
Discussiones Mathematicae 35
General Algebra and Applications 27 (2007 ) 35–47

THE DIMENSION OF A VARIETY

Ewa Graczyńska
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Abstract

Derived varieties were invented by P. Cohn in [4]. Derived varieties
of a given type were invented by the authors in [10]. In the paper we
deal with the derived variety Vσ of a given variety, by a fixed hypersub-
stitution σ. We introduce the notion of the dimension of a variety as
the cardinality κ of the set of all proper derived varieties of V included
in V.

We examine dimensions of some varieties in the lattice of all
varieties of a given type τ . Dimensions of varieties of lattices and
all subvarieties of regular bands are determined.
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1. Notations

By τ we denote a fixed type τ : I → N , where I is an index set and N is
the set of all natural numbers. In the paper we deal only with finite types,
i.e., card(I) is finite. We use the definition of an n-ary term of type τ from
[4, p. 6].

T (τ) denotes the set of all term symbols of type τ . For a given variety
V of type τ , two terms p and q of type τ are called equivalent (in V ) if the
identity p ≈ q holds in V .

Definition 1.1. For a given type τ , F denotes the set of all fundamental
operations F = {fi : i ∈ I} of type τ , i.e., τ(i) is the arity of the operation
symbol fi, for i ∈ I. Let σ = (ti : i ∈ I) be a fixed choice of terms of type τ

with τ(ti) = τ(fi), for every i ∈ I.

Recall from [10] (cf. [4, p. 13]), that for a given σ, the extension of σ

to the map σ from the set T (τ) to T (τ), leaving all the variables unchanged
and acting on composed terms as:

σ(fi(p0, . . . , pn−1)) = σ(fi)(σ(p0), . . . , σ(pn−1))

is called a hypersubstitution of type τ .

In the sequel, we shall use σ instead of σ for a hypersubstitution.

A hypersubstitution σ will be called trivial, if it is the identity mapping.

The set of all hypersubstitutions of type τ will be denoted by H(τ).

For any algebra A = (A, Ω) = (A, (fA
i

: i ∈ I)) ∈ V , of type τ , the
algebra Aσ = (A, (tA

i
: i ∈ I)) or shortly Aσ = (A, Ωσ), for Ωσ = (ti : i ∈ I)

is called a derived algebra (of a given type τ) of A, corresponding to σ, for
any σ ∈ H(τ) (cf. [10, 17]).

Definition 1.2. The variety generated by the class of all derived algebras
Aσ, of algebras A ∈ V will be called the derived variety of V using σ and it
will be denoted by Vσ, for any fixed σ ∈ H(τ).

For a class K of algebras of a given type τ , D(K) denotes the class of
all derived algebras of K for all possible choices of σ of type τ , i.e.:

D(K) =
⋃

{Kσ : σ ∈ H(τ)}.

D is a class operator examined in [10] (cf. [16, 17]).
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Let us note, that Vσ = HSP (σ(V )), for a given variety V and σ, where
σ(V ) denotes the class of all derived algebras Aσ, for A ∈ V .

Recall from [12]:

Definition 1.3. For a given set Σ of identities of type τ , E(Σ) denotes the
set of all consequences of Σ by the rules (1)–(5) of inferences of G. Birkhoff
(cf. [1, 12]).

Mod(Σ) denotes the variety of algebras determined by Σ.

A variety V is trivial if all algebras in V are trivial (i.e., one-element).
Trivial varieties will be denoted by T . A subclass W of a variety V which
is also a variety is called subvariety of V .

V is a minimal (or equationally complete) variety if V is not trivial but
the only subvariety of V , which is not equal to V is trivial.

We accept the following definition from [17]:

Definition 1.4. A derived variety Vσ is proper if Vσ is not equal to V , i.e.,
Vσ 6= V .

Note, that Vσ may be not proper only for nontrivial σ.

Recall from [10]:

Definition 1.5. A variety V of type τ is solid if V contains all derived
varieties Vσ for every choice of σ of type τ , i.e., D(V ) ⊆ V .

Definition 1.6. A variety V of type τ is fluid if the variety V contains no
proper derived varieties Vσ for every choice of σ of type τ .

Fluid varieties appear naturally in many well known examples (cf. [11]).
Derived varieties are an important tool for describing the lattice of all subva-
rieties of a given variety and therefore we expect some practical applications
of the invented notion.

Note, that our definition of a fluid variety does not coincide with that
of [17].

2. The Dimension

Definition 2.1. If V is a variety of type τ , then the dimension of V is the
cardinality κ of the set of all proper derived varieties Vσ of V included in V ,
for σ ∈ H(τ). We write then that κ = dim(V ).
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From the definitions above it follows that the trivial variety T of a given
type is of dimension 0.

Theorem 2.1. Minimal varieties are of dimension 0. Fluid varieties are of
dimension 0.

Later on we shall use the well-known conjugate property of [3] (cf. [9, p. 35]
and [11]) and quote as:

Theorem 2.2. Let A be an algebra and σ be a hypersubstitution of type τ .
Then an identity p ≈ q of type τ is satisfied in the derived algebra Aσ if and
only if the derived identity σ(p) ≈ σ(q) holds in A.

From the theorem above, it immediately follows:

Theorem 2.3. Let V be a variety and two hypersubstitutions σ1 and σ2 of
type τ be given. If σ1(fi) ≈ σ2(fi), is an identity of V for every i ∈ I, then
the derived varieties Vσ1

and Vσ2
are equal.

Proof. The proof follows by induction on the complexity of terms of
type τ .

In the proof we use the relation ∼V on sets of hypersubstitutions which was
introduced by J. P lonka in [15] and used in [3] to determine the notion of V -
equivalent hypersubstitutions in order to simplify the procedure of checking
whether an identity is satisfied in a variety V as a hyperidentity.

Recall from [13, p. 221], that an algebra A is locally finite iff every
finitely generated subalgebra of A is finite. A class of algebras is locally
finite iff each of its members is a locally finite algebra.

Theorem 2.4. Assume that a variety V (of a finite type) is locally finite.
Then V is of a finite dimension.

Proof. As V is locally finite, therefore every finitely generated free algebra
in V is finite and therefore for every n ∈ N there is only a finite number
of non-equivalent n-ary terms in V . Moreover, in V there are only finitely
many fundamental operations (by the assumption). Therefore in V there
is only a finite number of non-equivalent hypersubstitutions of type τ . In
cosequence there are only finitely many derived varieties of V and dim(V )
is finite.
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3. Dimensions of varieties of lattices

We present some examples in lattice varieties as an answer to a problem
posed by Brian Davey (La Trobe University, Australia) during the
Conference on Universal Algebra and Lattice Theory (July 2005) at Szeged
University, Szeged (Hungary).

Let L = (L,∨,∧) be a lattice. A variety Lσ derived from a variety L of
lattices must not be a variety of lattices.

This follows from the fact, that there are only four non-equivalent binary
terms in lattices, namely x, y, x ∨ y and x ∧ y. Given a hypersubstitution
σ of type (2,2). If σ is trivial, then the derived algebra Lσ is L itself. If
one takes σ generated by σ(x ∨ y) = x ∧ y and σ(x ∧ y) = x ∨ y, then Lσ

is the dual lattice Ld = (L,∧,∨). Otherwise the derived algebra Lσ is not
a lattice at all, as some lattice axioms will be failed, unless L is trivial (i.e.,
one-element lattice).

We got immediately:

Example 3.1. Let V be a nontrivial variety of lattices. Then a derived
variety Vσ is the dual variety of lattices V d or a variety which is not a
variety of lattices.

Example 3.2. The variety L of all lattices in type (2,2) is fluid and not
solid.

The variety L is fluid as it is selfdual, i.e., L = Ld. It is not solid, as
the commutativity laws for ∨ and ∧ are not satisfied as hyperidentities in
lattices, for example.

Theorem 3.1. Every variety of lattices is fluid.

Proof. Let V be a variety of lattices. Consider the dual variety of V , i.e.,
the variety V d of all dual lattices of V . Then there are only two possibilities:

(i) V d ⊆ V and consequently V = V d

or

(ii) V and V d are incomparable in the lattice of all varieties of lattices.

Therefore we conclude, that either V is selfdual or V and V d are incompa-
rable. In consequence V is fluid and dim(V ) = 0.
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4. Dimensions of subvarieties of regular bands

In this section we concentrate on the lattice of all subvarieties of regular
bands, described in [6, 7] and [8].

Definition 4.1. Bands is the variety B of algebras of type (2), defined by:
associativity and idempotency (i.e., a band is an idempotent semigroup).

Following [5, p. 11], let us note, that the variety of bands has only six non-
equivalent binary terms, therefore only six hypersubstitutions of type (2) in
the variety of bands should be checked, namely: σ1 − σ6 defined as follows:
σ1(xy) = x, σ2(xy) = y, σ3(xy) = xy, σ4(x, y) = yx, σ5(xy) = xyx and
σ6(xy) = yxy to be considered in order to determine all derived varieties of
a given subvariety of regular bands.

Recall Proposition 3.1.5(i) from [4, p. 11, 77]:

Definition 4.2. A variety V of type (2) is called hyperassociative if the
associativity law is satisfied in V as a hyperidentity.

Proposition 4.1. A variety of bands is hyperassociative if and only if it is
contained in the variety RegB of regular bands.

The propositions above may be considered as a motivation of our interest
in the lattice of all subvarieties of the variety of regular bands.

In order to determine the dimension of all subvarieties of RegB, we shall
use the following two theorems of [11]:

Theorem 4.1. The variety of B of all bands constitutes a not fluid and not
solid variety of type (2).

Theorem 4.2. A variety V of bands is fluid if and only if it is minimal.

Remark 4.1. Note, that a nontrivial variety V is of dimension 0 if and only
if it is fluid.

Definition 4.3. An identity e of the form p ≈ q is called leftmost (rightmost)
if and only if it has the same first (last) variable on each side. An identity
which meets both of these conditions is called outermost.

First we express three technical lemmas:

Lemma 4.1. Let Σ be a set of identities of type τ which are leftmost
(or rightmost). Then the set E(Σ) consists only of leftmost (rightmost)
identities.
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Proof. The proof follows from the observation that all rules of inference
(1)–(5) preserve the property of being the leftmost (or rightmost) iden-
tity. Therefore the closure of the set of left(right)most identities consists
of left(right)most identities.

From [6, 7] and [8] it follows that every subvariety of the variety B of all
bands is defined by one additional identity added to two axioms of bands
(i.e., associativity and idempotency).

Lemma 4.2. Assume that V and W are varieties of regular bands, W is
defined by a single identity p ≈ q, i.e., W = Mod(p ≈ q) (in the variety of
regular bands). Then:

Vσ ⊆ W, for a given σ ∈ H(τ),

if and only if the derived identity σ(p) ≈ σ(q) is satisfied in V , i.e., V |=
σ(p) ≈ σ(q).

Proof. Vσ = HSP (σ(V )) ⊆ W if and only if σ(V ) |= p ≈ q. By Theorem
2.2 we conclude that Aσ |= p ≈ q, for every algebra Aσ ∈ σ(V ), if and only
if A |= σ(p) ≈ σ(q), for every algebra A ∈ V , i.e., V |= σ(p) ≈ σ(q).

A simple generalization of the above lemma is the following:

Lemma 4.3. Assume that V and W are varieties of type τ , W is defined
by a set Σ of identities of type τ , i.e., W = Mod(Σ). Then:

Vσ ⊆ W , for a given σ ∈ H(τ),

if and only if the derived identity σ(p) ≈ σ(q) is satisfied in V , i.e.,

V |= σ(p) ≈ σ(q), for every identity p ≈ q ∈ Σ.

Proof. The proof is similar as that of Lemma 4.2, where p ≈ q is any
identity of the given axiomatic Σ.
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The next three propositions show some regularities in the dimensions of all
subvarieties of regular bands described in [7, p. 244] and [8]:

Definition 4.4. The variety RB in the variety B bands is defined by the
identity: y ≈ yxy. It is called the variety of rectangular bands.

The fact that the variety RB is solid was proved in [5, p. 96].

We expressed the situation of theorems above on the diagram, which
describes the bottom part of the lattice of all identities of bands, see [10] and
[12, p. 244] Proposition 3.1.5 of [4]:

ps

s

s

s

s

s

s

s

zxyz = zyxz

s

s

s

zxyz = zxzyz

ss

V5
V6

V4

V2

xy = yyx = y

V1

V3

x = y

SL

RB

RegB

NB

LZ RZ

T

Theorem 4.3. The variety RB is of dimension 2.

Proof. The variety of RB of rectangular bands have only two nontrivial
subvarieties, namely the variety LZ defined by the identities: yx ≈ y (called
the variety of left-zero semigroups) and the variety RZ defined by xy ≈ y
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(called the variety of right-zero semigroups), respectively. Both of them are
derived varieties of RB by the first and the second projection, respectively.
To prove that, let Aσ1

∈ (RB)σ1
, for A ∈ RB. Then the identity yx ≈ y

is satisfied in Aσ1
, as: σ1(yx) ≈ y ≈ y ≈ σ1(y) is satisfied in A and

consequently in (RB)σ1
. Similarly for σ2. We conclude that dim(RB) = 2.

Theorem 4.4. The varieties V1 and V2 of bands defined by the identities:

zxy ≈ zyx(1)

and

yxz ≈ xyz, respectively ,(2)

are mutually derived by σ4. Moreover, dim(V1) = dim(V2) = 1.

Proof. Note, that the varieties V1 and V2 has only two proper nontrivial
subvarieties, namely: the variety of left (right) zero-semigroups (respec-
tively) and the variety SL of semilattices. The variety of semilattices,
defined (in the variety of bands) by the commutativity law: xy≈ yx is not
a derived variety of V1, neither of V2. This follows from the fact, that if the
variety SL of semilattices would be a derived variety of V1, then SL=(V1)σ5

or SL = (V1)σ6
. This is impossible, via Theorem 1.3, as the derived identity

of xy ≈ yx by the hypersubstitions σ5 (or σ6), i.e., σ5(xy) ≈ σ5(yx) (or
σ6(xy) ≈ σ6(yx)) is of the form xyx ≈ yxy is neither leftmost nor rightmost
and therefore, by Lemma 4.1 is not satisfied in V1 as every identity satisfied
in V1 is leftmost. Similarly for V2. The proof follows from the fact that the
only proper derived variety of V1 included in V1 is the variety LZ of left zero
semigroups. Similarly, one can show that the only proper derived subvariety
of V2 by the second projection σ2 is the variety RZ of right zero semigroups.
Finally we conclude that dim(V1) = dim(V2) = 1.

Definition 4.5. Varieties of dimension 1 will be called prefluid.

Theorem 4.5. The varieties V3 and V4 of bands defined by the identities:

yx ≈ yxy(3)

and

xy ≈ yxy, respectively ,(4)

are mutually derived by σ4. Moreover, dim(V3) = dim(V4) = 1.
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Proof. The variety (V3)σ1
is the variety LZ of bands defined by yx ≈ y.

We obtain that: (V3)σ1
is different from V3, therefore (V3)σ1

is proper and
(V3)σ1

⊆ V3. Note, that the derived variety (V3)σ2
is proper and is the

variety RZ of right-zero semigroups but is not included in V3.
Similarly as in the previous theorem we conclude, that the variety SL of
semilattices is not a derived variety of V3, as all the identities of V3 are left-
most. In order to exclude that, the variety V1 defined by the identity (1)
zxy ≈ zyx is the derived variety of V3 by σ5 consider the derived identity
σ5(zxy) ≈ σ5(zyx) of (1) by σ5, i.e., the identity zxyxz ≈ zyxyz. If this
identity would be satisfied in V3, then the identity zxyz ≈ zyxz would be
satisfied in V3, which is not true due to the results of [6]–[8]. Dually, the
derived variety of V3 by σ6 is not the variety V1. Therefore we conclude,
that dim(V3) = 1. Similarly one can prove that dim(V4) = 1.

Theorem 4.6. The varieties V5 and V6 of bands defined by the identities:

zxy ≈ zxzy(5)

and

yxz ≈ yzxz, respectively ,(6)

are mutually derived by σ4. Moreover, dim(V5) = dim(V6) = 3.

Proof. The proof that (V5)σ1
((V5)σ2

) is the variety LZ(RZ) of left (right)
zero semigroups follows from the proof of previous observations. Obviously:
σ4(V5) = V6, as the derived identity σ4(yxz) ≈ σ4(yzxz) of (6) by σ4 gives
rise to the identity (5) zxy ≈ zxzy and vice versa. Therefore V6 and V5

are mutually derived by σ4. We will show that the derived variety of V5 by
the hypersubstitution σ5 is the variety V3, i.e., σ5(V5) = V3. To show this
consider the derived identity of (3) by σ5, i.e., the identity σ5(yx) ≈ σ5(yxy).
This gives rise to the identity yxy ≈ yxyxy, which is obviously satisfied in V5.
Moreover, note that the derived identity of (1) by σ5, i.e., σ5(zxy) ≈ σ5(zyx)
gives rise to the identity zxyxz ≈ zyxyz, which can not be satisfied in V5,
as otherwise the identity zxyz ≈ zyxz would be satisfied in V3, which is
impossible by the results of [6]–[8] and it has been shown already in the
proof of Theorem 4.5. Similarly one can show, that the derived variety
of V5 by σ6 is the variety V4. We conclude that dim(V5) = 3. Similarly,
dim(V6) = 3.
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Definition 4.6. The variety NB of normal bands is defined by the identity:

zxyz ≈ zyxz.(7)

Theorem 4.7. dim(NB) = 4.

Proof. For solidity of the variety NB confront [5, p. 96]. It follows,
that all derived varieties of the variety NB are included in the variety
of NB. Similarly as before we show that (NB)σ1

is the variety LZ of
left-zero semigroups and (NB)σ2

is the variety RZ of right-zero semigroups.
Both of them are proper subvarieties of NB. It is obvious that (NB)σ3

=
(NB)σ4

= NB. We show only that (NB)σ5
= V1, as the derived identity

of (1) zxy ≈ zyx by σ5, i.e., σ5(zxy) ≈ σ5(zyx) gives rise to the identity
zxyxz ≈ zyxyz satisfied in NB. In order to exclude that the variety LZ

of left zero semigroups, defined by the identity yx ≈ y equals to (NB)σ5
,

notice that the derived identity of yx ≈ y by σ5 is the identity yxy ≈
y, which is not satisfied in NB, as the variety of NB is defined by the
set of regular identities (cf. [14]), which has only regular consequences.
Similarly (NB)σ6

= V2, as the derived identity of (2) yxz ≈ xyz by σ6, i.e.,
σ6(yxz) ≈ σ6(xyz) gives rise to the identity zxzyzxz ≈ zyzxzyz satisfied in
NB and we conclude that dim(NB) = 4.

Theorem 4.8. dim(RegB) = 4.

Proof. For solidity of the variety RegB confront [5, p. 96]. Two derived
subvarieties of RegB are LZ and RZ, by σ1 and σ2, respectively. The
derived varieties of RegB via σ3 and σ4 are equal to RegB. We show that
(RegB)σ5

= V3. To prove that, consider the derived identity of the identity
(3) yx ≈ yxy by σ5, i.e., the identity σ5(yx) ≈ σ5(yxy) which gives rise to
the identity yxy ≈ yxyxy which is satisfied in RegB. In order to show that
the derived variety of RegB by σ5 is not equal to the variety V1, note that the
derived identity of (1) zxy ≈ zyx by σ5, i.e., the identity σ5(zxy) ≈ σ5(zyx)
gives rise to the identity zxyxz ≈ zyxyz which is not satisfied in RegB, as
it was shown in the proof of Theorem 4.6 that this identity is not satisfied
in V5, which is a subvariety of RegB. Similarly, one can show, that the
derived variety of RegB by σ6 is the variety V4. This finishes the proof that
dim(RegB) = 4.
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We expressed the situation of theorems above on the diagram:

ps

s

s

s

s

s

s

s

s

s

s

ss
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1
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0 0
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