additivity follows from the definition and monotonicity follows from
additivity. Let o;4 be the identity hypersubstitution for algebraic systems.
Then 044(A) = (4; ((7ia) F(f{))ier, (0iad) R(V]))jes) = (A5 (F)ier, (v jer)-
As a consequence, xi is extensive. The inclusion x7(X) C xi(xi (X))
follows from extensivity. If A € x#(x:(X)), then there are 0,0’ €
Relhyp , (7,7') and an algebraic system A’ € K such that

A =a(o'(A"))
= (4; (@ r[ow(f{))ier, @rloR(v)])jer)
= (A; (o oy ) r(f1)ier, (0 onr ') R(VY)) jed). .

Lemma 5.3. For any term t € W.(X) and for any R* € <{’yf|j € J}) we
have

Gr[th] =t | GR[RA = R7W.

Proof. 5r[t"] = t° can be obtained from [4], Lemma 3.2.1. Next we
have to show by induction on the definition of the relational clone that
or[RY = (R)"W .

If p* € {y | j € J}, then Gr[p?] = or(p™) = p”™ by definition of
the derived algebraic system.

Assume that for p* € ({'yjA | j € J})\{fyjA | 7 € J} we have already

arlp™] = p°, Grlpf) = o7, Grlps] = p3*Y. Then we get
arlép™) = €@rlp™) = (7).
Gr[rp" = 7(@r[p"]) = T(p7).
Gr[Lp™] = A@R[pMY) = D(p7WY).
Grlotto pf] = Grlpf] o rlpf] = p7Y 0 pg Y.

6'\[(55{,)1; 2,3},A] _ 55{{1; 2,3},0’(‘/[)'
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Lemma 5.4. Let A = (4; (f{")ier, (’}/;'q)jej) be an algebraic system of type
(7,7'). Then for each F** € (F(; n)(Wr(X)))* we have

FoA) = gA[FA]

Proof. We will give a proof by induction on the definition of the realization
of a formula.

(i) Let F* be the formula t{' = #3', then
oAt = t5)]
[ 11 =3rlt3])

[

=G

= (] = ”“”)
= (

t R tg)7(A

where tl(A) tg( ) are the term operations induced by terms t1,ts, respec-

tively, on the algebra (A; (o p(f;)")icr)-

(ii) If F/ has the form R (..., m) then
AR )]
= RN Gr(RA),GrA, ... Grltn]?)

= RpA(RATO ],
= (RMt1, ... tn,))"M.
(iii) If F4 has the form —F and assume that F7A) = g4[F4], then
& [-FA]
— AP
)
= (= F)U(A),

The inductive steps for F4 = F{'v F5* and F4 = 3z;(F”) may be handled
similarly. [ |

Now we prove:
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Theorem 5.5. Let A be an algebraic system of type (7,7') and let F* be
the realization of a formula of type (7,7'). Let o € Relhyp, (t,7'). Then

GA[FA] is true in A iff F) is true in o(A).

Proof. In fact, using Lemma 5.4 we have that ¢4[F*] is true in A iff F7(4)
is true in o(A). [ ]

Because of its properties we say that (X‘;},X}Ij ) forms a conjugate pair of
completely additive closure operators.

6. SOLID MODEL CLASSES

An algebraic system A = (A4; (ffl)ief,('y]f-l)jej) of type (7,7') satisfies a
formula I € F(; 1) (W-(X)) if for any replacements of the free variables in
F by elements from A and for any replacements of the operation symbols
and relation symbols in F' by the corresponding fundamental operations and
relations of A the arising realization F*4 is satisfied. In this case we write
AEF.

Let Algsys(r,7’) be the class of all algebraic systems of type (7,7').
Then the satisfaction relation |= defines a Galois connection between

Algsys(t,7") and F (W, (X)) by

ModF:={A € Algsys(t,7") |VF € F (A | F)} for subsets

F C Fr.ory(Wr (X))
and
ThX :={F € F; . (Wr(X)) | VA € X (A |= F)} for subclasses

X C Algsys(t,t").
Then (Th, Mod) satisfies the conditions of a Galois-connection. The collec-

tion of all fixed points with respect to ThMod and with respect to ModTh,
respectively form complete lattices.
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Definition 6.1. Let A be an algebraic system of type (7,7’) and let F* be
the realization of a formula of type (7,7’) in A. Then we say that the formula
F hypersatisfies A if ¢4 [F4] is true in A, for all o € Relhyp ,(7,7'). In
this case we write

A gy F.

We notice that F' is a formula of type (7,7"”), but that ¢4[F4] is the real-
ization of a formula of type (7,77).

The relation g defines a second Galois connection (HTh, HM od)
by

HModd .= {A € Algsys(t,7") |[VF € F(A Eg F)}
for subsets F C F(, ) (W-(X)) and
HThX := {F € F; .n(W(X)) |[VA€XK(A Fgr F)}

for subclasses X C Algsys(t,1’).

Moreover, the fixed points of the closure operators HThHMod and
HModHTh form two more complete lattices. The fixed points of the oper-
ator HModHTh are called solid model classes.

The relationships between these two Galois connections and the conju-
gate pair (X‘,;l, Xf ) of completely additive closure operators can be described
by using the general theory of conjugate pairs of additive closure operators
([4]). One of the results which can be obtained using this theory is the
characterization of solid model classes and the fixed points with respect to
the closure operator HT'hH Mod.

Theorem 6.2. Let X be a class of algebraic systems of type (7,7') of the
form X = ModJF for some set F of formulas of type (7,7'). Then the
following four propositions are equivalent:

(i) K = HModHThX.
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(iii) ThX = HThX.

(iv) xF[ThX] = ThX.

Dually, the four propositions (i), (it'), (iii') and (iv') are also pairwise equiv-
alent :

(

/

This means that X is a solid model class iff it is a fixed point with respect to
the closure operator HModHThX iff all derived algebraic systems belong
to K iff it is closed under the application of the operator X}'?- From the
general theory of conjugate pairs of additive closure operators follows also
that the collection of all solid model classes of type (7,7') forms a complete
sublattice of the lattice of all model classes of this type.

7. EXAMPLE

As an example we consider the algebraic system A = (A; max, min, <) of
type ((2,2),(2)) where < is a partial order relation on A which is invari-
ant under the binary operations min and max with respect to <. For
the operations min, max we introduce the operation symbols f; and fo,
respectively and for < we use the relation symbol v. Clearly, the algebra
A" = (A;max, min) is a distributive lattice. Then the two-generated free al-
gebra of the variety V(A’) generated by A’ contains only 4 elements, namely

Wio,2)(X2)/1dV(A")
= {[z1]ravar), T2l raviary, [f1(@1, 22)] raveary s [f2 (21, 22)] ravean }-

The set {e%’A,eg’A,ffq = min,f{l = maz} is the set of all binary term
operations of A’. The relational clone of A is {<, <! A2 A,}. Then
all concrete hypersubstitutions are given by mappings from { ffl, 2’4} to
Wi2,2)(X2)/IdV(A’). This means that we have the following 16 concrete
hypersubstitutions:
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(013)F :

(o15)F :

7
3

i

A
2

ik

A
2

A
1

A
2

;7

A
2

bik

A
2

i

A
2

i
3

b
A

2

2,4
61 5

/8

e

(o8)F :

(010)F :

(o12)F

(o14)F :

(o16)F :

7
3

i

A
2

ik

A
2

A
1

A
2

;7

A
2

ik

A
2

A
1

A
2

;7
3

2,A
€1

2,4
ey,

2,4
€

13"

2,4

fA
2
A
1
2,A
62 3

A
1

fsh,
/8

2,A
ey,

/8

fs'.

The 4 relational hypersubstitutions are the 4 mappings
{73.4} — {<, <71 A2 A4} given by

145
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Then the set Relhypa((2,2),(2)) consists of 64 elements which are given by
the following table.

(c1)r (02)r (03)r (04)R

(c1)F | o1 o2 o3 o4

(o2)r | 05 o o7 o8

(03)F | 09 o10 o11 012
(04)r | 013 014 o15 016
(o5)Fr | 017 o18 019 020
(06)F | 021 092 o923 024
(o7)F | 025 026 o7 o928
(08)r | 029 030 031 032
(09)r | 033 o034 035 036
(010)F | 037 038 039 040
(c11)r | oa1 042 043 044
(012)F | 045 046 o47 048
(013)F | 049 T50 o51 052
(014)F | 053 o054 o55 056
(015)F | 057 058 059 60
(016)F | 061 062 063 T64-

Let us give two examples for the application of an extension of a hyper-
substitution to a formula which is satisfied in A. Consider < (e%’A,ef’A).
Then

LA 2,4 2.A
o1 (< (61 €1 )]

= Ry ((01)r(S), @) rler”), @) r[el ) =< (74, e17).

In a similar way, we proceed for all other hypersubstitutions and see that
the resulting formulas are always satisfied in A. This shows that vy(z1,x1)
is a hyperformula.
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e%’A. Then

)

2,4 2.4
761

As a second example consider fi!(e}

2,4
)rley

(

= (o) r(F) (@) rler ™), G1)pler™])

) 2,A

2,A 2.4

2,A
er (

2,4 2,A
el ey,

In a similar way, we proceed in all other cases. This shows that fi(z1,21) =~

1 is a hyperformula.

By definition of the multiplication in Relhyp 4((2,2), (2)) the multiplication
tables of the concrete hypersubstitutions and of the relational hypersub-

stitutions determine completely the multiplication in Relhyp4((2,2),(2)).

These tables are given by

(02)F (03)F (04)F (05)F (06)F (07)F (08)F

(o1)F

F
F
F
F
F
F
F
F
F
F
F
F
F
F
F
F

e e R e R e e e e e e R R e

—_ O O O O O O O O O O

AN N N N AN N N N N N N N N /N /N /N

—_ O O O O O O O O

o~~~ o~ o~ o~ o~ o~ o~~~ o~ o~ o~~~

Y Y Y Y Y Y N Y N N N N N

R R R e e R R e e R N R

—_ O O O O O O O O

o~~~ o~ o~ o~ o~ o~ o~ o~ o~ o~ o~ o~~~

Y Y T T Y Y N Y N N N N N

R e e e e N e e R e e e N N

—_ O O O O O O O

AN N N N N N N N N N N N N N N

—_ O O O O O O O O

1111111

—_ O O O O O O O O

O Y Y Y N N Y N N N N N
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(c10)F (011)F (012)F (013)F (01a)F (015)F (016)F

e e e B S S R B S S
bbb bELEELEELELESESEES
R - I S T R
0 /N N N~~~ O F -~~~ ~H 10 N N N ©
- 10 OO = N O = —= M I~ = = <t o0 — —
bbb bEEbLEELEELEESEESES
R - - N
< —~ o < N ~—~ t -~ t <~~~ o
- O @~ - &N © © - N © - - NN © - -
£ 6 6 66866 6E8 6866 868 6 6 6

— O Y T T N Y N N N N N N N N N
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foe) o A~ N Y~ A~ N M~~~ ™
— 0 M o~ —~ 1n o o~ = 10 O o~ —~ 10 o
bbb bEbLEbELEELELESESEES
B T N N R e e R R
AN /N /N /N /N /N /N /X o O = &N Mo o 0 O
—~ N ™M < N O I~ 0 o~ o~ = o~ = =~ =
Lo bELEELEELEESESEES -]
| K —~H ™o <
A R omR ROR R EERRCERCRCE R sl b e b
R R R i e e e = =R R R R
bbb bEEbLELEELELESELEES P
g
R R Rk i i i T e
S 6666 bB6b666 666 6 6 Py
(((((((((((((((( N[ N H <
S ROCARCIERS
I T T T - -
N R T T g = R RC G ]
El€ 6 6 6 s BB B8 8€EE 6 6 6 o E o e
T S
P R R R R B B . R R I e S I P
R R T I = T e R B B B 2 x - =
bbb ELEELEELEELELESES sle & & 5

031,

029,

We get that
0-17 0-37 0-470-57 0-77 0-87 0-137 0-].57 0-].67 0177 0-].97 0207 0-2170-237 0247

The following multiplication tables show that the idempotent relational

032,033, 035,036, 037, 039, 040, 041,043, 044, 045, 047, 048, 061, 063, 064
hypersubstitutions and the idempotent concrete hypersubstitutions form

Idempotent elements in Relhypa((2,2),(2)) are pairs (op,0r), where op
are all idempotent elements.

and op are idempotent.
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Consequently, the set of all idempotent elements of

subsemigroups.

B = B T TR T R
©° -~ © N ~~~ © N ~~ = ©o ©
- © =H = © = = © ~ A
S L L L L B EELELEE
& H R R K

~—~ o~ o~ —~

‘ (01)r (03)r (04)R

— Y Y Y Y Y~~~ ~— ~—

- A~ A~

— Y Y Y Y~~~ ~— ~—

M Y Y Y Y Y Y Y~ —

D N T = N s N N

~~ I~ I~

— Y Y Y Y~~~ ~— ~—

~~ I~ N N /N /o~

M Y Y Y Y Y Y Y~ —

~~ I~ ~~ ~~ ~~

— Y Y~ Y N ~— ~— ~—

~ N /N /N /N /N

M Y Y Y Y Y Y Y —

A~ N I/~ I/~ /N /N I/~ /N

— Y Y Y Y~~~ ~— ~—

— Y Y Y Y~~~ ~— ~—

Op

Relhypa((2,2),(2)) forms a subsemigroup of Relhyp 4((2,2),(2)).

— Y Y~~~ ~— ~—

satisfies

Every idempotent element of a semigroup (S;-) is regular, i.e.

a-b-a

Again we have only to check the concrete hyper-

a for some b € S. We want to determine all regular elements

of Relhypﬂ((z 2)a (2))

All relational hyper-

But (02)r satisfies (02)%

(02)r. Thus, every relational hypersubstitution satisfies

substitutions and the relational hypersubstitutions.

substitutions except (o2)r are idempotent.

—
o)
]
j=10)
)
=
wn
P
OF
-
o &
g
(]
g
CARS
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Now we consider the non-idempotent concrete hypersubstitutions

(3)F, (07)F, (013)F, (014)F, (015) F-

Then we have
((03)F)® = (03)F on(01)r = (03)F
((013)F)® = (013)F on (01)F = (013)F

((015)F) = (015)F on (012)F = (015)F

This shows that (o3)r, (013)F, (015)F are regular. For (o7)r and (014)F we
get

(o7)r = (o7)F on (015)F on (07)F

(c14)F = (01a)F on (03)F ©on (014)F-

This shows that Relhypa((2,2),(2)) is a regular semigroup which contains
the set of all idempotent elements as a subsemigroup, i.e. Relhyp 4((2,2),(2))
is an orthodox semigroup. Further, on can check that ((o7)r)% = ((07)r)?
and ((014)r)® = ((614)r)?. Therefore the elements of the semigroup
Relhypa((2,2),(2)) have order 1 or 2.
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