COMPLETION OF PARTIALLY ORDERED SETS*

SERGEY A. SOLOVYOV

Department of Mathematics
University of Latvia
19 Raina Blvd., Riga LV-1586, Latvia
e-mail: sergejs@lu.lv

Abstract

The paper considers a generalization of the standard completion of a partially ordered set through the collection of all its lower sets.

Keywords: quantale module, reflective category, Q-poset.

2000 Mathematics Subject Classification: 18B99, 06B23.

1. Introduction

Let **Pos** be the category of partially ordered sets (posets) and orderpreserving maps and let **JCPos** be its subcategory consisting of complete lattices and join-preserving maps. It is known that the category **JCPos** is reflective in **Pos** (see, e.g., [1]). The completion of a poset goes through the collection of all its lower-sets.

Given a quantale Q one can consider the category Q-Mod of modules over Q (see, e.g., [5]). Since the categories **2-Mod** and **JCPos** are isomorphic one could ask about the generalization of the aforesaid result for an arbitrary quantale Q. We answer the question in two ways using the generalization of the category **Pos** in the latter one.

All results from Category Theory used in the paper can be found in [1].

 $^{^{\}ast}\mathrm{This}$ research was supported by the European Social Fund.

2. Definition of the category Q-Mod

In this section we recall basic facts about the category Q-Mod motivated by the category of modules over a ring [3, 4]. Start by recalling the definition of quantale (see, e.g., [5]).

Definition 2.1. A quantale is a triple (Q, \leq, \cdot) such that

- (i) (Q, \leq) is a complete lattice;
- (ii) (Q, \cdot) is a semigroup;
- (iii) $q \cdot (\bigvee S) = \bigvee_{s \in S} (q \cdot s)$ and $(\bigvee S) \cdot q = \bigvee_{s \in S} (s \cdot q)$ for every $q \in Q$ and every $S \subseteq Q$.

Given a quantale Q, denote its top (bottom) element by \top (\bot) respectively.

Definition 2.2. A quantale Q is called *unital* provided that there exists an element $e \in Q$ such that (Q, \cdot, e) is a monoid.

From now on without further references all quantales are supposed to be unital. The following are examples of quantales:

- (i) $(2, \leq, \wedge, 1)$ where $2 = \{0, 1\}$;
- (ii) $([0,1], \leq, \wedge, 1)$ where [0,1] is the unit interval;
- (iii) ($[0,1], \leq, \cdot, 1$) where \cdot is the usual multiplication;
- (iv) the chain **3** with the usual order and the map $\mathbf{3} \times \mathbf{3} \stackrel{\cdot}{\longrightarrow} \mathbf{3}$ given by the table:

$$\begin{array}{c|ccccc} \cdot & 0 & 1 & 2 \\ \hline 0 & 0 & 0 & 0 \\ 1 & 0 & 1 & 2 \\ 2 & 0 & 2 & 2 \\ \end{array}$$

Notice that $\top \neq e$.

As in the last example we do not assume that $\top = e$ for every quantale Q we use

Now define the category Q-Mod of quantale modules or in other words the category of enriched complete lattices over the category JCPos.

Definition 2.3. Given a quantale Q, define the category Q-Mod as follows:

- (i) The objects are triples $(A, \leq, *)$ where (A, \leq) is a complete lattice and $Q \times A \xrightarrow{*} A$ is a map such that
 - (a) $q * (\bigvee S) = \bigvee_{s \in S} (q * s)$ for every $q \in Q, S \subseteq A$;
 - (b) $(\bigvee S) * a = \bigvee_{s \in S} (s * a)$ for every $a \in A, S \subseteq Q$;
 - (c) $q_1 * (q_2 * a) = (q_1 \cdot q_2) * a$ for every $q_1, q_2 \in Q, a \in A$;
 - (d) e * a = a for every $a \in A$.
- (ii) The morphisms are maps $(A, \leqslant, *) \xrightarrow{f} (B, \leqslant, *)$ such that
 - (a) $f(\bigvee S) = \bigvee f(S)$ for every $S \subseteq A$;
 - (b) f(q*a) = q*f(a) for every $a \in A, q \in Q$.

We consider the category Q-Mod as a concrete category over \mathbf{Set} in the following way.

Definition 2.4. Define the forgetful functor Q-Mod $\stackrel{U}{\longrightarrow}$ Set as follows:

$$U((A, \leqslant, *) \xrightarrow{f} (B, \leqslant, *)) = A \xrightarrow{f} B.$$

Definitions 2.3 and 2.4 yield a construct $(Q\operatorname{-Mod}, U)$. One can easily see that **2-Mod** is concretely isomorphic to **JCPos** (compare with integers Z in case of the category $R\operatorname{-Mod}$ of modules over the ring R). Thus while considering the category $Q\operatorname{-Mod}$ we study the category **JCPos** as well.

Remark 2.1. For $Q = \mathbf{1}$ it follows that $A \in \mathcal{O}b(Q\operatorname{-Mod})$ iff $A \cong \mathbf{1}$, i.e., **1-Mod** is equivalent to the terminal category.

The following theorem states a useful property of the category Q-Mod.

Theorem 2.1. The category Q-Mod is a monadic construct.

Corollary 2.2. The category Q-Mod is complete, cocomplete, wellpowered, extremally co-wellpowered, and has regular factorizations.

3. Completion of partially ordered sets

In this section we generalize the standard method of completion of posets given in the following proposition (see [1]).

Proposition 3.1. The category JCPos is reflective in Pos.

Proof. Given a poset A one has the complete lattice B_A of all lower-sets of A and the embedding $A \hookrightarrow B_A : a \mapsto \downarrow a$ which is the reflection arrow for A.

We are going to generalize the result for the category Q-Mod. The first approach is as follows.

Proposition 3.2. Let Q be a quantale. Then the category Q-Mod is reflective in Pos.

Proof. Given a poset A, the reflection arrow can be constructed as follows. Define $B_A = \{h \in Q^A \mid a \leq b \text{ implies } h(b) \leq h(a)\}$ and let $A \xrightarrow{r} B_A : a \mapsto a$ where

$$\downarrow a: A \longrightarrow Q: b \mapsto \begin{cases} e, & b \leqslant a \\ \bot, & \text{otherwise.} \end{cases}$$

Given a Q-Mod-object B and a Pos-morphism $A \xrightarrow{f} B$, there exists a unique Q-Mod-morphism $B_A \xrightarrow{\overline{f}} B$ such that $\overline{f} \circ r = f$, i.e., $\overline{f}: B_A \longrightarrow B: h \mapsto \bigvee_{a \in A} h(a) * f(a)$.

Another approach is more sophisticated. Start with the following definition.

Definition 3.1. Given a quantale Q, define the category Q-Pos as follows:

- (i) The objects are triples $(A, \leq, *)$ where (A, \leq) is a poset and $Q \times A \xrightarrow{*} A$ is a map such that
 - (a) the map $A \xrightarrow{q*} A$ is order-preserving for every $q \in Q$;
 - (b) the map $Q \xrightarrow{*a} A$ is order-preserving for every $a \in A$;
 - (c) $q_1 * (q_2 * a) = (q_1 \cdot q_2) * a$ for every $q_1, q_2 \in Q, a \in A$;
 - (d) e * a = a for every $a \in A$.
- (ii) The morphisms are maps $(A,\leqslant,*) \xrightarrow{f} (B,\leqslant,*)$ such that
 - (a) f is order-preserving;
 - (b) $q * f(a) \leq f(q * a)$ for every $a \in A$, $q \in Q$ (notice that we use a rather non-standard definition of morphisms since one would expect "=" instead of " \leq ").

The objects of the category Q-**Pos** will be referred to as Q-posets. One can consider the category Q-**Pos** as a concrete category over **Set** in the following way.

Definition 3.2. Define the forgetful functor Q-Pos \xrightarrow{U} Set as follows:

$$U((A, \leqslant, *) \xrightarrow{f} (B, \leqslant, *)) = A \xrightarrow{f} B.$$

Definitions 3.1 and 3.2 give a construct $(Q\text{-}\mathbf{Pos}, U)$. One can easily see that **2-Pos** is concretely isomorphic to **Pos** (for a poset A let $*: \mathbf{2} \times A \longrightarrow A: (q,a) \mapsto a$). Thus while considering the category $Q\text{-}\mathbf{Pos}$ we study the category **Pos** as well.

Every Q-Pos-object A has the following map

$$_ \to _ : A \times A \longrightarrow Q : (a,b) \mapsto \bigvee \{q \in Q \, | \, q*a \leqslant b\}.$$

Consider a property of the aforesaid map. Start by recalling some preliminary notions (cf. Chapter 0–3 in [2]).

Definition 3.3. Let **C** be an ordered category (i.e., hom-sets are partially ordered and composition on both sides is order-preserving). A pair of **C**-morphisms $A \xrightarrow{g} B$ is called an adjunction between A and B provided that $id_B \leq g \circ d$ and $d \circ g \leq id_A$.

Notice that for every quantale Q one has the ordered category Q-Pos.

Definition 3.4. Let A be a Q-poset and let $q \in Q$. Define $A \xrightarrow{q_A} A : a \mapsto q * a$.

Given a Q-**Pos**-morphism $A \xrightarrow{f} B$, it follows that $q_B \circ f \leqslant f \circ q_A$ for every $q \in Q$. Moreover, Definition 3.4 gives the following characterization of adjunctions in Q-**Pos**.

Lemma 3.3. Let $A \stackrel{g}{\underset{d}{\longleftarrow}} B$ be Q-Pos-morphisms. The following are equivalent:

- (i) (g,d) is an adjunction between A and B;
- (ii) $q_B \leq g \circ q_A \circ d$ and $d \circ q_B \circ g \leq q_A$ for every $q \in Q$.

Proof. (i) \Rightarrow (ii) If $q \in Q$, then $q_B \leqslant q_B \circ (g \circ d) \leqslant g \circ q_A \circ d$ and $d \circ q_B \circ g \leqslant (d \circ g) \circ q_A \leqslant q_A$.

$$(ii) \Rightarrow (i) \text{ Set } q = e.$$

Theorem 3.4. Let $A \xrightarrow{g} B$ be maps between Q-posets. The following are equivalent:

- (i) (g,d) is an adjunction between A and B;
- (ii) (a) d is a Q-Pos-morphism;
 - (b) $q(a) = \max d^{-1}[\downarrow a]$ for every $a \in A$;
 - (c) $d \circ q_B \circ g \leqslant q_A$ for every $q \in Q$.

Proof. (i) \Rightarrow (ii) See the proof of Theorem 0-3.2 in [2] and use Lemma 3.3.

(ii) \Rightarrow (i) By Theorem 0–3.2 in [2] (g,d) is an adjunction in **Pos**. By $q_B \circ g \leqslant (g \circ d) \circ q_B \circ g = g \circ (d \circ q_B \circ g) \leqslant g \circ q_A$, g is a Q-**Pos**-morphism.

Now the promised property.

Corollary 3.5. Let A be a Q-poset and let $a \in A$. The following are equivalent:

- (i) $(a \to _, _*a)$ is an adjunction between A and Q (and thus $a \to (\bigwedge S) = \bigwedge_{s \in S} (a \to s)$ for every $S \subseteq A$ such that $\bigwedge S$ exists in A);
- (ii) $(a \rightarrow b) * a \leq b$ for every $b \in A$.

Corollary 3.5 gives rise to the following definition which will be useful for us later.

Definition 3.5. Given a Q-poset A, say that it satisfies condition (\mathfrak{A}) provided that $(a \to b) * a \leq b$ for every $a, b \in A$.

Every Q-module satisfies condition (\mathfrak{A}) . The situation with Q-posets, however, is different as shows the following example. Let $\mathbf{2}$ be ordered by equality. Define $Q \times \mathbf{2} \xrightarrow{*} \mathbf{2} : (q, a) \mapsto a$. Then $\mathbf{2}$ is a Q-poset which does not satisfy (\mathfrak{A}) .

Return to the completion of posets.

Lemma 3.6. Let A be a Q-Pos-object. Then $(b \to c) \cdot (a \to b) \leq (a \to c)$ for every $a, b, c \in A$.

Proof. Straightforward computations.

Now the main proposition.

Proposition 3.7. Let Q be a quantale. Then the category Q-Mod is reflective in Q-Pos.

Proof. Given a Q-poset A, the reflection arrow can be constructed as follows. Define $B_A = \{h \in Q^A \mid h(b) \cdot (a \to b) \leq h(a) \text{ for every } a, b \in A\}$. Then B_A is a submodule of Q^A (closed under arbitrary meets) and $h \in B_A$ iff $h(a) = \bigvee_{b \in A} h(b) \cdot (a \to b)$ for every $a \in A$. Let $A \xrightarrow{r} B_A : a \mapsto _ \to a$. By Lemma 3.6 the map r is correct. For the rest see Proposition 3.2.

Below are some properties of the reflection arrow $A \xrightarrow{r} B_A$.

Lemma 3.8. Let Q be completely distributive. Then r preserves all existing meets.

Proof. Let $S \subseteq A$ be such that $\bigwedge S$ exists in A and let $a \in A$. Show that $a \to (\bigwedge S) = \bigwedge_{s \in S} (a \to s)$. Set $a \to (\bigwedge S) = \bigvee T$ and $\bigwedge_{s \in S} (a \to s) = \bigwedge_{s \in S} \bigvee T_s$. It will be enough to show that $\bigwedge_{s \in S} \bigvee T_s \leqslant \bigvee T$. By the assumption, $\bigwedge_{s \in S} \bigvee T_s = \bigvee_{f \in F} \bigwedge_{s \in S} f(s)$ where F is the set of choice functions defined on S. Since $\bigwedge_{s \in S} f(s) \in T$ for every $f \in F$, the result follows.

Lemma 3.9. Let A satisfy condition (\mathfrak{A}) . Then r is injective and preserves all existing meets.

Proof. Since the second statement follows from Corollary 3.5 we show that r is injective. Let $a, b \in A$ with r(a) = r(b). Then $e \le a \to a = (r(a))(a) = (r(b))(a) = a \to b$ implies $a = e * a \le (a \to b) * a \le b$. Similarly $b \le a$.

In conclusion let us note that it would be interesting to consider other generalizations of completions, e.g., of the Dedekind-MacNeille completion (see, e.g., [6]).

References

- [1] J. Adámek, H. Herrlich and G.E. Strecker, Abstract and Concrete Categories, John Wiley 1990.
- [2] G. Gierz, K.H. Hofmann and *et al.*, Continuous Lattices and Domains, Cambridge University Press 2003.
- [3] T. Hungerford, Algebra, Springer-Verlag 2003.
- [4] S. Lang, Algebra, 3rd ed., Springer-Verlag 2002.

- [5] K.I. Rosenthal, The Theory of Quantaloids, Addison Wesley 1996.
- [6] T.S. Blyth, Lattices and Ordered Algebraic Structures, Springer-Verlag 2005.

Received 2 March 2006 Revised 23 May 2006