Discussiones Mathematicae
General Algebra and Applications 27(2007) 21-33

AXIOMATIZATION OF QUASIGROUPS

JONATHAN D.H. SMITH

Department of Mathematics, lowa State University
Ames, Towa 50011-2064, U.S.A.

e-mail: jdhsmith@math.iastate.edu
http://orion.math.iastate.edu/jdhsmith/

Abstract

Quasigroups were originally described combinatorially, in terms
of existence and uniqueness conditions on the solutions to certain
equations. Evans introduced a universal-algebraic characterization, as
algebras with three binary operations satisfying four identities.
Now, quasigroups are redefined as heterogeneous algebras, satisfying
just two conditions respectively known as hypercommutativity and
hypercancellativity.
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1. INTRODUCTION

Quasigroups are one of the oldest topics in algebra and combinatorics,
dating back at least to Euler [1]. Evans [2| showed how they could be
defined in universal-algebraic fashion, using three binary operations and
four identities. Nevertheless, this definition does not seem entirely satis-
factory for such a fundamental object of mathematics, since it requires an
explicit listing of the four apparently related identities. A new definition
is presented in the current paper, using heterogeneous algebras known as
hyperquasigroups. With this new definition, just two identities are needed:
hypercommutativity and hypercancellativity.
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The original combinatorial and equational definitions of quasigroups
are recalled in Section 2. Section 3 introduces the higher level of a
hyperquasigroup, a structure known as a reflexion-inversion space. Various
examples of such spaces are discussed. Hyperquasigroups themselves are
defined in Section 4. Section 5 then exhibits hyperquasigroups embodying
each of the types of reflexion-inversion space presented in Section 3. In
particular (Proposition 5.2), each quasigroup is part of a hyperquasigroup
with the symmetric group S3 on three symbols as the corresponding
reflexion-inversion space. In the converse direction, Section 6 shows that
each hyperquasigroup comprises a set equipped with disjoint sets of
mutually conjugate quasigroup operations.

2. QUASIGROUPS

A quasigroup @) was first understood as a set equipped with a binary
multiplication, denoted by - or mere juxtaposition, such that in the equation

r-y==z,

knowledge of any two of x,y,z specifies the third uniquely. To make a
distinction with subsequent concepts, it is convenient to describe a
quasigroup in this original sense as a combinatorial quasigroup (Q,-).

For each element ¢ of a set () with a binary multiplication denoted by -
or juxtaposition, a left multiplication Lg(q) or

L(q) : @ = Q2 — qx

and right multiplication Rg(q) or

R(q): Q — Qs — xq

are obtained from the binary multiplication by the process of “Currying,”
the usual trick for reducing a function of two arguments (in this case the
multiplication) to a parametrized family of functions of a single argument
(compare [6]). If (Q, -) is a quasigroup, then the right and left multiplications
are bijections of the underlying set (). Indeed, the bijectivity of Ly(¢) and
Rg(q) for each element ¢ of () is equivalent with (@, -) being a quasigroup.

Unfortunately, the combinatorial definition of a quasigroup is unsuit-
able for most algebraic purposes: A surjective multiplicative homomorphism
f:(Q,-) — (P,-) whose domain is a combinatorial quasigroup (Q,-) may
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have an image (P,-) which is not a combinatorial quasigroup (compare
[6, Example 1.2.2.1], for instance). To circumvent this problem, Evans [2]
redefined quasigroups as equational quasigroups, sets (Q,-,/,\) equipped
with three binary operations of multiplication, right division / and
left division \, satisfying the identities:

(IL) a\(-y) =y;
(IR) y=(y- )/
(SL) z - (z\y) =y
(SR) y=(y/z) =

Note that (IL), (IR) give the respective injectivity of the left and right mul-
tiplications, while (SL), (SR) give their surjectivity. Thus an equational
quasigroup (Q,-,/,\) yields a combinatorial quasigroup (Q@,-). Conversely,
a combinatorial quasigroup (Q, ) yields an equational quasigroup (Q,-,/,\)
with z/y = xR(y)~! and x\y = yL(z)~ L.

In an equational quasigroup (Q, -, /,\), the three equations

(2.1) T1-To = T3, x3/x9 = 71, x1\T3 = T2
are equivalent. Introducing the opposite operations
zoy=y-x, wffy=ylr, a\y=y\
on @, the equations (2.1) are further equivalent to the equations
To0X| = T3, xo//x3 = X7, x3\\z1 = x3.
Thus each of
(2.2) (@), (@), (@)\), (@p9), (/) (@\)

is a (combinatorial) quasigroup. In particular, note that the identities (IR)
in (@,\) and (IL) in (Q,/) yield the respective identities

(DL) z/(y\r) =y,

(DR) y=(z/y)\x

in the basic quasigroup divisions. The six quasigroups (2.2) are known as
the conjugates, “parastrophes” [4, p. 43] [5] or “derived quasigroups” [3] of

(Q?)
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3. REFLEXION-INVERSION SPACES

Hyperquasigroups, as defined in Section 4 below, consist of structure at three
levels, amounting to a two-sorted algebra (compare Remarks 3.2 and 4.2).
The second (higher-level) sort is given in this section as follows.

Definition 3.1. A reflezion-inversion space (G,o,7) is a set G equipped
with two involutive actions, a reflexion

(3.1) c:G—-G;g—o0g

and an inversion

(3.2) 7T:G—>Gig—Tg.

The involutivity of the actions means that
cog=¢g and 7TTg=yg

for each point g of the reflexion-inversion space.

Remark 3.2. Let H be the free product of two copies (o) and (1) of the
group of order two. The underlying set of this group is the set of (possibly
empty) words in the two-letter alphabet {0, 7} having no consecutive letters
repeated. The product is given by the juxtaposition of words, followed by
cancellation of repeated pairs of letters. For example, 70 - o707 = o7T.
Inversion in the group just reverses the words, for example (o707)"! =
Toto. A reflexion-inversion space (G,o,7) as in Definition 3.1 may then
be interpreted as a left H-set with actions specified by (3.1) and (3.2). It is
nevertheless important to note that reflexion-inversion spaces are richer than
H-sets, since their structure includes the choice of the specific involutions o
and 7.

The remainder of the section presents some typical examples of reflexion-
inversion spaces that may form part of a hyperquasigroup structure. The first
example serves to motivate the terminology of Definition 3.1.

Example 3.3. Let F be a field. Let G be the complement F ~ {0,1} of
the set {0,1} in F'. Define

0:G—=G;g—1—g
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and

7:G—-Gg—g .

Then (G,o0,7) forms a reflexion-inversion space. Note that the abstract
inversion 7 is a literal inversion in this case. If I is the field of real or
complex numbers, then the abstract reflexion o is literal reflexion in the
point 1/2.

Example 3.4. Let G be a group containing two elements o and 7 with

02 = 72 = 1. Then G forms a reflexion-inversion space in which the reflection

and inversion are the respective left multiplications by ¢ and 7.

Example 3.5. Let C/27iZ denote the quotient of the set of complex num-
bers by the equivalence relation

{(2,7) € C?| 2z — 2 € 2miZ}.

It is also convenient to identify each equivalence class in the set C/271iZ with
its unique representative element in the fundamental domain

{r+iyeC|zeR,ye[0,2r) CR}.

Let G = (C/27iZ)%. (Topologically, this space is the product T? x R? of a
torus with a plane.) Define

o:G — G;(a,b) — (b,a)

and
7:G — G;(a,b) — (im+a—b,-b).

Then G forms a reflexion-inversion space.
Example 3.6. Let n be an even number, and let G = (Z/nZ)2. Define
o:G — G;(a,b) — (bya)

and
7:G — G;(a,b) — (a—b+n/2,-b).

Then G forms a reflexion-inversion space.
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Example 3.7. Let A be an abelian group, and let G = A2. Define
o:G — G;(a,b) — (bya)

and
7:G — G;(a,b) — (a—b,—b).

Then G forms a reflexion-inversion space in which the reflexion and inversion
are linear maps.

4. HYPERQUASIGROUPS

Basing on the concept of a reflexion-inversion space, the definition of a
hyperquasigroup may now be given.

Definition 4.1. A hyperquasigroup (Q,G) is a pair consisting of a set @
and a reflexion-inversion space G, together with a binary operation

Q* x G — Q; (2,9, 9) — zyg
of G on @, such that the hypercommutative law
(4.1) ryog=yrg
and the hypercancellation law
(4.2) z(ryg)Tg =y

are satisfied for all z, y in @ and ¢ in G.

Remark 4.2. A hyperquasigroup may be interpreted as a two-sorted
algebra (Q,G). Here G is a left H-set according to Remark 3.2. The set G
then acts on () as in Definition 4.1.

Remark 4.3. The prefix “hyper-” in Definition 4.1 reflects the substitution
of variables at both levels in (4.1) and (4.2), comparable to the substitution
at both the argument and the operator level in hyperidentities [7].

Hypercommutativity is straightforward. The meaning of hypercancellativity
is given by the following.
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Proposition 4.4. Let (Q,G) be a hyperquasigroup. For each element g of
G, define

(4.3) §:Q% = Q% (z,y) — (z,2y9).

Then in the monoid of all self-maps on Q?, the element T¢ is the inverse
of g.

Proof. For z, y in @, one has

(2,9) V& (2,29 9) 25 (2,2 (xy ) Tg) = (2,y)

with the equality holding directly by the hypercancellativity (4.2). Similarly,
one has

(2,y) = (z,2y7g) ¥ (v,2(zy79)g) = (,y),
the equality here resulting from the hypercancellation equation (4.2) with g
replaced by 7¢. Thus 7¢ is indeed the inverse of g. [ ]

5. CONSTRUCTIONS

For each of the examples of a reflexion-inversion space given in Section 3,
one obtains corresponding constructions of hyperquasigroups.

Proposition 5.1. Let QQ be a vector space over a field F. Let G be the
reflexion-inversion space of Example 3.3. Then a hyperquasigroup structure
(Q, Q) is defined by the action

ryg=z(l—yg)+yg
forx, y in Q and g in G.

Proof. The hypercommutativity and hypercancellativity may be verified
directly. Certainly one has

zyog=z(1-(1-g) +y(l—g)=y(l—g)+zg=yag,
the hypercommutativity. Then

z(ayg)rg=a(l—g )+ (z(1—g) +yg)g"

=z(l-g H+a@'-1)+y=y,

as required for the hypercancellativity. [
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Proposition 5.2. Let (Q,-,/,\) be an equational quasigroup, and let G be
the symmetric group Ss on the three-element set {1,2,3}. Interpret G as a
reflezion-inversion space according to Example 3.4, with reflexion o = (12)
and inversion 7 = (23). Then (Q,G) becomes a hyperquasigroup under the
operations

wyl=x-y, wyoro=x/y, zyr=ux\y,
ryo=y-x, wYro=y/r, zyor=y\z.
Proof. The hypercommutativity is immediate from the definitions, while

the hypercancellativity results from the identities (XL) and (XR) for X =1,
S, D. Specifically, these identities take the following form:

(IL) : y=xz(zyl)z
(SL) : y=wz(zyr)l
(IR) : y=z(zyo) 1o
(SR) : y=z(vyro)o
(DL) : y =z (zyor)ToT
(DL) : y=ux(zyroT)or

(recalling the equation 070 = 707 in S3). Thus the hypercancellativity (4.2)
is explicitly verified for each of the six elements g of G. ]

Proposition 5.3. Let Q be a complexr vector space, and let G be the

reflexion-inversion space of Example 3.5. Then a hyperquasigroup structure
(Q, Q) is defined by the action
(56.1) zy (a,b) = ze® + ye°

for x, y in Q and (a,b) in G.

Proof. The hypercommutativity is immediate, while

x (xy (a,b) ) 7(a,b) = pelmta=b 4 (xe® + yeb)efb

= 2 P4zt y=y

gives the hypercancellativity. [
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The two remaining constructions offer discrete versions of Proposition 5.3
— note the formal similarity between the corresponding hyperquasigroup
actions (5.1), (5.2) and (5.3).

Proposition 5.4. Let R be a unital ring. For an even number n, let e
be a root in R of the polynomial X™/? 4+ 1. Let Q be a unital right module
over R, and let G be the reflexion-inversion space of Example 3.6. Then a
hypergquasigroup structure (Q,G) is defined by the action

(5.2) zy (a,b) = ze® + ye°

for x, y in Q and (a,b) in G.

Proof. Since e" = 1, the action (5.2) is well-defined. The hypercommuta-
tivity is clear, while

T (my (a,b) ) 7(a,b) = petbtn/2 4 (xe® + yeb)e_b

_ .0—b

= 2P paetry=y
gives the hypercancellativity. [

Proposition 5.5. Let e be an invertible element of a unital ring R of
characteristic 2. Let Q be a unital right module over R, and let G be the
reflexion-inversion space of Example 3.7 for the abelian group A = 7Z. Then
a hyperquasigroup structure (Q, Q) is defined by the action

(5.3) zy (a,b) = ze® + yeb

for z, y in Q and (a,b) in G.

Proof. Since e is invertible, the action (5.3) is well-defined. Hypercommu-
tativity is immediate as usual, while

a—b

z (zy (a,b)) 7(a,b) = ze®™" + (we” + ye?)e?

:I'Ga_b—i-l'ea_b—i-y:y

gives the hypercancellativity. [
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6. FROM HYPERQUASIGROUPS TO QUASIGROUPS

According to Proposition 5.2, each quasigroup yields a hyperquasigroup.
Here, it is shown that the converse is true: Hyperquasigroups yield combi-
natorial and equational quasigroups.

Theorem 6.1. Let (Q,G) be a hyperquasigroup. Then for each element
g of the reflexion-inversion space G, there is an equational quasigroup

(Q.09,079,709).

Proof. It will be shown directly that (Q,0g,07g,70g) satisifies the four
identities specifying equational quasigroups.

(IL): Replacing g with og in the hypercancellativity equation (4.2) gives
y==z(xyog)Tog,
which is exactly the identity (IL) for (Q,0g,07g,709).
(IR): The hypercancellativity equation (4.2) directly gives
y==z(zyg)1g,
Using hypercommutativity, this may be rewritten as
y=(yzog)zoryg,
which is the identity (IR) for (Q,0g,07g,T0g).
(SL): Replacing g with 7og in the hypercancellativity equation (4.2) gives
y==xz(zyrog)og,
which is the identity (SL) for (Q,o0g,07g,70g).
(SR): Replacing g with 7¢ in the hypercancellativity equation (4.2) gives
y=xz(zy7g)g-
Using hypercommutativity, this may be rewritten as
y=(yrorg)zog,

which is the identity (SR) for (Q,0g,07g,70g). -
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Corollary 6.2. Let (Q,G) be a hyperquasigroup. Then for each element g of
the reflezion-inversion space G, there is a combinatorial quasigroup (Q,g).

Proof. Replace g by og in the statement of Theorem 6.1. [

Remark 6.3. In [3], James gave a characterization of combinatorial
quasigroups that amounts to the invertibility of the maps g and 7g in (4.3).
James’ characterization could be used as an alternative direct approach to
the proof of Corollary 6.2.

Example 6.4. For a finite field F of order ¢, consider the hyperquasigroup
(Q,G) given by Proposition 5.1. Here, the combinatorial quasigroups of
Corollary 6.2 constitute a set of ¢ — 2 mutually orthogonal idempotent and
entropic quasigroups.

Example 6.5. For a fixed (combinatorial) quasigroup (Q,-), consider the
hyperquasigroup (Q,S3) given by Proposition 5.2. In this case, the combi-
natorial quasigroups of Corollary 6.2 form the full set of conjugates of (Q, ).

As a consequence of the following result, it will transpire that the situation
of Example 6.5 is quite typical.

Proposition 6.6. Let (Q,G) be a hyperquasigroup. Then for all x, y in Q
and g in G, one has

(6.1) TYOoTOGg = XYTOTY .

Proof. Consider the equational quasigroup (Q,cg,07g,70g) given by
Theorem 6.1. The identity (DL) in this equational quasigroup takes the
form

y=x(yz7og)ory,
which may be rewritten as
(6.2) y=uxz(xyorog)ory
using hypercommutativity. On the other hand, the hypercancellation
equation (4.2) with g replaced by To7g yields
(6.3) y=x(xyrorg)oryg.

Since (Q,07g) is a combinatorial quasigroup (in which the equation y =
rzo7g has a unique solution z for given x and y), (6.2) and (6.3) together
yield the desired result (6.1). ]
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For a hyperquasigroup (@, G), consider the algebra (Q,G), the underlying
set ) endowed with the set G = {g | ¢ € G} of binary operations. The
action of the involutions ¢ and 7 on the reflexion-inversion space G yields an
action on the binary operation set G. Proposition 6.6 shows that the action
of o and 7 on G is an Ss-action. For each element g of G, the elements
g’ of the orbit S3g of g under this S3-action form the full set of quasigroup
operations conjugate to the combinatorial quasigroup operation g on Q. One
may summarize as follows. N

Theorem 6.7. FEach hyperquasigroup (Q,G) yields an algebra structure
(Q,G) consisting of the union

G= S

of mutually disjoint sets of conjugate quasigroup operations.

Between them, Proposition 5.2 and Theorem 6.7 give a complete description
of the relationship between quasigroups and hyperquasigroups.
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