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Universitá di Parma
Dipartimento di Matematica,

I–43100 Parma, Italy

e-mail: gabriele.ricci@unipr.it

Abstract

To binary trees, two-ary integers are what usual integers are to
natural numbers, seen as unary trees. We can represent two-ary inte-
gers as binary trees too, yet with leaves labelled by binary words and
with a structural restriction. In a sense, they are simpler than the
binary trees, they relativize. Hence, contrary to the extensions known
from Arithmetic and Algebra, this integer extension does not make the
starting objects more complex.

We use a semantic construction to get this extension. This method
differs from the algebraic ones, mainly because it is able to find equa-
tional features of the extended objects. Two-ary integers turn out to
form the free algebra corresponding to the Jónsson–Tarski’s “paradox-
ical” equations. This entails that they have a “sum” operation as well
as other operations of higher dimensions.

Two-ary integers can provide LISP memories with convenient direct
access jumps and the above low complexity hints at feasible hardware
implementations.
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0. Preliminaries

0.0. Extending a generalization
We will define two-ary integers as an indirect generalization of integer num-
bers: as the latter integers extend natural numbers, the former have to
extend some generalization of natural numbers in a similar way. Then, the
latter generalization will identify the former.

We can generalize natural numbers in several ways depending on how we
see them. For instance, if we see a natural number as a word on a singleton
alphabet, then a larger alphabet, let us say a binary one, will define such
a generalization as binary words. This is to say that we replace the single
unary operation of successor with two unary ones, while keeping a single
zero and a single partial predecessor. Then, the extension will concern such
words.

M. Servi introduced such an approach in [22] by his “clans”. They
inhabit the single infinite binary tree corresponding to the words to be ex-
tended: its root is the zero (or empty word) and its finite sub-paths from
the root are such words. Clans consist of relational structures with one pre-
decessor and two successors as for the words they extend. Their ensuing
theory reached results of an order-theoretic interest [23]–[25].

Our approach, on the contrary, comes from seeing a natural number
as a unary tree, a finite chain with the zero leaf. Then, binary trees will
exemplify the generalization we want to extend: we now start from a single
binary successor operation with two partial predecessors and any number of
“zeroes”.

Natural numbers are “unary”, because, according to Peano’s axioms,
we can think of them as the terms of a singleton unary species with a single
unknown (the zero). Hence, one might well think of the “two-ary” natural
numbers as the terms for the singleton binary species on arbitrary unknowns
(the “zeroes”). In spite of this algebraic view, the algebraic methods cannot
provide them with their “integer” extension.

0.1. The extension problem
The usual construction of integers by algebraic extension starts from N×N ,
the set of pairs 〈m,n〉 of natural numbers, and divides it by the equivalence
≡, such that 〈m′, n′〉 ≡ 〈m′′, n′′〉 iff m′ + n′′ = m′′ + n′. In the two-ary case,
this does not work because the “sum” does not merely involve two binary
trees, but two (indexed) forests of them (see the term matrix product in 1.6
and 1.7 (B)).
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Then, one might resort to the Universal Algebra construction of free
algebras from their equational specifications. In fact, one could use it also
for the usual integers from the two equations stating that a unary successor
is the inverse of a (total) unary predecessor.

Unfortunately, this abstract construction is not an extension. It looses
the link with the unary or binary trees concerned.

Furthermore, one has to guess both the freedom and the new equations.
On the contrary, they are what we want to prove and find in the two-ary
case. Then, we need a third way to construct our two-ary integers.

0.2. Semantic constructions
Are intermediate between algebraic extensions and equational constructions.
As the former, they start from the objects we want to extend, yet they do
not involve their “sums” (universal matrix products [20]). As the latter,
they require to guess the species of the extended algebra, yet neither its
freedom nor its equations.

To introduce this new idea let us outline how it could work in the familiar
case of usual integers. We do from the point of view of a programmer, who
considers an integer j − i as the jump from a present address i to a new
address j in a direct access standard memory. This also serves to introduce
the LISP “addressing” problem of 0.4.

Without the direct access capability, our programmer has a sequential
memory: a semi-infinite Turing tape. He can go from address i to any j
through some finite succession of two “atomic” jumps: an upward one, +1
for successor, and a downward one, −1 for predecessor, where +1:N → N ,
while −1 only is a partial function.

Formally, all such successions form the minimal set T such that it con-
tains the empty succession, ∅, and is closed under atomic jumps, {+1,−1}×
T ⊆ T . Hence, they are the terms (words) for a binary species of unary
“symbols”. We use such functions as “symbols” also because different prac-
tices, as the ones of Algebra, can reach inconsistencies as 1.5 will recall.

These binary word have a natural functional “semantics”. In fact, we
can define the semantics sw of word w ∈ T by word induction as

s∅ = iN ,

s〈+1,v〉 = +1 · sv and

s〈−1,v〉 = −1 · sv ,(1)
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where · denotes functional composition as in 0.5. For instance, s〈+1,∅〉 = +1
and in general any semantics is a partial function, sw ⊆ N ×N .

Then, we consider the domain ∆w ⊆ N of the semantics of any word w,
called the domain induced by w, which is a co-finite segment. For instance,
by equation (1) ∆〈−1,∅〉 ⊂ N is the set of positive natural numbers, because
we cannot backtrack our tape below its beginning. Clearly, such domains
form a semilattice with zero (N itself) under containment.

Two words can have different, yet equivalent, semantics. For instance,
∅ has the identity on all natural numbers, whereas for 〈+1, 〈−1, ∅〉〉 by equa-
tion (1) the identity is on the positive ones only. Clearly, this equivalence
is defined by the relation ³ on T such that v ³ w iff sv(i) = sw(i) for all
i ∈ ∆v ∩∆w, which forgets the above finite domain differences.

Trivially, we also got a congruence of the term algebra. Then, its con-
gruence classes are made of binary words, not of the pairs 〈n, m〉 for ≡ in
0.1. Yet, the two equivalences easily identify each other. The canonical
representatives of the latter classes, pairs as 〈0,m〉 or 〈n, 0〉, correspond to
similar canonical representatives: all words on a single “symbol”.

Canonical representatives are the only interesting ones for our program-
mer. Among several other properties, they have maximal induced domains
in each congruence class, i.e. the maximal addressing ability.

Such a semantic construction of integers works as the one of algebraic
extension, yet it did not use sums. Moreover, from it we can easily prove,
not just guess, the freedom of the quotient algebra, which comes from the
numbers under extension, as well as the two inversion equations of 0.1. This
now does not matter, as usual integers are well-known. It will do with our
new integers.

0.3. Universal matrices
Seemingly, the semantic construction has a drawback: the quotient of the
term algebra does not provide the new numbers with their (new) “sum”,
contrary to what the algebraic extension did through the old sum. Actually,
this pertains to the new corresponding arithmetic, a development beyond
the present step, yet the existence of sum(s) will still come from freedom.

In the unary case, integer sum arithmetic provides direct access memo-
ries with the most of their gains. It allows our programmer to compute an
address before using it. Without it, he could merely access fixed locations
bypassing other locations, whereas address computations allow him memory
relocations, addressing in many-dimensional arrays, hashing and so on.
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However, once a semantic construction has reached a free algebra, an-
other unconventional tool, the universal matrices [15]–[21], always assure
that a new arithmetic exists with at least some minimal features. This tool
stems from the Geometry of the XIXth century closely following the ideas
in [30], namely it markedly diverges from the abstract Universal Algebra of
the past century.

Universal (“square”) matrices are to any universal based algebra what
usual square matrices are to a finitely based vector space: there always is a
new binary associative operation (the “matrix product”) on them, together
with properties relevant to the original algebra, and an heterogeneous one
(the “Menger system” corresponding to the product of a vector times a
matrix). In the case of a one-dimensioned vector space, the two operations
are almost the same: the product of the underlying field.

For unary integers, the term algebra only has a singleton base and again
both operations essentially coincide. We get the integer sum, while its alge-
bra relevant properties are the ones of integer arithmetic.

In case of two-ary integers, on the contrary, freedom refers to the equa-
tional class of Jónsson–Tarski in [8]. Its uncommon dimensionality features
(bases of any positive cardinality) will provide them both an associative
sum that extends word catenation and infinite matrix products of higher
dimensions.

Then, our quest for an extended generalization of integers also got an
extension of words. This might hint us that insisting on universal matrices
could reach further extensions. (Work in progress concerns the prefix codes.)

0.4. Set-interpretative LISP semantics
While natural numbers can be addresses for actual memories, binary trees
are the basic structure for the virtual memories of some high level pro-
gramming languages, the earliest of which is LISP. Then two-ary integers
will serve to “jump” from one such tree to another or from one their forest
to another in the same way a usual integer does from a standard memory
location to another.

Actually, such jumps will appear as wide memory reorganizations. To
help programmers to grasp them, we borrowed from LISP some basic ter-
minology. Yet, their corresponding notions are set-theoretical.

Our semantic construction will also provide a small part of LISP
with a semantics, oriented more to its set-theoretical interpretation than
to its set-theoretical formalization. This “set-interpretative” semantics
does use set-theoretical formalism, like the set-theoretical semantics
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of (a wider part of) LISP in [11], yet it does not formalize how an actual
computer has to behave under LISP instructions. It merely tries to interpret
the set-theoretical meaning of a few LISP structures and instructions.

The recalled set-theoretical semantics succeeded in providing present
day LISP with predictability results for computations on present day com-
puters. Our set-interpretative one, on the contrary, hints at possible small
extensions of LISP and of computer architecture: a new data type, the
“jump”, and a new arithmetical register, the “two-ary” adder. Jumps are
canonical representatives of two-ary integers. Two-ary adders should per-
form “sums” on them to enable index registers to directly “access” (reorga-
nize) a tree structured memory.

Anyway, our set-theoretical notions merely formalize intensional ideas:
they ideally come from Combinatory Logic as LISP did. In 1.9 we will hint
a possible further connection with Combinatory Logic that also concerns
Algorithmic Information Theory.

0.5. Notation
We give up any efficient functional notation for the one of Calculus, where
repeated functional applications alternate subscripting and right parenthe-
sizing. In spite of this choice of conventional notation, the foundation chosen
here is the pure set–theoretical one not the conventional algebraic one. Some
flaws of the latter (see 0.6 in [20]) concern our treatment.

Hence, we conform to [13], but for the following few differences. We
denote the set-theoretical pair {{a}, {a, b}} by 〈a, b〉, yet we still simplify
f(〈a, b〉) into f(a, b) and 〈〈x, y〉, z〉 into (x, y, x) as in [13]. For instance, we
write the basic property of pairs of I.1.33 ibid. as

〈t′, t′′〉 = 〈v′, v′′〉 iff t′ = v′ and t′′ = v′′(2)

and from the regularity axiom of Set Theory in I.1.18 of [13] we get

a, b 6= 〈a, b〉 .(3)

PX denotes the set of subsets of set X and iX its identity function.
We also cannot follow [13] as far as functional composition is concerned,

because of the dangers shown in [18]. We merely consider it as the restriction
of relational composition, here denoted by · , namely f ·g is “the composition
of g and f” and (f ·g)(x) = f(g(x)). Accordingly, we perform the restriction
of a function f to some set S merely by functional composition: f · iS .
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As usual, we write f :A → B to say that f is a function with arguments
in the whole set A and values in B, f : A7 7→B or f : A→ÂB to say that it also
is one to one or onto B and f : A7 7→ÂB to say it is a bijection onto B. Yet,
as motivated in 0.6 of [20], we will forget that “function – domain” and
“family – index” are pairwise synonymic and we avoid the notation {ai}i∈I

or (ai | i ∈ I). Within informal comments we will replace “function” with
“labelling”, to emphasize arguments, and with “indexing”, to emphasize
values. Also, we denote the set-theoretical power AB = {f | f :A → B} as
the arithmetic one BA. (The latter will not occur here.)

1. S-terms and search terms

1.0. Definitions
Given any set U , consider the class of the sets T ′ containing it and closed
under pairing. It has a smallest set, T =

⋂{T ′ | U ⊆ T ′ and T ′ × T ′ ⊆ T ′}.
In fact, this intersection is one of such sets T ′,

U ⊆ T and(4)

T × T ⊆ T ,(5)

as one could easily check by considering any u ∈ U and any 〈t′, t′′〉 ∈ T ×T .
Often, we deal with subsets of T and, to get T ′ = T , the trivial consequence

T ′ ⊇ T(6)

can replace the full induction principle that we will state in 1.3 (A).
Then, let D = T × T , which by equation (5) is a subset of T . We easily

get

U ∪D = T .(7)

In fact, U ∪ D ⊆ T follows from U,D ⊆ T , while U ∪ D ⊇ T from U ∪ D
being such a superset T ′, because the closure under pairing follows from
equations (4) and (5) by the distributivity of × with respect to ∪ (see I.3.13
(e) in [13]) through the preservations of inclusions by cartesian products.
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If

U ∩D = ∅ ,(8)

then we say that U is a set of unknowns for pairing and that T is the set of
two-ary natural numbers on U . We will denote T by N2(U) to specify its
unknowns.

For example, N2(1) is the set of two-ary natural numbers on the single
unknown ∅, because U = {∅} = 1 satisfies equation (8), since a pair cannot
be empty whereas our unknown u = ∅ is.

One might well think of two-ary natural numbers as terms of a species
with only one binary operation symbol. Since it is the only operation symbol,
we do not need to specify it.

We will use several sets U . We choose one of them as a “main” U , we
call atoms its elements and S-terms on U the corresponding two-ary natural
numbers. Hereinafter, we reserve notation T for their set, unless otherwise
stated, whereas for any other U ′ we use N2(U ′). We call dyads the pairs
forming D.

The “S” in “S-terms” recalls the “S-expressions” of LISP [29]. Actually,
the letter “D” and the word “dyads” are a notational abuse with respect
to Combinatory Logic [7], where such pairs correspond to the terms com-
posed by combinatory application, whereas “D” and “dyads” denote the
combinators modelling set-theoretical pairs.

LISP assumes an enumerable infinite set U of atoms: variable-length
words. For now, we do not.
We only assume U 6= ∅, because in the opposite case T = ∅ and all the
following theory becomes very trivial.

Under this assumption, T cannot be finite: its proper subset D = T ×
T should have more elements than T . Hence, hereinafter U 6= ∅ and by
equations (8) and (7) U and D define a bipartition of T .

We will also use some subsets of T . For every natural number n we define
the set of full terms of height n, denoted by bnc, by arithmetic induction as

b0c = U and(9)

bm + 1c = bmc × bmc .(10)

(It is easy to show that bnc ⊂ T .) Among them we also consider the ones
built up from a single atom u ∈ U 6= ∅. We define their set bncu ⊆ bnc ⊆ T ,
called the set of the full u-terms (of height n), by replacing equation (9):
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b0cu = {u} and(11)

bm + 1cu = bmcu × bmcu .(12)

Clearly, every bncu is singleton.

1.1. Definitions
Now, let us idealize the cons, car and cdr commands of LISP by respectively
defining the functions dyad of, left of and right of

d: T × T 7 7→ÂD , l, r: D→ÂT , i.e. d, l, r: T × T → T(13)

by

d(t′, t′′) = 〈t′, t′′〉 ,(14)

l(t′, t′′) = t′ and(15)

r(t′, t′′) = t′′ for all t′, t′′ ∈ T .(16)

Then, while l and r are nontrivial functions (the ones that extract the
components of a pair), d merely is the identity on D. Of course, this is
not the way any LISP transducer (either compiler or interpreter) behaves,
since among other things it has to exploit memory efficiently: the car and
cdr are reading instructions on already filled cells, whereas cons, a write
instruction, fills a new cell when needed. This allows a LISP program to get
any S-expression without wasting memory by a runtime dynamic allocation
of cells.

However, if, for a while, one assumes to have a “large” ROM memory,
filled with all written cells one will use, then one could implement cons too as
a read instruction merely by (the computation on pointers corresponding to)
our identity, seen as a binary operation. One might think to ideally replace
the actual runtime dynamic allocation of cells with a static “expensive” one.

We also do not need to distinguish between a command identifier and
what the command does, as 1.3 (C) and 1.5 will show, and, for the pur-
poses of this work, one might well call the three functions d, l and r “search
commands”. Yet, they are dependent on our U . For later purposes, in-
dependent search commands will be convenient. Then, we refer to the set
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of atoms U = 1 and we denote the three corresponding functions by d, l
and r.

Therefore, we call the three functions d, l, r:N2(1) ×N2(1) → N2(1)
search commands. Anyway we boldfaced them, as the “operation symbols”
of [6] in order to help algebraic readers, unfamiliar with 1.5.

The (last two) search commands define the set T of the (unary) search
terms by

{∅} ⊆ T and(17)

(T ∪ {l, r})× T ⊆ T ,(18)

namely, T is the minimal set (as T was in 1.0) satisfying them or satisfying
the following ones:

∅ ∈ T ,(19)

t′, t′′ ∈ T imply 〈t′, t′′〉 ∈ T and(20)

t ∈ T implies 〈l, t〉, 〈r, t〉 ∈ T .(21)

We call “terms” such objects because of the motivations in 1.3 (C), 1.4
and 1.5, where we show that they behave as the terms for a species with
one (omitted) binary symbol and two unary ones. There, we also show that
the set of “search unknowns” is the singleton 1 = {∅} as for N2(1).

Hence, here one might call “unary” such terms. The proof that larger
arities are not necessary pertains to (later) arithmetical developments. In
the same way we got equation (7), we still have

{∅} ∪ (T ∪ {l, r})× T = T .(22)

Also, notice that

l 6= r and l, r /∈ T .(23)

In fact, by equation (3) l(∅, 〈∅, ∅〉) = ∅ 6= 〈∅, ∅〉 = r(∅, 〈∅, ∅〉) and the func-
tions l and r are infinite sets as their common domain N2(1) ×N2(1) is,
whereas by equation (22) every t ∈ T is finite. (The same holds for l and
r, since U 6= ∅.)
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We also define two subsets of search terms. The set N2(1) ⊆ T of the
upward paths is the one of the search terms we get by (19) and (20) only
and the set W ⊆ T of the downward paths or (search) words by (19) and
(21) only. To define both subsets we used the usual minimality assumptions,
which also imply such inclusions.

Hereinafter, “word” will only denote such binary words, unless otherwise
stated. As usual, the length of a word is the number of the “induction steps
generating it”. (We are omitting their formal definition that here would
occur only after 1.3 (D).)

Given a word, we consider its letters construction–ordered, not ordered
by reading them, e.g. in (l, r, ∅) = 〈l, 〈r, ∅〉〉 its first letter is r, while l is the
last. In our notation we will also keep the generator ∅, though necessary
only with the empty word. When words occur in search terms, it is a useful
landmark that improves reading.

Then, we define another identity function

τ : (T ∪ {l, r})× T → T by τ(x, t) = 〈x, t〉 ,(24)

for all x ∈ T ∪ {l, r} and t ∈ T . As we will show in the proof of 1.3 (C),
one might well think of it as the definition of three operations on T , called
τ -operations,

τ ′d: T × T → T , τ ′l, τ
′
r: T → T(25)

by

τ ′d(t′, t′′) = 〈t′, t′′〉 , τ ′l(t) = 〈l, t〉 and τ ′r(t) = 〈r, t〉 .(26)

for all t, t′, t′′ ∈ T .

1.2. Examples
The formal notation for search terms allows us to see their structure as long
as they are small: ∅, 〈∅, ∅〉, 〈l, ∅〉, 〈r, ∅〉. Bigger terms, as 〈(l, l, ∅), 〈r, ∅〉〉
and 〈(l, l, ∅), 〈(l, r, ∅), (r, r, ∅)〉〉, needs some graphical support, as in Figure
1 and Figure 2 respectively. There, we adapted the standard diagrams for
algebraic terms (vertex-labelled trees). For later purposes, more proper
diagrams are the directed acyclic graphs we get from them by collapsing all
identical subterms, e.g. Figure 2 will become Figure 3.
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1.3. Lemmata
(A) The sets U and T and the binary operation d satisfy the three Peano

properties

d(t′, t′′) /∈ U for all t′, t′′ ∈ T ,(27)

d: T × T 7 7→ÂD , i .e. d−1: T rU 7 7→ÂT × T ,(28)

and, for all sets T ′,

T ′ ⊇ T iff





U ⊆ T ′ and, for all t′, t′′ ∈ T ,

t′, t′′ ∈ T ′ imply d(t′, t′′) ∈ T ′ .
(29)

(B) The left and right functions provide the dyad function with a partial
“binary” inverse

d(l(t), r(t)) = t for all t ∈ D ,(30)

l(d(t′, t′′)) = t′ and(31)

r(d(t′, t′′)) = t′′ for all t′, t′′ ∈ T .(32)

(C) The sets 1 = {∅} and T and the function τ satisfy the Peano
properties
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τ−1: T r {∅}7 7→Â(T ∪ {l, r})× T , hence(33)

τ(x, t) 6= ∅ , for all x ∈ T ∪ {l, r}and t ∈ T ,(34)

and, for all sets T ′,

T ′ ⊇ T iff





1 ⊆ T ′ and , for all x and all t ∈ T ,

x ∈ (T ∩ T ′) ∪ {l, r} and t ∈ T ′ imply τ(x, t) ∈ T ′
(35)

(that one could well restate by means of the operations τ ′d, τ ′l
and τ ′r).

(D) For all sets T ′,

T ′ ⊇ W iff





1 ⊆ T ′ and, for all t ∈ W ,

t ∈ T ′ implies 〈l, t〉, 〈r, t〉 ∈ T ′ .

Proofs.
(A) Condition (27) is a restatement of (8). As motivated in 1.4 (A),

it corresponds to Peano’s first axiom. Condition (28), comes from defining
d as an identity on set-theoretical pairs. It corresponds to Peano’s axioms
about successor and uniqueness of predecessor, since we can rewrite it as
d:T × T 7 7→T .

The last condition corresponds to Peano’s induction axiom. Its (only
if) part easily follows from (4) and (5) by the transitivity of ⊆. To prove its
(if) consider T ′′ = T ∩ T ′. Our premises get T ′′ ⊇ T as it was for T ′ in (6).
Hence, T ′ ⊇ T .

(B) To prove (30), consider that by (28) for every t ∈ D there are t′, t′′ ∈
T such that 〈t′, t′′〉 = t. Then, d(l(t), r(t)) = d(l(〈t′, t′′〉), r(〈t′, t′′〉)) =
d(t′, t′′) = 〈t′, t′′〉 = t by (14)–(16). Such definitions also prove (31), l(d(t′, t′′)) =
l(t′, t′′) = t′, as well as (32) (after replacing r for l).

(C) At now, contrary to (A), we do not need a disjunctive assumption,
as (8), to prove (34). In fact, ∅ can never be any of such terms, which are
composed by pairs, because pairs never are empty. See I.1.31 in [13] and
3.1 in [16].
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The identity argument, used in (A) for (28), still holds for (33). How-
ever, now (33) enables any nonempty term t to have a single decomposition
within three sorts (t = 〈t′, t′′〉, 〈l, t′〉, 〈r, t′〉) that are disjoint because of (23).
This allows us to see τ as the τ ′ of (26). Yet, we cannot think to always
replace τ or τ ′ by an “absolutely free algebra” for one binary and two unary
operations, because of an inconsistency we are going to show in 1.5.

Finally, one could prove the induction principle in (35) in the same way
we did in (A).

(D) Same proof as in (C), but for the case t = 〈t′, t′′〉 that drops out.

1.4. Inductions
(A) When we replace a (properly chosen) unary operator, say S, for our

(binary) dyad operator in (5) and a proper singleton set for U , Definition
1.0 becomes the one of a model of natural numbers, where (8) or (27) cor-
responds to the first Peano’s axiom, while (28) to the second. Then, the
proper choice of S will provide Peano’s induction axiom with a proof within
the model (e.g. see 2.4.1 in [3]). Hence, the properties in 1.3 (A) are to
S-terms what Peano’s axioms are to natural numbers.

We can restate this correspondence for 1.3 (C), but for two details.
The former is the occurrence of two other (unary) “successors”, τ ′l and τ ′r,
in addition to the binary one τ ′d replacing the d of 1.3 (A). The latter is that
we replace the given set 1, as the recalled model did, for the undeterminate
one U . This allowed us to omit an assumption as (8). In fact, {∅} ∩ (T ∪
{l, r})× T = ∅, because pairs never are empty.

In 1.3 (D) things are as in 1.3 (C). There, we omitted the statements
corresponding to the initial Peano’s axioms, because they were trivial cases
(restrictions) of the ones in 1.3 (C). Yet, contrary to a practice widespread
in abstract Algebra, all such statements, as well as (28), are mathematically
necessary as the counterexample in 1.5 will show.

(B) We will call the Peano induction principle in (29) T -induction, or
in case of upward paths upward induction, the one in (35) T -induction
or bold induction, and the one in 1.3 (D) for words word induction. We
will introduce another induction for a third subset of T in 4.0 and 4.1
(E). Seldom, we will also exploit Peano’s induction, which we call arithmetic
induction.

We will use the above Peano induction properties, as well as the ones
we will introduce, both for proving statements and for defining functions
(or predicates). In the former case the sets T ′ of 1.3 are the ones where
a statement holds. In the latter, they are the “sets where a function is
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being defined” (not the domains of a defined function). They are not set-
theoretical sets, since our Set Theory does not define “to define”.

Therefore, in the latter case one should prove the existence of the func-
tion to be defined. One could do it by proving corollaries of the general
recursion principle in 2.13.1 of [13]. Such proofs contain several uninter-
esting details (but one) and we will follow the algebraic practice of taking
“algebraic recursion” as granted.

Yet, we cannot follow Algebra in calling our inductions “recursions”. In
fact, they will correspond to the arithmetical case of “induction”, which is
intermediate between primitive recursion and iteration, where the function
defining the induction step is constant with respect to the induction variable.

We can expect that in two-ary arithmetics the cases corresponding to
primitive recursion and recursion will occur. Hence, to keep the word “induc-
tion” as in (unary) Arithmetic serves to save “recursion” for future proper
uses. Here, we will not state any general recursion principle for any of our
terms. The only recursion, we will use, concerns words, yet it will come from
word induction through word reversals, without such a general principle.

Furthermore, we cannot disregard one of the details of the corollaries we
are omitting, as Algebra does. It concerns a well-founded relation occurring
in the above mentioned recursion principle. To get this condition of being
well-founded we stated the firsts of Peano axioms.

Without them one cannot define predicates nor functions on the terms
concerned, for the very reason one cannot do on natural numbers: without
such Peano’s axioms the base part of a definition contradicts its induction
part, unless the defined object is a constant.

1.5. Counterexample
We can see how the above contradiction rises, when we deny (8), i.e. within
two-ary natural numbers. Assume we define the depth d(t) of a term t by
(29) as

d(u) = 0 , for all u ∈ U ,

d(t′, t′′) = 1 + max(d(t′), d(t′′)) , for all t = 〈t′, t′′〉 ∈ D .

Let u ∈ U . Without (8), U can well contain 〈u, u〉. In such a case d(u, u) = 0
by the former step as well as d(u, u) = 1 by the latter. Hence, the function
d was misdefined.
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If we keep (4), this misdefinition has to occur even if we change the
construction in the induction step (5): just replace 〈u, u〉 by the new cor-
responding object. We have to stress this, because sometimes people in
Algebra and Logic (but for [7]) try to weaken (or omit) (8) through such
changes. For instance, a proper choice of operation symbols should allow
any set to play the rôle of a set of “variables” and get a “symbolic term”
functor.

It does not matter whether the construction in an induction step uses
“good operation symbols” (nor whether one fails to specify such a construc-
tion, as when one states that a composed term is a word, without defining
words). If the construction is not trivial, it will anyway give us new terms
other than the generators and any such term is a possible extra element for
another “inconsistent” set of generators, as 〈u, u〉 was.

Algebraically, such inconsistency is the lack of independence within the
algebra of terms, while set-theoretically it prevents the recursion principle
mentioned in (B) to have its well-founded relation. Disjunction assumptions,
like (8), cannot become weaker.

Hence, there are not functions sending an arbitrary set of generators
into a nontrivial set of terms on such generators: “symbolic term” functors
cannot exist. A formal proof of this is in Lemma 7.3 (A) and (B) of [14].

On the contrary, there are sets that are made only of unknowns for
whatever algebraic species we choose, as shown in 3.1 in [16]: while one
cannot freely choose generators, then we always can freely choose operation
symbols, contrary to some opposite belief.

The only hope to use an arbitrary U as a set of algebraic “variables”
might be to give up the inclusion assumptions as (4). For instance [9] claims
to be able to do so by replacing the injection iU :U 7 7→T , as in (4), by another
(burdensome) injection j: U 7 7→T . Yet, it does use (4) wherever.

Anyway, whatever j we choose to replace iU , this is tantamount to
replace U ⊆ T by V ⊆ T , where V is the j-image of U . Then, the set of
generators is V that is not arbitrary. The only way to use arbitrary sets U
is not to use their elements as generators, contrary to what we want. In any
free algebra one cannot choose a base at will.

Within Set Theory we always have to (carefully) define unknowns for
any nonempty species, whereas operation symbols (including the nullary
ones) can be freely chosen depending on the application. As the latter
freedom is consistent, in 1.1 we are exploiting it for the unary “symbols”
and — in a sense — for the omitted binary one.
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1.6. Definitions
Given two search terms u, v ∈ T , define u⊕ v, the catenation of v with u,
by bold induction on v, as

u⊕ ∅ = u,(36)

u⊕ 〈t′, t′′〉 = 〈u⊕ t′, u⊕ t′′〉 ,(37)

u⊕ 〈l, t〉′ = 〈l, u⊕ t′〉 and u⊕ 〈r, t′〉 = 〈r,u⊕ t′〉 ,(38)

for all t′, t′′ ∈ T . Hence, we defined a binary operation ⊕:T × T → T . As
1.7 (A) will show ⊕ and ∅ define a monoid on search terms.

Later on, we also will use the (reversed) catenation monoid that we
define by commuting ⊕, namely there the monoid composition of v with u
is v ⊕ u.

Catenation allows us to define the reversed
←↩
w of every word w ∈ W by

word induction,
←↩

∅= ∅,
←↩

〈l, v〉= 〈l, ∅〉⊕ ←↩
v and

←↩

〈r, v〉= 〈r, ∅〉⊕ ←↩
v . We omit

the proof that reversal is a permutation, ←↩: W 7 7→ÂW . Yet, we will use this
when, while defining or proving something about any

←↩
w inductively, we will

say that we do about w by backward induction on w.

By catenation we also define a search increment function
◦
η: T → TT

by
◦
ηu (t) = u⊕ t , for all t, u ∈ T .(39)

Here and whenever the letter η will occur, it denotes a function that extends
its argument to some endomorphism. For the present occurrence, this will
be shown in 1.7 (A).

On S-terms and two-ary natural numbers, on the contrary, we define a
heterogeneous operation +̂ : TU × T → T , we call upward addition, by T -
induction on the latter argument: for all M : U → T , u ∈ U and 〈t′, t′′〉 ∈ D,

M +̂u = M(u),(40)

M +̂ 〈t′, t′′〉 = 〈M +̂ t′,M +̂ t′′〉 .(41)
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By it we also define the (bottom) term increment function η̂: TU → T T by

η̂M (t) = M +̂ t , for all M : U → T and t ∈ T ,(42)

where we call function M the increment matrix, and the term matrix product
¦ : TU × TU → TU by

(M ¦ L)(u) = M +̂L(u) , for all L,M :U → T and u ∈ U .(43)

Again, we call M ¦ L the product of L times M . ([18] shows the necessity
of such reversed readings.) As 1.7 (B) will show, ¦ is the composition of a
monoid with unit iU . Hence, from this product we can define a term matrix
power by iteration:

M 〈0〉 = iU(44)

M 〈m+1〉 = M 〈m〉 ¦M or M 〈m+1〉 = M ¦M 〈m〉 .(45)

We can see the tree of η̂M (t) and M +̂ t as the S-term tree we get from the
one of t by replacing each leaf u ∈ U in it with the tree of M(u). When we
have a matrix L:U → T , we see an “indexed forest” of such trees t and the
product of L and M corresponds to the indexed forest we get by sprouting
each tree t of the former in the same way as above. Figure 4 shows such
sprouts from circled nodes for U = {u, v}.
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Given any natural number n, the product
∏

u∈Ubncu is singleton, since by
(11) and (12) every factor is. We call its element Cn: U → T the full matrix
of height n. Hence, by (11) and (12) respectively

C0 = iU ,(46)

Cn+1(u) = 〈Cn(u), Cn(u)〉 .(47)



Two-ary integers 183

When M = Cn is a full matrix of some positive height, n > 0, we call its
increment η̂M : T → T a full increment.

A matrix M :U → T can have a fixed value t = M(u), for all u ∈ U .
We call it a constant matrix and we denote it as M = Kt, where function K
is a generator of constants defined by

Kt(u) = t ,(48)

for all t ∈ T and u ∈ U and, clearly, K:T 7 7→TU . Later on, we will use other
generators of constants (where t and u belongs to other sets), yet we will
not repeat (48).

Consider a function h:T → T such that, for all t′, t′′ ∈ T ,

h(t′, t′′) = 〈h(t′), h(t′′)〉 ,(49)

h(l, t′) = 〈l, h(t′)〉 and h(r, t′) = 〈r, h(t′)〉 .(50)

We call h a search endomorphism and denote the set of all such h by
Eτ ⊆ TT .

Clearly, Eτ is the carrier of a monoid of functional composition (iT ∈ Eτ

and h′′ · h′ ∈ Eτ for all h′, h′′ ∈ Eτ ) that we call the search endomorphism
monoid. Then, define the search endomorphism representation

◦
r : Eτ → T

by

◦
r (h) = h(∅) , for all h ∈ Eτ .(51)

Finally, in case of S-terms, we define the term endomorphisms as the func-
tions l:T → T such that

l(t′, t′′) = 〈l(t′), l(t′′)〉 , for all t′, t′′ ∈ T(52)

and we denote their set by Ê . Again, we easily get a monoid of functional
composition on it, which we call the endomorphism monoid of S-terms.
Then, define the term endomorphism representation r̂: Ê → TU by r̂(l)u =
l(u) , for all l ∈ Ê and u ∈ U , namely by

r̂(l) = l · iU , for all l ∈ Ê .(53)

Clearly, there are functions l: T → T which are not term endomorphisms,
i.e. not the endomorphism of d: T ×T → T . On the contrary, any f :T → T
is an endomorphism of l, r: T ×T → T , because by 1.1 for instance we have
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l(f(t′), f(t′′)) = f(t′) = f(l(t′, t′′)) , for all t′, t′′ ∈ T .(54)

Then, Ê also is the set of endomorphisms of all d, l, r: T × T → T .

1.7. Theorems

(A) The search increment function is the inverse of the search endomor-
phism representation and the image under such a representation of the
composition of search endomorphisms is catenation. Hence,

◦
r : Eτ 7 7→ÂT ,

◦
η: T 7 7→ÂEτ and for all t, u ∈ T

(v ⊕ u)⊕ t = v ⊕ (u⊕ t) and(55)

∅ ⊕ t = t⊕ ∅ = t .(56)

(B) The term increment function is the inverse of the term endomorphism
representation and the image under such a representation of term en-
domorphism composition is term matrix product. Hence, r̂: Ê 7 7→ÂTU ,
η̂: TU 7 7→ÂÊ and for all L,M : U → T and t ∈ T

(M ¦ L) +̂ t = M +̂ (L +̂ t) and(57)

iU +̂ t = t .(58)

Proofs.

(A) At first, let us show that
◦
η · ◦r = iEτ . We prove

◦
η ◦

r(h)
(t) = h(t), i.e.

we prove

h(∅)⊕ t = h(t) ,(59)

for all h ∈ Eτ and all t ∈ T by bold induction. The basis step, h(∅) ⊕ ∅ =
h(∅), immediately follows from (36).

When t = 〈t′, t′′〉 and h(∅) ⊕ h(t′) = h(t′) and h(∅) ⊕ t′′ = h(t′′), by
(37) and (49) h(∅)⊕ t = 〈h(∅)⊕ t′, h(∅)⊕ t′′〉 = 〈h(t′), h(t′′)〉 = h(t). When
t = 〈l, t′〉 and h(∅)⊕h(t′) = h(t′), by (38) and (50) h(∅)⊕t = 〈l, h(∅)⊕t′〉 =
〈l, h(t′)〉 = h(t). When t = 〈r, t′〉, merely replace l with r.
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Now, let us prove that
◦
r is onto T . The endomorphism conditions (49)

and (50) allow (35) to define any h ∈ Eτ on the whole T by bold induction,
once we have only chosen a value for h(∅). Hence, given any t ∈ T , we get
an h ∈ Eτ such that

◦
r (h) = h(∅) = t by merely choosing h(∅) = t.

Finally, we get
◦
r (h′′)⊕ ◦

r (h′) as the representation
◦
r (h′′ · h′) of compo-

sition, for all h′′, h′ ∈ Eτ , merely by (59). In fact, by (51) this is to prove
that h′′(∅) ⊕ h′(∅) = h′′(h′(∅)) and, if we set t = h′(∅) and h = h′′ in (59),
we find that we already proved it by bold induction on h′(∅). Notice also
that the consequence

◦
η =

◦
r −1allows us to rewrite

◦
r (h′′)⊕ ◦

r (h′) =
◦
r (h′′ · h′)

as
◦
ηv⊕u=

◦
ηv ·

◦
ηu , where u =

◦
r (h′) and v =

◦
r (h′′). Hence, we get (55) by

(39) after applying t to both sides, while (56) comes from
◦
η∅= iT ∈ Eτ .

(B) Let us show that η̂ · r̂ = iÊ .

We prove η̂r̂(l)(t) = l(t), i.e. we prove

r̂(l) +̂ t = l(t) ,(60)

for all l ∈ Ê and all t ∈ T by T -induction. The basis step, r̂(l) +̂u = r̂(l)u,
immediately follows from (40).

When t = 〈t′, t′′〉 where r̂(l) +̂ t′ = l(t′) and r̂(l) +̂ t′′ = l(t′′), by (41) and
(52) r̂(l) +̂ t = 〈r̂(l) +̂ t′, r̂(l) +̂ t′′〉 = 〈l(t′), l(t′′)〉 = l(t). Hence, we proved
the induction step too.

Now, let us prove that r̂ is onto TU . The endomorphism axiom (52)
allows (29) to define any l ∈ Ê on the whole T by T -induction, once we have
only chosen any value for l · iU : U → T . Hence, given any t:U → T , we get
an l ∈ Ê such that r̂(l) = l · iU = t by merely choosing l · iU = t.

Finally, we get r̂(l′′)¦ r̂(l′) as the representation r̂(l′′ · l′) of composition,
for any l′, l′′ ∈ Ê , merely by (60). In fact, by (53) this is to prove that
(l′′ ·iU )¦ (l′ ·iU ) = l′′ · l′ ·iU and, if we set t = l′(u) and l = l′′ in (60), we find
that we already proved it by T -induction on l′(u), namely (l′′ · iU ) +̂ l′(u) =
l′′(l′(u)) for all u ∈ U . Notice also that we can rewrite r̂(l′′)¦ r̂(l′) = r̂(l′′ · l′)
as η̂M¦L = η̂M · η̂L , where L = r̂(l′) and M = r̂(l′′), since η̂ is the inverse of
r̂. Hence, we get (57) by (42) after applying t to both sides and (58) comes
from iT ∈ Ê .

1.8. Lemmata

(A) The values of full increments are dyads: η̂M :T → D , for every M =
Cn with n > 0.
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(B) The height of a full matrix is the exponent of the term matrix power of
C1 giving it: Cn = C

〈n〉
1 .

(C) Full increments are one to one.

(D) Full increments do not have fixed points.

(E) The restrictions of catenation to upward and downward paths are sub-
operations: for all u, t ∈ N2(1) and v, w ∈ W , t ⊕ u ∈ N2(1) and
w ⊕ v ∈ W , where t ⊕ u = (t ¦ u)(∅), when t, u: 1 → N2(1), t(∅) = t
and u(∅) = u. Namely, the generator of constants K:T 7 7→ÂT 1 is an
isomorphism from the former restriction of ⊕ onto ¦: T 1 × T 1 → T 1,
the term matrix product for the singleton U ′ = 1.

Proofs.

(A) Consider Cn +̂ t for n > 1 and all t ∈ T = U ∪D. When t = u ∈ U ,
by (40) it is Cn(u) ∈ D because of (47). When t = 〈t′, t′′〉 ∈ D, by (41) it is
〈Cn +̂ t′, Cn +̂ t′′〉 ∈ D.

(B) Arithmetic induction on n. The basis step is in (46) and (44). The
induction step comes from (45), (43), (47), (46), (41), (40) and
(47): C

〈m+1〉
1 (u) = (Cm ¦ C1)(u) = Cm +̂C1(u) = Cm +̂ 〈C0(u), C0(u)〉 =

Cm +̂ 〈u, u〉 = 〈Cm +̂u,Cm +̂u〉 = 〈Cm(u), Cm(u)〉 = Cm+1(u) for
all u ∈ U .

(C) By (B) and 1.7 (B) any full increment is a positive power of func-
tional composition for the full increment of C1. Hence, we can merely show
that the latter increment is one to one. By T -induction we show that for all
t ∈ T , if C1 +̂ t = C1 +̂ d for some d ∈ T , then t = d.

When t = u ∈ U , C1 +̂ d = C1 +̂ t = 〈u, u〉 ∈ U × U by (40), (47) and
(46). This implies that d /∈ D, since d ∈ D by (41) contradicts (A). Then,
by (8) d ∈ U as t did and C1 +̂ d = 〈d, d〉 that by (2) gets t = d. Notice that
we get this also from the symmetric assumption d ∈ U .

When t = 〈t′, t′′〉 where both t′ and t′′ satisfy our implication, d /∈ U as
d ∈ U implies t = d ∈ U . Then, d = 〈d′, d′′〉 ∈ D and the implication premise
gets 〈C1 +̂ t′, C1 +̂ t′′〉 = 〈C1 +̂ d′, C1 +̂ d′′〉 by (41), i.e. by (2) C1 +̂ t′ =
C1 +̂ d′ and C1 +̂ t′′ = C1 +̂ d′′. Hence, t = 〈t′, t′′〉 = 〈d′, d′′〉 = d.

(D) We show that, when n > 0, Cn +̂ t 6= t by T -induction on t.
When t ∈ U , Cn +̂ t = Cn(t) ∈ D by (40) and (A), whereas t ∈ U and

U ∩ D = ∅. When t = 〈t′, t′′〉 and both Cn +̂ t′ 6= t′ and Cn +̂ t′′ 6= t′′, by
(41) and (2) Cn +̂ t = 〈Cn +̂ t′, Cn +̂ t′′〉 6= 〈t′, t′′〉 = t.
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(E) The trivial either upward or word induction on u and v respectively
can exploit (36) and either (37) or (38). In the former case (37) becomes
(41) through (43).

1.9. Combinatory translators
Readers acquainted with Combinatory Logic will likely find an immediate
example of term increments in the substitutions of combinatory terms for
variables. When U is the set of atoms for (a set-theoretical model of) com-
binatory terms with reducible constants K and S as in [7], this occurs with
any increment matrix M that keeps such constants:

M(K) = K and M(S) = S.

However, term increments make sense even without variables. For instance,
when, U = {K,S}, namely for pure combinators, we can keep K only and
replace S by B(BW)(BBC) in combinatory notation. Within our K–S
system, we now see a translation of this system to the B–C–K–W system of
chapter 5 of [4].

In fact, this increment sends every combinator into an extensionally
equal combinator that only sprouts the combinators B, C, K, and W. If U ′

denotes the set of these four terms (trees) on U , the combinator we reach
always belongs to N2(U ′), where according to 1.5 U ′ is made of unknowns,
as well as to N2(U).

In general, U will contain more than two reducible constants and the
matrix M : U → T more non trivial replacements. Then, η̂M : T → T will be
a “translator” between combinatory systems, namely an idealized compiler
or translator between ideal programming languages.

This opens the quest for possible “two-ary asymptotic” invariants, i.e.
for properties that do not change under such translations. In fact, at a soft
level, our translators perform what emulations between universal Turing
machines do at the hard level.

(The formalization of G.J. Chaitin [1] implements such emulations by
“unary increments”, viz. by catenations with a word prefix that identifies the
Turing machine under emulation. Contrary to other attempts, it succeeded
in proving the Minsky–Solomonoff’s conjecture [12] neatly: asymptotic in-
variance under such emulations defines algorithmic complexity, the quantity
of “intrinsic information”. Among many results, a major result of Logic of
the past century [2] followed from this.)



188 G. Ricci

2. Semantics of search terms

2.0. Definition
Given any set U of atoms, the search commands d, l and r get their “exe-
cution meaning” merely from the functions d, l and r of (13) that we can
also see as partial functions in P(T × T ) , since T × T ⊂ T .

Even the search terms become so through a function σ: T → P(T × T )
that provides each search term t with its (pure) semantics σt ⊆ T × T ,
which is the function we define T -inductively for all t, t′, t′′ ∈ T by

σ∅ = iT ,(61)

σ〈t′,t′′〉(t) = 〈σt′(t), σt′′(t)〉 , for all t ∈ Dom σt′ ∩Dom σt′′ ,(62)

σ〈l,t〉 = l · σt and σ〈r,t〉 = r · σt .(63)

When Σ ⊆ P(T × T ) denotes the σ-image of T , σ: T→ÂΣ, each f ∈ Σ is a
partial function from T to T indexed by some t ∈ T , f = σt. It represents
the “pure address jump” that enables any S-term of its domain to reach
another S-term by the search term t. Hence, this direct addressing disregards
the departure S-terms, yet it does so only within some domain. To denote
it, we define the induced domain function ∆:T → PT by ∆t = Dom σt, for
all t ∈ T .

This domain is the whole T by (61), when t = ∅. Since by (62) 〈t′, t′′〉
keeps the common domain of t′ and t′′, ∆t′ ∩∆t′′ , it will remain the whole
T , as long as we build up search terms by τ ′d only as in (20),

∆u = T for all u ∈ N2(1) .(64)

By τ ′l or τ ′r, on the contrary, it can narrow:

∆〈l,t〉 = ∆〈r,t〉 ⊆ ∆t .(65)

In fact, since by (13) the domains of l and r are the proper subset D of
T , (63) states that only the S-terms t, such that σt(t) ∈ D, stay in this
(narrower) domain. For example, ∆〈l,∅〉 = D ⊂ T = ∆∅. From (62) we also
get for every t ∈ T

∆〈t,t〉 = ∆t .(66)
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We can denote all upward paths by S-terms through the unlabel function
Ãl : T → N2(1) defined by T -induction as

Ãl (u) = ∅ , for all u ∈ U , and(67)

Ãl (t′, t′′) = 〈Ãl (t′), Ãl (t′′)〉 , for all t′, t′′ ∈ T .(68)

Clearly,
Ãl : T→ÂN2(1) .(69)

Since N2(1) ⊆ T , this allows a two-ary natural number or S-term v ∈ T to
have a term semantics σÃl (v), namely this defines a term semantic function
that by (64) is σ · Ãl : T → T T .

We can also denote some increment matrices, the constant matrices of
1.6, by S-terms through the generator of constants in (48). This allows
an S-term v ∈ T to be uniformly incremented by another S-term t ∈ T ,
namely we define the growth function γ: T → T T by the growth of v by t,
γv(t) = η̂K(t)(v), for all t, v ∈ T .

With respect to term incrementing as in 1.6, this uniform growth
looses something, due to the proper injectivity of the generator of constants
(“proper” in case of more than one atom). On the other hand, with respect
to the semantic function, term semantics also does, because by (67) the
unlabel function collapses all the atoms in U onto ∅. As 2.3 (B) will show,
the two different losses get the same function.

Since all semantics in Σ ⊆ P(T × T ) are (partial) functions, we can
consider the functional composition of any two of them. By Theorem 2.2
(B) it is again a semantics. This composition and iT as in (61) form a
monoid that we call the complete semantic monoid. In fact, 4.5 and 4.6 will
introduce a “smaller” monoid that is more relevant to an effective semantics.
Recall that by 0.4 the composition notation is reversed.

2.1. Example
Consider the search terms t′ = 〈(l, l, ∅), 〈r, ∅〉〉 and t′′ = 〈(l, l, ∅), 〈(l, r, ∅),
(r, r, ∅)〉〉 of Figure 1 and 2. Clearly, they work the same by (62), (63) and
(30), but only the latter requires that the right of its argument be a dyad
as the diamond in Figure 3 depicts. Hence, their semantics is the function
that gives us the same S-term 〈t′, t′′〉, once we provide it with arguments of
the same form 〈〈t′, t〉, t′′〉 for some t, t′ ∈ T , yet respectively with t′′ ∈ T and
t′′ ∈ D.
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In Figure 5 σt′ sends both boxed S-terms (among others) into the two
circled ones (bold arrows), whereas σt′′ sends the rightmost only. The above
dyad requirement determines two properly inclusive induced domains, which
correspond to the concave areas at the left and top of the dotted lines.
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The equality of these two semantics on the common part of their
different domains hints how Section 3 will define the notion of two-ary
integers semantically. This will overcome the failures of conventional
algebraic extensions we mentioned in 0.1.

Clearly, both induced domains are infinite. We starred four trees outside
them. Their left to right sequence hints that also the complement of an
induced domain can be infinite, contrary to the co-finiteness of induced
domains of unary integers we recalled in 0.2.

Still, 4.4 (C) will extend the characterization of the latter domains
(co-finite segments of natural numbers) to the two-ary integers, while this
section will introduce certain “cartesian sets” that extend this characterizing
feature to the two-ary case.

2.2. Theorems

(A) Any semantics preserves term increments: for every t ∈ T and M : U →
T , σt · η̂M = η̂M · σt, namely for all t ∈ ∆t
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σt(M +̂ t) = M +̂σt(t)(70)

or also by (43) σt ·(M ¦L) = M ¦(σt ·L), for every L: U → ∆t. (Notice
that this implies η̂M (t) ∈ ∆t for all t ∈ ∆t.)

(B) The semantic function is a homomorphism from the catenation
monoid onto the complete semantic one, namely together with (61) we
have σu⊕t = σt · σu , for all t,u ∈ T .

Proofs.

(A) Bold induction on t. When t = ∅, by (61) we get η̂M ·σt = η̂M ·iT =
iT · η̂M = σt · η̂M , since in 1.6 η̂M : T → T .

When t = 〈t′, t′′〉 and both σt′(η̂M (t)) = η̂M (σt′(t)) for all t ∈ ∆t′

and σt′′(η̂M (t)) = η̂M (σt′′(t)) for all t ∈ ∆t′′ , by (62), 1.7 (B), (52) and
(62) we get η̂M (σt(t)) = η̂M (σt′(t), σt′′(t)) = 〈η̂M (σt′(t)), η̂M (σt′′(t))〉 =
〈σt′(η̂M (t)), σt′′(η̂M (t))〉 = σt(η̂M (t)) for all t ∈ ∆t′ ∩∆t′′ = ∆t.

Now, assume t = 〈l, t′〉 and σt′(η̂M (t′)) = η̂M (σt′(t
′)) for all t′ ∈ ∆t′ .

When t ∈ ∆t, by (63) and (65) σt′(t) ∈ D. Hence, by (42) and (41)
η̂M (σt′(t)) too is a dyad and we have the left of it. By our induction
assumption, (65) and (63)

l(η̂M (σt′(t))) = l(σt′(η̂M (t))) = σt(η̂M (t)) .(71)

Besides, for all 〈s′, s′′〉 ∈ D, by 1.7 (B) η̂M (s′, s′′) = 〈η̂M (s′), η̂M (s′′)〉 and by
(54) l(η̂M (s′, s′′)) = l(η̂M (s′), η̂M (s′′)) = η̂M (l(s′, s′′)). Then, for 〈s′, s′′〉 =
σt′(t) ∈ D by (71) and (63) σt(η̂M (t)) = η̂M (l(σt′(t))) = η̂M (σt(t)).

Finally, the step for t = 〈r, t′〉 comes from the preceding step
by replacing l as usual.

(B) Use bold induction on t. When t = ∅, by (36) σu⊕t = σu and
σt = iT by (61). Hence, σu⊕t = iT · σu = σt · σu.

When t = 〈t′, t′′〉 and both σu⊕t′ = σt′ · σu and σu⊕t′′ = σt′′ · σu,
by (37) and (62) σu⊕t(t) = σ〈u⊕t′,u⊕t′′〉(t) = 〈σu⊕t′(t), σu⊕t′′(t)〉 =
〈σt′(σu(t)), σt′′(σu(t))〉 = σ〈t′,t′′〉(σu(t)), for all t ∈ ∆u⊕t = ∆u⊕t′ ∩
∆u⊕t′′ .
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Also, by the induction premises and (62) ∆u⊕t′ ∩ ∆u⊕t′′ = {t | σu(t) ∈
∆t′} ∩ {t | σu(t) ∈ ∆t′′} = {t | σu(t) ∈ ∆t′ ∩ ∆t′′} = {t | σu(t) ∈
∆〈t′,t′′〉} = {t | σu(t) ∈ ∆t} = Dom (σt · σu). Hence, t ∈ ∆u⊕t iff
t ∈ Dom (σt · σu) and by (62) σu⊕t(t) = σ〈t′,t′′〉(σu(t)) = σt(σu(t)) =
(σt · σu)(t), for all such t, namely σu⊕t = σt · σu.

When t = 〈l, t′〉 and σu⊕t′ = σt′ · σu, by (38) and (63) σu⊕t =
σu⊕〈l,t′〉 = σ〈l,u⊕t′〉 = l ·σu⊕t′ = l · (σt′ ·σu) = (l ·σt′) ·σu = σ〈l,t′〉 ·σu =
σt ·σu, since the composition of partial functions in P(T ×T ) is associative.
When t = 〈r, t′〉, merely replace l with r.

2.3. Lemmata

(A) The semantics of any upward path is one to one, for all u ∈ N2(1)

σu: T 7 7→T .(72)

(B) The growth function is the term semantic function, γ = σ · Ãl .
(C) For all full terms z ∈ bmc and w ∈ blc,

γz(w) ∈ bl + mc .(73)

(D) If t ∈ ∆t, then C1 +̂ t ∈ ∆〈l,t〉, ∆〈r,t〉.

(E) Induced domains are “bottom-cofinite”, namely for each t ∈ T there
is a full matrix Cn: U → T , for some natural number n, such that
its increment of every t ∈ T , v = Cn +̂ t, reaches the domain of σt,
v ∈ ∆t.

(F) Catenating any search term t ∈ T with a single letter word restricts the
induced domain D = T × T of the word to

∆〈l,∅〉⊕t = ∆t × T or(74)

∆〈r,∅〉⊕t = T ×∆t .(75)

Proofs.
(A) Use upward induction on u. When u = ∅, by (61) σu = iT is one to

one. When u = 〈u′, u′′〉 and σu′ and σu′′ are one to one, for all t′, t′′ ∈ T ,
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σu(t′) = σu(t′′) implies by (62) that 〈σu′(t′), σu′′(t′)〉 = 〈σu′(t′′), σu′′(t′′)〉.
Hence, by (2) and the induction premises t′ = t′′.

(B) We prove η̂K(t)(v) = σÃl (v)(t) for all t, v ∈ T by T -induction on v.
By (42) this induction has to prove Kt +̂ v = σÃl (v)(t). The basis step for all
v = u ∈ U ⊂ T follows from (40), (48), (61) and (67), Kt +̂u = Kt(u) = t =
σ∅(t) = σÃl (u)(t).

When v = 〈v′, v′′〉 and both Kt +̂ v′ = σÃl (v′)(t) and Kt +̂ v′′ = σÃl (v′′)(t),
by (41), (62) and (68) Kt +̂ 〈v′, v′′〉 = 〈Kt +̂ v′, Kt +̂ v′′〉 = 〈σÃl (v′)(t), σÃl (v′′)(t)〉
= σ〈Ãl (v′),Ãl (v′′)〉(t) = σÃl (v)(t).

Hence, we proved the induction step too.

(C) We prove (73) by arithmetic induction on m. When m = 0, z ∈ U
and γz(w) = Kw +̂ z = Kw(z) = w ∈ blc = bl + mc by (42),(40) and
(48). Assume z = 〈z′, z′′〉 ∈ bm + 1c with z′, z′′ ∈ bmc, according to (10),
and γz′(w), γz′′(w) ∈ bl + mc. Then, by (42),(41) and sum associativity,
γz(w) = Kw +̂ 〈z′, z′′〉 = 〈Kw +̂ z′, Kw +̂ z′′〉 = 〈γz′(w), γz′′(w)〉 ∈ b(l + m) +
1c = bl + (m + 1)c.

(D) When t ∈ ∆t, by 2.2 (A) C1 +̂ t ∈ ∆t and σt(C1 +̂ t) = C1 +̂σt(t) ∈
D by (70) and 1.8 (A). Hence, by (63) and (13) C1 +̂ t ∈ ∆〈l,t〉,∆〈r,t〉.

(E) Use bold induction on t. When t = ∅, it comes from ∆t = T as
in (61). In fact, when we take C0 = iU , by (42) and (58) for all such t,
v = iU +̂ t = t ∈ ∆t.

When t = 〈t′, t′′〉 and there are Cn′ and Cn′′ such that v′ = Cn′ +̂ t ∈ ∆t′

and v′′ = Cn′′ +̂ t ∈ ∆t′′ for all t ∈ T , we take n = max(n′, n′′) and get v ∈
∆t from (62) because both v ∈ ∆t′ and v ∈ ∆t′′ . In fact, assume n = n′ and
let m = n− n′′, then v = v′ ∈ ∆t′ and v = (Cm ¦Cn′′) +̂ t = Cm +̂ v′′ ∈ ∆t′′

by 1.8 (B), (57) and 2.2 (A). The same for the assumption n = n′′.

When t = 〈l, t′〉 and there is Cn′ such that v′ = Cn′ +̂ t ∈ ∆t′ for all
t ∈ T , take n = n′ + 1. Then, v = Cn +̂ t = (C1 ¦ Cn′) +̂ t = C1 +̂ v′ ∈ ∆t
by 1.8 (B), (57) and (D). Finally,we prove the step t = 〈r, t′〉 by replacing
l with r as usual.

(F) For (74) notice that by 2.2 (B), (63) and (61) σ〈l,∅〉⊕t = σt ·σ〈l,∅〉 =
σt · l. Hence, its domain is the set {t | t ∈ T × T and l(t) ∈ ∆t} = {t |
t ∈ T × T and t ∈ ∆t × T} = T × T ∩ (∆t × T ) = ∆t × T by (13), the
distributivity in I.3.13 (f) of [13] and because ∆t ⊆ T . For (75) merely
replace l with r and commute these cartesian products.
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2.4. Corollary
No induced domain can be empty, ∆t 6= ∅ for all t ∈ T . Furthermore, every
∆t is infinite.

Proof.
At least the S-terms v of 2.3 (E) are in ∆t. They are infinite because

T , the domain of any (full) increment, is and because of 1.8 (C).

2.5. Definition
For every two-ary natural number t ∈ N2(1) we define the t–structured
cartesian set X (t) by upward induction on t as

X (∅) = T and(76)

X (t′, t′′) = X (t′)× X (t′′) .(77)

By (5) such an induction also shows that every t–structured cartesian set is
made of S-terms,

X (t) ⊆ T = N2(U) .(78)

If a set of S-terms is t–structured for some such a t, then we say that it is
a cartesian set and we denote their set by T = {X (t) | t ∈ N2(1)} ⊂ PT .
Notice that U /∈ T , since the only cartesian set containing it is T 6= U .
Hence, we got the cartesian structure function X : N2(1)→ÂT .

We define the branch (left) opposite ⇁w of a word w recursively by the
backward induction of 1.6 as

⇁∅ = ∅ ,

⇁(〈l, ∅〉 ⊕ v) = 〈⇁v, ∅〉 and ⇁(〈r, ∅〉 ⊕ v) = 〈∅, ⇁v〉 .

For instance, this backward induction gets ⇁(〈r, 〈l, 〈l, ∅〉〉〉) = 〈〈〈∅, ∅〉, ∅〉, ∅〉.
By backward induction also we clearly get ⇁: W → N2(1).

For each z ∈ N2(1) we say that t ∈ N2(1) is younger or equal to z and
we write t ≤ z, when we can relate them by the minimal preorder such that

∅ ≤ 〈∅, ∅〉 and, for all t′, t′′, z′, z′′ ∈ N2(1),(79)

t′ ≤ z′, t′′ ≤ z′′ imply 〈t′, t′′〉 ≤ 〈z′, z′′〉 .(80)
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We could easily make these conditions (together with reflexivity and tran-
sitivity) into the definition of the Galois connection for the age relation ≤
by upward induction on t. As 2.7 (C) will show ≤ to be a partial order, for
any set V ⊆ N2(1) with a g.l.b v =

∧
V , we say that v is its youngest term,

when v ∈ V .
These age related names refer to the sprouting in botanical trees, which

contrary to mathematical ones grow bottom up. They hint readers to dis-
tinguish ≤ from the preorder ¹ such that t′, t′′ ¹ 〈t′, t′′〉.
2.6. Lemmata
(A) If Y, Z ∈ T , then Y ∩ Z ∈ T .

(B) No cartesian set is finite.

(C) Cartesian sets identify their structures, namely the cartesian structure
function is a bijection X: N2(1)7 7→ÂT .

(D) X · Ãl :T→ÂT is a homomorphism from the dyad operation d: T ×T → T
onto the cartesian product of cartesian sets ×: T × T → T , such that
X(Ãl (u)) = T for u ∈ U and t ∈ X(Ãl (t)) for all t ∈ T .

(E) ∅ is the youngest term of N2(1).

Proofs.
(A) Given Y , let Z = X (z). Then we can prove our statement by

upward induction on z. When z = ∅, Z = T by (76) and, since Y ⊆ T ,
Y ∩Z = Y ∈ T . If z = 〈z′, z′′〉 with Y ∩X (z′), Y ∩X (z′′) ∈ T , then there are
t′, t′′ ∈ N2(1) such that Y ∩ X (z′) = X (t′) and Y ∩ X (z′′) = X (t′′). Hence,
by (77) and the usual distributivity in I.3.13 (f) of [13] we get Y ∩Z = Y ∩
(X (z′)×X (z′′)) = (Y ∩X (z′))×(Y ∩X (z′′)) = X (t′)×X (t′′) = X (t′, t′′) ∈ T .

(B) Trivial upward induction.
(C) We prove that X (z) = X (t) implies z = t by upward induction on

t. When t = ∅, by (4) and (76) U ⊆ T = X (t) = X (z), which by (77), (8)
and (34) implies that z cannot be a dyad, z = ∅ = t.

Now, consider t = 〈t′, t′′〉, where, for all z ∈ N2(1), both X (z) = X (t′)
implies t′ = z and X (z) = X (t′′) implies t′′ = z. By (77) and (8) X (t) = X (z)
cannot contain U . Hence, z is a dyad 〈z′, z′′〉.

Then, (77) rewrites the assumption X (z) = X (t) as an equality of carte-
sian products, X (z′)×X (z′′) = X (t′)×X (t′′). This implies two equalities on
their factors, which by (B) are not empty: X (z′) = X (t′) and X (z′′) = X (t′′).
Therefore, by the induction premises t = z, because of (2).
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(D) X (Ãl (u)) = T for u ∈ U immediately follows from (67) and (76).
X (Ãl (d(t′, t′′))) = X (Ãl (t′)) × X (Ãl (t′′)) for all t′, t′′ ∈ T from 1.1, (68) and
(77). Finally, to get t ∈ X (Ãl (t)), we use T -induction on t and the recalled
definitions.

(E) We prove ∅ ≤ z by upward induction on z. When z = ∅, we use
reflexivity. When z = 〈z′, z′′〉 with ∅ ≤ z′ and ∅ ≤ z′′, by (80) we get
〈∅, ∅〉 ≤ z and by (79) and transitivity ∅ ≤ z.

2.7. Theorems

(A) Containment between cartesian sets is a semilattice with zero. (This is
not the main motivation of our choice of ⊇ and ∩ as the order and join
respectively, instead of the dual choice. The main one will appear in
4.5.)

(B) The branch opposite of any word w ∈ W defines the structure of its
induced domain by ∆w = X(⇁w). Hence, the induced domains of
words are cartesian sets.

(C) The cartesian structure function X: N2(1)7 7→ÂT , namely the function
X · Ãl : T 7 7→ÂT for U = 1, is an isomorphism from the age relation ≤ onto
the containment of (A),

t ≤ z iff X (t) ⊇ X (z) for all t,z ∈ N2(1) ,(81)

where for U = 1 each argument is the youngest term of its cartesian
set: for all t ∈ N2(1), t ∈ X(t) and t ≤ z for all z ∈ X(t), hence X
defines a closure system.

Proofs.

(A) The join closure is in 2.6 (A). The zero is in (76) because of (78).
(B) Use backward induction on w. By 2.5 and 1.6 this is to prove that

∆∅ = T ,

∆〈l,∅〉⊕w = ∆w × T and(82)

∆〈r,∅〉⊕w = T ×∆w .(83)



Two-ary integers 197

The base of this recursion is in (64). For the induction step notice that (82)
and (83) are cases of (74) and (75) respectively.

(C) After 2.6 (C), to get the isomorphism, we only have to prove (81).
(Only if) Since ⊇ on T is a preorder as ≤ is, we only prove the cases
corresponding to (79) and (80) by upward induction on t: the basis step
for (79) comes from (5) with U = 1 through (76) and (77), while case (80)
comes from the induction premises through (77), because for all sets X ′,
X ′′, Y ′ and Y ′′, if X ′ ⊇ Y ′ and X ′′ ⊇ Y ′′ then X ′ ×X ′′ ⊇ Y ′ × Y ′′.

(If) Upward induction on z. When z = ∅, by (76) X (z) = T and by
(78) X (t) = X (z), which by 2.6 (C) implies t = z in agreement with age
reflexivity.

Then, assume that z = 〈z′, z′′〉, where X (t′) ⊇ X (z′) implies t′ ≤ z′,
while X (t′′) ⊇ X (z′′) implies t′′ ≤ z′′. Either t = ∅, which by 2.6 (E) implies
t ≤ z, or t = 〈t′, t′′〉 for some t′, t′′ ∈ N2(1). In the latter case we easily get
both premises of the induction premises from X (t) ⊇ X (z). Hence, by (80)
we get t ≤ z.

Finally, we get t ∈ X (t) from 2.6 (D) with U = 1 and t ≤ z for z ∈ X (t)
by upward induction on t. In fact, the basis step comes from (76) and 2.6
(E). Then, assume t = 〈t′, t′′〉 with t′ ≤ z′ and t′′ ≤ z′′ for all z′ ∈ X (t′)
and z′′ ∈ X (t′′). Since z ∈ X (t′, t′′), by (77) z is a dyad 〈z′, z′′〉 such that
z′ ∈ X (t′) and z′′ ∈ X (t′′). Hence, the induction premises by (80) imply
t ≤ z.

3. Two-ary integers

3.0. Definition
Consider two search terms t,u ∈ T . When

σt(t) = σu(t) for all t ∈ ∆t ∩∆u ,(84)

namely when the semantics of t and of u agree whenever both of them are
defined, we say that the two search terms are locally equal and write t ³ u.

3.1. Recursivity
From 2.1 we can fairly guess that the domain of a semantics is recursive
and that a semantics is a (recursive restriction of a) recursive function. (We
omit the technical details.) Yet, the domain intersection in (84) is infinite
by 2.4 and (62). Hence, as far as the computability of local equality is
concerned, now we can only guess that local inequality is enumerable.
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This rises the problem whether local equality is recursive or not. Its
affirmative answer will come from the characterization of local equality in
4.3. This characterization will use a recursive procedure defined in 4.0.

3.2. Lemmata
(A) τ -operations preserve ³. Namely, for all t, u, t′,u′, t′′, u′′ ∈ T

t ³ u implies 〈l, t〉 ³ 〈l, u〉 , 〈r, t〉 ³ 〈r,u〉 and(85)

t′ ³ u′, t′′ ³ u′′ imply 〈t′, t′′〉 ³ 〈u′,u′′〉 .(86)

(B) Relation ³ is an equivalence on T .

(C) Local equality on words becomes equality, for all v, w ∈ W , v ³ w
implies v = w.

Proofs.
(A) Consider (85) , then by (65) the domains of σ〈l,t〉 and σ〈l,u〉 respec-

tively are subsets of ∆t and ∆u. Hence their intersection is a subset of
∆t ∩∆u, where l · σt and l · σu coincide by (84). By (63) σ〈l,t〉 and σ〈l,u〉
too coincide, as required. The same holds when we replaces l by r.

To prove (86) let us introduce some more notation. Let ∆t′ = x, ∆t′′ =
y, ∆u′ = u and ∆u′′ = v, We have to show that σ〈t′,t′′〉 and σ〈u′,u′′〉 agree
on ∆〈t′,t′′〉 ∩∆〈u′,u′′〉 = (x ∩ y) ∩ (u ∩ v) = (x ∩ u) ∩ (y ∩ v), once we know
that σt′ agrees with σu′ on x ∩ u and that σt′′ agrees with σu′′ on y ∩ v.
This comes from (x ∩ u) ∩ (y ∩ v) ⊆ x ∩ u , y ∩ v, because of (62) and (2).

(B) Symmetry and the domain are trivial. Hence, we only show that, for
all t, v, w ∈ T , t ³ v and v ³ w imply t ³ w. Take any t ∈ ∆t ∩∆w. By
Lemma 2.3 (E) there is M = Cn: U → T such that v = η̂M (t) ∈ ∆〈t,〈v,w〉〉.
Hence, by (62)v ∈ ∆t ∩∆v ∩∆w. Therefore, by (84) the premises imply
that σt(v) = σv(v) = σw(v).

From σt(v) = σw(v) 2.2 (A) gets η̂M (σt(t)) = η̂M (σw(t)). When
n = 0, this already is σt(t) = σw(t) by (58), while for n > 0 we get it from
Lemma 1.8 (C). Hence, t ³ w.

(C) At first, notice that the only word locally equal to the empty one is
the empty word: for all w ∈ W , w ³ ∅ implies w = ∅. In fact, by (61) this
premise implies σw(t) = t for all t ∈ ∆w, where ∆w 6= ∅ by 2.4. By the
definition of pair in 0.4 it is trivial to show that this violates the regularity
axiom of Set Theory in I.1.18 of [13], as in theorem I.1.19 ibid., unless the
sequence of compositions of l and r in σw is empty. Hence, w = ∅.
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Now, it is enough to prove our statements for nonempty words v, w ∈ W
and we do it by contradiction.

Assume that v is such that v ³ w and v 6= w. Then, there are
v′,w′ ∈ W and words of length one v′′, w′′ = 〈l, ∅〉, 〈r, ∅〉 such that

v = v′′ ⊕ v′ and w = w′′ ⊕w′ .(87)

Let us consider the four possible choices of v′′ and w′′.
(Case v′′ = 〈l, ∅〉 6= w′′ = 〈r, ∅〉) By 2.3 (E) there is a natural number n

such that, for all t ∈ T , Cn +̂ t ∈ ∆〈v,w〉 = ∆v ∩∆w. Hence, σv(Cn +̂ t) =
σw(Cn +̂ t) and by 2.2 (B) (87) gets σv′(σv′′(Cn +̂ t)) = σw′(σw′′(Cn +̂ t)).
When t ∈ D, by 2.2 (A) this implies

σv′(Cn +̂σv′′(t)) = σw′(Cn +̂σw′′(t)) .(88)

Now, take t = 〈〈u, u〉, u〉 for some u ∈ U . Then, this choice of v′′ and
w′′ gets Cn +̂σv′′(t) = Cn +̂ 〈u, u〉 = 〈Cn +̂u,Cn +̂u〉 = 〈Cn(u), Cn(u)〉 =
Cn+1(u) = C1 +̂Cn(u) by (41), (40), (47), 1.8 (B), (57) and (45) as well
as Cn +̂σw′′(t) = Cn +̂u = Cn(u) by (40). Flip our S-term, t = 〈u, 〈u, u〉〉,
and get Cn +̂σw′′(t) = C1 +̂Cn(u) and Cn +̂σv′′(t) = Cn(u) in the same
way.

Hence, from (88) the former t by 2.3 (E) and (70) gets

σv′(C1 +̂Cn(u)) = C1 +̂σv′(Cn(u)) = σw′(Cn(u)) ,(89)

while the latter gets

σv′(Cn(u)) = σw′(C1 +̂Cn(u)) = C1 +̂σw′(Cn(u)) .(90)

This implies σv′(Cn(u)) = C1 +̂ (C1 +̂σv′(Cn(u))) = (C1¦C1) +̂σv′(Cn(u))
= C2 +̂σv′(Cn(u)) by (57) and 1.8 (B). Thus, σv′(Cn(u)) is a fixed point
of a full increment, contrary to 1.8 (D).

(Case v′′ = 〈r, ∅〉 6= w′′ = 〈l, ∅〉) In all the preceding argument we can
exchange l with r and v with w. Hence, the fixed point violation takes place
again.

(Case v′′ = 〈l, ∅〉 = w′′) Here, flipping the S-terms t does not work. We
resort to the usual minimal length contradiction argument. Assume that v
is of a minimal length.
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Then, by 2.2 (B), (63) and (87) our premise v ³ w becomes σv′(l(t)) =
σw′(l(t)) for all t ∈ ∆v ∩∆w. By (74) ∆v ∩∆w = (∆v′ ×T )∩ (∆w′ ×T ) =
(∆v′ ∩∆w′)×T because of the distributivity of the set operations involved,
e.g. see I.3.13 (f) of [13].

Moreover, for any T ′ ⊆ T , t ∈ T ′× T iff t′ = l(t) ∈ T ′ as it follows from
1.1. Hence, σv′(t′) = σw′(t′) for all t′ ∈ ∆v′ ∩∆w′ , namely v′ ³ w′, where
v′ is shorter than v of one letter contrary to our minimality assumption.

(Case v′′ = 〈r, ∅〉 = w′′) In the preceding argument replace l with r and
(74) with (75).

3.3. Definition
The relation ³ we have defined in 3.0 is an equivalence relation on T by 3.2
(B). Hence, by dividing T by ³ we get a set I2 that we call of the two-ary
integers. In fact, I2 generalizes the usual integers, in the way introduced by
0.0 and 0.2. In another way, Lemma 3.2 (C) hints it might well generalize
words. (Besides, 4.2 (E) will extend the uniqueness property in this lemma
to the upward paths in N2(1).) We will confirm this hint in 4.2 and 5.1
(A).

By Lemma 3.2 (A) and (B) ³ also is a congruence of the τ–operations.
Then, by an algebra division one might get an abstract algebra on I2. We
do not because we want to peer into it.

For instance, the abstract algebra of usual integers, the equivalence
classes of pairs 〈m,n〉 of natural numbers we recalled in 0.1, is of little use.
The actual algebra is the one of the reduced representatives of such abstract
elements, the ones of the forms 〈m, 0〉 or 〈0, n〉.

It gets an effective representation of usual integers: “natural numbers
with sign”.

Here also, we will modify our two-ary natural numbers (S-terms) to get
an effective concrete representation of two-ary integers. In fact, Section 4
will define a reduction procedure that gets certain S-terms. As in the unary
case, this procedure has a functional nature: no need of any Church-Rosser
property.

3.4. Lemma
For all t, t′, t′′ ∈ T ,

〈〈l, t〉, 〈r, t〉〉 ³ t and(91)

〈l, 〈t′, t′′〉〉 ³ t′ and 〈r, 〈t′, t′′〉〉 ³ t′′ ,(92)
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(While the inversion equations of 1.3 (B) do not always hold for two-ary
natural numbers because of the quantification in (30), this states they could
become identities for all two-ary integers, if we had introduced their algebra.)

Proof.
When in (30) we replace σt(t) for t, (14), (62) and (63) prove that σ〈〈l,t〉,〈r,t〉〉
(t) = σt(t) holds for all t such that σt(t) ∈ D. Let T ′ be their set and
T ′′ = ∆t be the domain of σt. Then T ′ ⊆ T ′′, because σt(t) /∈ D for t /∈ ∆t
(see I.1.43 (c) in [13]). Since T ′ also is the domain of both σ〈l,t〉 and σ〈r,t〉,
∆〈l,t〉 = ∆〈r,t〉, by (62) it is the domain of σ〈〈l,t〉,〈r,t〉〉, hence, the intersection
required in (84) for (91).

For (92) it is enough to prove the former equivalence, as the latter comes
from replacing r for l. Now, we replace σt′(t) for t′ and σt′′(t) for t′′ in (31).
Then, we use (14), (63) and (62) and get the intersection required in (84),
immediately from (62).

4. Jumps and reduction

4.0. Definitions
At first, notice that (23) allows us to define two functions p1, p2 ⊆ T × T
such that

p1(t′, t′′), p1(l, t′), p1(r, t′) = t′ and p2(t′, t′′) = t′′ ,(93)

for all t′, t′′ ∈ T , which pick the first and possible second search term
respectively in a composed search term. Trivially, (3) prevents any fixed
point:

p1(t), p2(t) 6= t , for all t ∈ T .(94)

By such a notation we say that t′, t′′ ∈ T are confluent, when t′ = 〈l, p1(t′)〉
and t′′ = 〈r, p1(t′)〉, see the bottom of the diamond in Figure 3, and that
t ∈ T is a d-term, when t = 〈p1(t), p2(t)〉. (Confluence is antisymmetric.)

Then, by bold induction we can define a reduction (function)

ρ:T → T as

ρ(∅) = ∅ ;(95)
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ρ(t′, t′′) =





p1(ρ(t′)) when ρ(t′) and ρ(t′′) are confluent,

〈ρ(t′), ρ(t′′)〉 otherwise
;(96)

ρ(l, t) =





p1(ρ(t)) when ρ(t) is a d-term,

〈l, ρ(t)〉 otherwise
;(97)

ρ(r, t) =





p2(ρ(t)) when ρ(t) is a d-term,

〈r, ρ(t)〉 otherwise
.(98)

We also define the set A of the jumps or reduced terms as the minimal set
such that

W ⊆ A and ,(99)

if a′, a′′ ∈ A are not confluent, then 〈a′, a′′〉 ∈ A .(100)

Clearly, A satisfies both conditions. We allow two different names for its
elements, because of the next two different inclusions in 4.1 (B) and (C).
Also, because of the latter inclusion, we will sometimes boldface the letters
denoting them. When a jump is a d-term, we call it a composed jump and
we denote the set of them by D′. The restriction of the premise in (100)
only concerns a pair of words (atoms) a′ and a′′, since no composed jump
can begin with l or r: for all a′, a′′ ∈ A

〈a′, a′′〉 /∈ A implies a′, a′′ ∈ W .(101)

Lemma 4.1 (E) is going to state a (full) induction principle for reduced
terms that we call reduced induction. Since its basis step requires to check a
superset of W and this in most cases involves a word induction or a backward
one, it is not “reduced” at all: often it will require two induction steps.

4.1. Lemmata
(A) (Binary) search words are unknowns for pairing.

(B) Jumps are two-ary natural numbers on (search) words: A ⊆ N2(W ).

(C) Reduced terms are search terms: A ⊆ T .
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(D) We can partition jumps into words and composed jumps: A = W ∪D′

and W ∩D′ = ∅.
(E) For all sets A′, A′ ⊇ A iff W ⊆ A′ and, for all t′, t′′ ∈ A ∩ A′ that

are not confluent, 〈t′, t′′〉 ∈ A′.

(F) The first and second search term of a jump are jumps: p1(a) ∈ A, for
∅ 6= a ∈ A, and p2(a) ∈ A , for all a ∈ D′.

(G) The first and second search term of a composed jump cannot be
confluent: 〈a′, a′′〉 ∈ A and a′ = 〈l, a〉 imply a′′ 6= 〈r, a〉.

(H) For every reduced term a ∈ A there is a natural number n such that,
for each word w ∈ W of a length not less than n, a⊕w ³ v for some
word v ∈ W and, for every such a v, v = a⊕w iff a ∈ W .

(I) The catenation of any reduced term a ∈ A with any word w ∈ W is
reduced, w ⊕ a ∈ A.

Proofs.

(A) When in (4) U = W , the elements of T in (7) are finite sets, because
both words and the pairs in D = T × T are. The latter pairs neither can be
the empty word nor can have an infinite component as any other word does.
In fact, such nonempty words are pairs w = 〈l, v〉 or w = 〈r, v〉, where both
l and r are infinite sets.

(B) Since T ′ = N2(W ) satisfies (4), with U = W , and (5), it will also
satisfy (99) and (100). Hence, N2(W ) ⊇ A by the minimality of A.

(C) Again , we use the minimality of A, but for (4)–(5) replaced by
(17)–(18).

(D) Since D′ ⊆ N2(W )×N2(W ), W ∩D′ = ∅ has been shown in (A).
Trivially, W ∪ D′ ⊆ A. To see that A′ = W ∪ D′ ⊇ A, since W ⊆ A, we
merely consider a′, a′′ ∈ A′ and show that 〈a′, a′′〉 ∈ D′ ⊆ A′, when they are
not confluent. This follows from 〈a′, a′′〉 being a d–term that must belong
to all sets containing W and closed under our restricted pairing.

(E) As for 1.3 (A), the (only if) comes from (99) and (100), while the
(if) from A′ ∩A ⊆ A′ being a superset of A.

(F) and (G) In the opposite cases the minimality of A fails, because one
could delete the corresponding jumps.
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(H) Use reduced induction on a. For a ∈ W take n = 0. Hence, for
each w ∈ W , a ⊕ w ∈ W by 1.8 (E) and, by the reflexivity of ³, we get
a⊕w ³ v with v = a⊕w ∈ W .

Let a = 〈a′, a′′〉, where a′,a′′ ∈ A (are not confluent and) have natural
numbers n′ and n′′ such that, for all words w′ of a length not less than n′

and w′′ of a length not less than n′′, a′ ⊕ w′ ³ v′ and a′′ ⊕ w′′ ³ v′′ for
some v′, v′′ ∈ W . Then, take n = 1 + max(n′, n′′).

Clearly, for every w ∈ W of length not less than n, there is a one-letter
word u = 〈l, ∅〉, 〈r, ∅〉 such that w = u⊕z for some word z ∈ W of a length
not less than both n′ and n′′. Hence, by (55) a ⊕w = (a ⊕ u) ⊕ z, where
by (38) and (36) a⊕u = 〈l, a〉, 〈r,a〉. In both cases the induction premises
get

a⊕w =




〈l, 〈a′, a′′〉〉 ⊕ z ³ a′ ⊕ z ³ v′ for some v′ ∈ W

〈r, 〈a′, a′′〉〉 ⊕ z ³ a′′ ⊕ z ³ v′′ for some v′′ ∈ W

by (92), namely a⊕w ³ v for some v ∈ W .
(iff) When a ∈ W , by 1.8 (E) a⊕w ∈ W and by 3.2 (C) a⊕w = v,

which conversely gets a ∈ W by an easy word induction on w: trivial for
w = ∅ while the induction step comes from (38) and (21).

(I) Reduced induction on a. When a ∈ W , by 1.8 (E) w⊕a ∈ W ⊆ A.
When a = 〈a′,a′′〉, where a′, a′′ ∈ A are not confluent and w⊕a′, w⊕a′′ ∈
A, even w⊕a′ and w⊕a′′ cannot be confluent. In fact, either both a′, a′′ ∈ W
and by (38) w ⊕ a′, w ⊕ a′′ ∈ W respectively end as a′ and a′′ do or some
of them is composed and by (37) even its corresponding catenation with w
does, contrary to (101). Therefore, by (37) and (100) w ⊕ 〈a′, a′′〉 ∈ A.

4.2. Theorems
Jumps are “canonical” two-ary integers, namely:

(A) reduction preserves local equality: for all t ∈ T , t ³ ρ(t);

(B) reduced terms are irreducible, ρ · iA = iA, i.e. ρ(a) = a for all a ∈ A;

(C) conversely, if a search term is irreducible, ρ(t) = t, then it is reduced,
t ∈ A;

(D) all reductions of search terms are reduced terms and conversely:
ρ:T→ÂA;
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(E) among reduced terms local equality is identity: for all a, u ∈ A

a ³ u implies a = u .(102)

Proofs.

(A) Use bold induction on t. When t = ∅, it comes from (95), since ³
is reflexive.

When t = 〈t′, t′′〉 and both t′ ³ ρ(t′) and t′′ ³ ρ(t′′), we set u′ = ρ(t′)
and u′′ = ρ(t′′) in (86) and get 〈t′, t′′〉 ³ 〈ρ(t′), ρ(t′′)〉. By (96) this immedi-
ately implies that 〈t′, t′′〉 ³ ρ(t′, t′′), when ρ(t′) and ρ(t′′)) are not confluent.
When they are, 〈ρ(t′), ρ(t′′)〉 ³ p1(ρ(t′)) by (91). Hence, 〈ρ(t′), ρ(t′′)〉 ³
ρ(t′, t′′) by (96) and transitivity.

When t = 〈l, t′〉 and t′ ³ ρ(t′), we set u = ρ(t′) in (85) and gets
〈l, t′〉 ³ 〈l, ρ(t′)〉. By (97) this immediately implies that 〈l, t′〉 ³ ρ(l, t′),
when ρ(t′) is not a d-term. When it is, 〈l, ρ(t′)〉 ³ p1(ρ(t′)) by (92). Hence,
〈l, t′〉 ³ ρ(l, t′) by (97) and transitivity. Finally, we prove the step t = 〈r, t′〉
by replacing l with r (and p1 with p2) as usual.

(B) Consider the steps (96), (97) and (98). When 〈t′, t′′〉, 〈l, t〉, 〈r, t〉 ∈
A, so are t′, t′′ and t by 4.1 (F). Moreover, t′ and t′′ cannot be confluent by
4.1 (G), while t ∈ W by 4.1 (D) and the minimalities of A and W . Hence.
in all three steps the former case cannot occur and this restriction of ρ is an
identity by a trivial reduced induction.

(C) Use bold induction. For t = ∅, t ∈ A, since ∅ ∈ W . When t = 〈t′, t′′〉
and both ρ(t′) = t′ implies t′ ∈ A and ρ(t′′) = t′′ implies t′′ ∈ A, we use
the premise in (C) and (94) to find that t′ and t′′ cannot be confluent nor
reducible. Then the premises in the induction premise and (100) to get
t ∈ A. The cases t = 〈l, t′〉 and t = 〈r, t′〉 easily follow from 4.1 (D).

(D) After (B), we only have to prove ρ: T → A, namely that the
reduction of a search term is a reduced term, ρ(t) ∈ A for all t ∈ T ,
by bold induction on t. When t = ∅, ρ(t) = ∅ ∈ A by (95), (19) for W
and (99).

When t = 〈t′, t′′〉 and both ρ(t′), ρ(t′′) ∈ A, ρ(t′) and ρ(t′′) cannot be
confluent, unless they are in W as in (101).

In the former circumstance, ρ(t) ∈ A by (100) and the latter case of (96).
In the latter, it does by (99) and the former case of (96), since ρ(t′) ∈ A
implies p1(ρ(t′)) ∈ A by 4.1 (F).

When t = 〈l, t′〉 and ρ(t′) ∈ A, either ρ(t′) ∈ W or it is a d-term.
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In the former circumstance, ρ(t) ∈ W ⊂ A by (99), (21) for W and
the latter case of (97). In the latter, it does by the former case of (97),
again because ρ(t′) ∈ A implies p1(ρ(t′)) ∈ A. A similar proof holds for
t = 〈r, t′〉.

(E) The proof of (102) will use reduced induction on a. Yet, at now we
prove a lesser statement that has a proof useful both in its basis step and
induction step. We only prove that (102) holds for all a ∈ A and all u ∈ W
and we do it by reduced induction on a.

This basis step is for a ∈ W and 3.2 (C) provides it with the proof of
(102). The induction step is a = 〈a′,a′′〉 for some a′ and a′′ such that, for
all u′, u′′ ∈ W , a′ ³ u′ implies a′ = u′, while a′′ ³ u′′ implies a′′ = u′′.
Then, by (85) a ³ u implies 〈l, a〉 ³ 〈l, u〉. By (92) this implies a′ ³ 〈l, u〉,
where u′ = 〈l, u〉 ∈ W by (21) for W . Hence, our former induction premise
gets a′ = 〈l,u〉, while, after replacing l with r, the latter gets a′′ = 〈r, u〉.
This contradicts the confluence free assumption of 4.1 (G) and makes the
implication, we are proving, trivially true, as there are not such pairs 〈a′, a′′〉
in A.

We can now prove (102) with its full quantification. The basis step,
for a ∈ W , comes from the preceding proof after flipping a and u, namely
by a reduced induction on u nested in the present induction on a. For
the induction step, a = 〈a′, a′′〉, the induction premises now hold for all
u′, u′′ ∈ A. Hence, when u′, u′′ ∈ W , the proof is the one of the preceding
induction step, while, when u = 〈v′, v′′〉 for some v′, v′′ ∈ A, we still get
a′ ³ 〈l, u〉 and a′′ ³ 〈r, u〉. From this, by (92) a′ ³ v′ and a′′ ³ v′′.
Therefore, if we take u′ = v′ and u′′ = v′′, then the induction premises get
a′ = v′ and a′′ = v′′ and by (2) a = 〈a′, a′′〉 = 〈v′, v′′〉 = u (now, by a non
trivial implication).

4.3. Corollary
Local equality is the equivalence induced by reduction. Hence, every two-ary
integer has a single reduced term.

Proof.

(A) To show that, for all t,∈ T , t ³ u implies ρ(t) = ρ(u), we first
use 4.2 (A) and transitivity to get ρ(t) ³ ρ(u). Then, we use 4.2 (D)
and (E). To get the converse implication we merely use 4.2 (A) and
transitivity.
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4.4. Theorems

(A) Reduced terms have the maximal domain property: for all t ∈ T , ∆t ⊆
∆ρ(t).

(B) Conversely, for all t, u ∈ T , σt ⊆ σρ(u) implies that t ³ u. Yet,
σt ⊆ σu for all t ∈ T , such that t ³ u, does not imply that u ∈ A.

(C) A set of S-terms is the domain of a reduced term iff it is cartesian.

Proofs.
(A) Use bold induction on t. When t = ∅, it comes from (95) and (64).
When t = 〈t′, t′′〉 and both ∆t′ ⊆ ∆

ρ(t′) and ∆t′′ ⊆ ∆
ρ(t′′), by (62) we

get ∆〈t′,t′′〉 = ∆t′∩∆t′′ ⊆ ∆
ρ(t′)∩∆

ρ(t′′) = ∆〈ρ(t′),ρ(t′′)〉. By (96) this imme-
diately implies that ∆〈t′,t′′〉 ⊆ ∆

ρ(t′,t′′), when ρ(t′) and ρ(t′′)) are not conflu-
ent. When they are, ∆

ρ(t′) = ∆
ρ(t′′) by (65). Hence, ∆〈ρ(t′),ρ(t′′)〉 = ∆

ρ(t′)
by (62), which implies ∆〈t′,t′′〉 ⊆ ∆

ρ(t′,t′′), because ∆
ρ(t′) ⊆ ∆

p1(ρ(t′)) =
∆

ρ(t′,t′′) by (65) and (96).
When t = 〈l, t′〉 and ∆t′ ⊆ ∆

ρ(t′), we get ∆〈l,t′〉 ⊆ ∆〈l,ρ(t′)〉 by (65) and
(63). By (97) this immediately implies that ∆〈l,t′〉 ⊆ ∆

ρ(l,t′), when ρ(t′) is
not a d-term. When it is, ∆

ρ(t′) = ∆
p1(ρ(t′)) ∩∆

p2(ρ(t′)) ⊆ ∆
p1(ρ(t′)) by (93)

and (62). Hence, ∆t′ ⊆ ∆
p1(ρ(t′) = ∆

ρ(l,t′) by transitivity and (97). By (65)
and transitivity ∆t = ∆〈l,t′〉 ⊆ ∆t′ ⊆ ∆

ρ(l,t′) = ∆ρ(t). Finally, we prove the
step t = 〈r, t′〉 by the usual replacements.

(B) σt ⊆ σρ(u) implies t ³ ρ(u) as in (84). Then, by 4.2 (A) t ³ u.
(Yet) Take u = 〈l, 〈〈l, ∅〉, ∅〉〉 and a = 〈l, ∅〉 = ρ(u). Then, u ³ a by 4.3,
∆u = D = ∆a and a ∈ A, whereas u /∈ A.

(C) (if) To see that every X (t) is a ∆a for some a ∈ A use upward
induction on t. For t = ∅, by (76) and (61) X (t) = T = ∆∅ and ∅ ∈ W ⊆ A.

When t = 〈t, u〉, where X (t) = ∆a and X (u) = ∆b for some a, b ∈ A, we
set a′ = 〈l, ∅〉 ⊕ a and b′ = 〈r, ∅〉 ⊕ b and get a′, b′ ∈ A again by 4.1 (I). By
(23) they cannot be confluent unless a = b = ∅ and in such a case by (61)
and (62) ∆t = T ∩ T = T = ∆∅ again.

In all other cases 〈a′, b′〉 ∈ A still provides X (t) with the required in-
duced domain: ∆〈a′,b′〉 = ∆a′ ∩ ∆b′ = (∆a × T ) ∩ (T × ∆b) = ∆a × ∆b =
X (t)×X (u) = X (t, u) by (62), 2.3 (F), the inclusions ∆a, ∆b ⊆ T and (77).

(Only if) Use reduced induction on the reduced term. The basis comes
from 2.7 (B). The induction step comes from (62) and 2.6 (A).
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5.5. Cartesian sets
At a first glance, two-ary integers look clumsier than unary integers, which
can be positive, null or negative. As 5.1 (A) and (B) will detail, also in A we
can distinguish three disjoint sets or genders: the singleton set of the zero
{∅} = {0}, the null jump, with the same zero of (set-theoretical) natural
numbers, the set of negative jumps, A− = W r {0}, and the set of positive
jumps A+ = N2(1)r {0}. Yet, contrary to usual integers, it is not all: e.g.
〈〈l, ∅〉, ∅〉 does not belong to any of the above genders. Now, we have a
fourth gender: the set A± = Ar ({0} ∪A− ∪A+).

On the contrary, the theorems we just proved hint that from a semantic
point of view things are not so different. By (64) positive and null jumps
have the whole T as the induced domain like positive and null integers,
which have the whole set of natural numbers. Now, we can say that the
other jumps behave much like negative integers.

In fact, the induced domain of any negative integer is a cofinite segment
of natural numbers. Such sets form a semilattice with zero, once we take ⊇
as the order among them. We take it, instead of ⊆, because we can identify
each cofinite segment by its (finite) lowest number and such a containment
becomes (directly) isomorphic to the natural order ≤ of natural numbers.

In case of jumps, 4.4 (C) and 2.7 (A) provide our induced domains with
a semilattice, now of cartesian sets, with zero. By 2.6 (B) a cartesian set
is infinite, like the cofinite segments, and 2.6 (C) always provides it again
with a finite two-ary natural number as an identifier. By 2.7 (C) the age
relation is the natural order among two-ary natural numbers, isomorphic to
the semilattice on cartesian sets.

Furthermore, the induced domains of jumps, canonical representatives of
two-ary integers, are maximal by 4.4 (A), like the ones of canonical integers
in 0.2. For instance, the induced domain of 〈−1, ∅〉, corresponding to −1,
is the segment [1,∞], whereas the one of its equivalent 〈+1, 〈−1, 〈−1, ∅〉〉〉
is its subset [2,∞].

This also shows that within usual integers the effective semantic monoid
is not the functional one: the composition of the semantics of 〈−1, 〈−1, ∅〉〉
and the one of 〈+1, ∅〉 has the smaller domain [2,∞], whereas the bigger
[1,∞] is the one we use, e.g. when finding the solution of equation 1+x = 0
“semantically”. This prompt us to introduce a new semantic monoid in the
next definition, by discarding any semantics that is not maximal and —
accordingly — by rounding the compositions up.
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4.6. Definitions
Consider the set S′ ⊆ Σ of all maximal semantics, namely such that
σ · ρ : T→ÂS′, and by 4.2 (B) define the prime semantics as the function
s′: A → S′ we get by restricting the semantic function to jumps, s′ = σ · iA.
By 4.4 (A), (B) and 4.3 inclusion of a semantics in a maximal semantics
is a function %: Σ→ÂS′: for all f ∈ Σ and g ∈ S′, f ⊆ g iff %(f) = g. This
defines the rounded composition ¯: S′ × S′ → S′ between two maximal
semantics by

g′′ ¯ g′ = %(g′′ · g′) for all g′, g′′ ∈ S′ .(103)

Therefore,

g′′ · g′ ⊆ g′′ ¯ g′ , for all g′, g′′ ∈ S′ ,(104)

and g′′ ¯ g′ is the only maximal semantics satisfying it.
By 4.7 (B) rounded composition is associative and has the unit iT ∈ S′

by (61) and (95). Hence, they form a monoid that we call the prime semantic
monoid (for the set of atoms U).

4.7. Corollary

(A) Every prime semantics is a bijection from jumps onto all maximal
semantics, s′:A7 7→ÂS′.

(B) For all f ′, f ′′ ∈ Σ, %(f ′′ · f ′) = %(%(f ′′) · f ′) = %(f ′′ · %(f ′)). Hence,
rounded composition is associative, (g′′ ¯ g′)¯ g = g′′ ¯ (g′ ¯ g) for all
g, g′, g′′ ∈ S′.

Proofs.

(A) 4.2 (D) and 4.4 (A) prove this ontoness. To check that s′ is one
to one, consider any a, u ∈ A. If s′a = s′u, then σa = σu and a ³ u as in
3.0. Hence, by 4.2 (E) a = u.

(B) From 2.2 (B) and the notion of functional (or relational) compo-
sition we immediately get Σ 3 f ′′ · f ′ ⊆ %(f ′′) · f ′, f ′′ · %(f ′) ∈ Σ for all
f ′, f ′′ ∈ Σ. Since the inclusion % is a function, this implies %(f ′′ · f ′) =
%(%(f ′′) · f ′) = %(f ′′ · %(f ′)). Hence, (g′′ ¯ g′) ¯ g = %(%(g′′ · g′) · g) =
%((g′′ · g′) · g) = %(g′′ · (g′ · g)) = %(g′′ · %(g′ · g)) = g′′ ¯ (g′ ¯ g).
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5. The prime representation of the jump algebra

5.0. Definition
The property in 4.2 (D) allows us to introduce the following operations on
jumps. The sum of jump a′′ and jump a′ is the jump

a′ + a′′ = ρ(a′ ⊕ a′′) .(105)

Hence, we defined a binary operation +:A×A → A that we call jump sum.
From it we also get the jump increment function η′:A → AA by

η′a′(a
′′) = a′ + a′′, for all a′, a′′ ∈ A .(106)

The jump cons too is a binary operation αd: A×A → A that we define by

αd(a′, a′′) = ρ(a′, a′′) , for all a′, a′′ ∈ A ,(107)

whereas the jump car and jump cdr are unary, αl, αr:A → A, and are
respectively defined by

αl(a) = ρ(l, a) and αr(a) = ρ(r, a) , for all a ∈ A .(108)

Since it might occur that αd(a′, a′′) 6= 〈a′, a′′〉, αl(a) 6= 〈l, a〉 or αr(a) 6=
〈r, a〉, one cannot properly call such operations jump dyad, jump left or
jump right respectively. Even the LISP keywords, we are using, lack this
propriety. Yet, since they are less usual, this lessens. Anyway, we call the
function α we just defined the (finite dimensional) jump algebra. Comment
5.6 will motivate why we are discarding the notion of an algebra, 〈A,α〉.

Given a set B, we also consider another function β on the domain
{l, r,d} indexing three operations βl, βr:B → B and βd: B × B → B and
we say that a function h: A → B is a homomorphism from α into β, when
for all a, a′ ∈ A

h(αd(a, a′)) = βd(h(a)), h(a′)) ,(109)

h(αl(a)) = βl(h(a)) and h(αr(a)) = βr(h(a)) .(110)

Hαβ will denote the set of such h. When β = α, Eα will replace Hαα and we
call any h an endomorphism of α or a jump endomorphism.
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We say that β is binary invertible, when the operations it indexes al-
ways satisfy the binary inversion equations partially satisfied in 2.3, namely
when for all b, b′ ∈ B they satisfy the identities, due to B. Jónsson
and A. Tarski [8]:

βd(βl(b), βr(b)) = b and(111)

βl(βd(b, b′)) = b = βr(βd(b′, b)) .(112)

Then, for each β, we define r′: Hαβ → B by

r′(h) = h(∅) , for all h ∈ Hαβ .(113)

As 5.4 (B) will show, when β = α, r′ is one of the representations of Eα.
Hence, we call it the prime (analytic) representation of (the endomorphisms
of) the jump algebra.

5.1. Lemmata
(A) For all v, w ∈ W , αl(w) = 〈l, w〉 ∈ W , αr(w) = 〈r, w〉 ∈ W and w+v =

w ⊕ v ∈ W . Hence, jump sum is an extension of word catenation.

(B) Whenever a, a′ ∈ A are not confluent, αd(a, a′) = 〈a, a′〉. Hence,
αd(u, t) = 〈u, t〉 for all u, t ∈ N2(1).

(C) For all u, t ∈ N2(1) ⊆ A, t + u = Kt +̂u = gu(t), where +̂ and g
are on T = N2(1) and K:T 7 7→ÂTU for U = 1. Namely, K−1: T 1 7 7→ÂT ,
with T = N2(1) ⊆ A, extends term increments into jump increments,
η̂ = η′ ·K−1.

(D) We can perform jump car and cdr by sums: αl(a) = a + 〈l, ∅〉 and
αr(a) = a + 〈r, ∅〉, for all a ∈ A.

Proofs.

(A) By 4.1 (I) every w = ∅ + w ∈ W is reduced and is not a d–term.
Hence, by (97) and (98) αl(w) = ρ(l, w) = 〈l, w〉 and αr(w) = ρ(r, w) =
〈r, w〉, while from this an easy word induction on v and 1.8 (E) get w + v =
w ⊕ v ∈ W by (36) and (38).

(B) It follows from 4.2 (B) and (96).
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(C) By 1.9 (E) it is enough to show that t + u = t ⊕ u. The trivial
upward induction on u that uses (B) as induction step proves it.

(D) By (108), (38), (36) and (105) we get αl(a) = ρ(l, a) = ρ(a⊕〈l, ∅〉) =
a + 〈l, ∅〉 and similarly for αr(a) = a + 〈r, ∅〉.

5.2. Theorem
α is binary invertible.

Proof. One might derive this property from the similar one of two-ary
integers in 3.4. Yet, we prefer to provide it with a direct proof.

By (107) and (108) to prove αd(αl(a), αr(a)) = a is to prove ρ(ρ(l, a),
ρ(r, a)) = a. To get this for all a ∈ A, by 4.1 (D) we can prove it for
all a ∈ W and for all a ∈ D′. When a ∈ W , we get ρ(ρ(l, a), ρ(r, a)) =
ρ(〈l, a〉, 〈r, a〉) = p1(l, a) = a by 4.2 (B), the latter cases of (97) and (98),
(B) again, the former case of (96) and by (93). When a ∈ D′, by 4.2 (B),
the former cases of (97) and (98) and by (93) we get ρ(ρ(l, a), ρ(r, a)) =
ρ(p1(a), p2(a)) = ρ(a) = a.

By (108) and (107) to prove αl(αd(a, a′)) = a is to prove ρ(l, ρ(a, a′)) =
a. To get this for all a ∈ A, by 4.1 (D) we can first consider the case of
confluent a and a′. In such a case a, a′ ∈ W and a = 〈l, p1(a)〉. Therefore,
by 4.2 (B) and the former case of (96) we get ρ(l, ρ(a, a′)) = ρ(l, p1(a)) =
ρ(a) = a. Then, we consider the case of non confluent a and a′.

In such a case 〈a, a′〉 ∈ D′ ⊆ A and by the latter case of (96), 4.2 (B),
the former cases of (97) and by (93) we get ρ(l, ρ(a, a′)) = ρ(l, 〈a, a′〉) =
p1(a, a′) = a.

We finally prove αr(αd(a′, a)) = a by the usual replacements, including
the ones for the pi.

5.3. Servi’s clans
Lemma 5.1 (A) shows that jumps extend words both for the operations of
affixing a letter and for catenation. Such an extension considers words as
“negative” elements as in 4.5, contrary to Servi’s approach, recalled in 0.0,
which got clans from “nonnegative words”.

Such opposite considerations lead to different properties of jumps and
clans. Non-isomorphic clans are uncountably infinite (yet their partial orders
are isomorphic), whereas 5.7 will show that we have a single jump algebra up
to isomorphisms. The three unary operations of clans satisfy (a disjunction
of) two systems of equations, whereas here we exactly got the single Jónsson–
Tarski’s system in (111) and (112).
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In fact, while the last theorem shows that the jump algebra α is binary
invertible, the next one will show that it is the most general among the
binary invertible algebras. It will state that for each element b of a binary
invertible algebra β there exists a homomorphism h from α into β that sends
the empty jump to b, h(∅) = b. Namely, α is a free algebra over the binary
invertible class. At now, it is with the empty jump as a single free generating
element. This restriction will disappear in 5.5.

5.4. Theorems

(A) When β is binary invertible, r′:Hαβ 7 7→ÂB.

(B) When β = α, the jump increment function is the inverse of the prime
representation r′: Eα 7 7→ÂA and the image under such a representation
of jump endomorphism composition is jump sum. Hence, η′: A7 7→ÂEα

and for all a, b, c ∈ A

(c + b) + a = c + (b + a) and(114)

∅+ a = a + ∅ = a .(115)

Proofs.
(A) (1–1) Assume r′(h) = r′(k) for h, k ∈ Hαβ , namely h(∅) = k(∅).

Then, by word induction h(w) = k(w) for all w ∈ W ⊆ A.
In fact, when w = 〈l, v〉 with h(v) = k(v), by 5.1 (A) and (110) h(w) =

h(αl(v)) = βl(h(v)) = βl(k(v)) = k(αl(v)) = k(w) and we can rewrite the
same for w = 〈r, v〉.

This provides reduced induction with a base to prove h(a) = k(a) for
all a ∈ A. When a = 〈a′, a′′〉 for non confluent a′a′′ ∈ A with h(a′) =
k(a′) and h(a′′) = k(a′′), by 5.1 (B) and (109) h(a) = h(αd(a′, a′′)) =
βd(h(a′), h(a′′)) = βd(k(a′), k(a′′)) = k(αd(a′, a′′)) = k(a).

(A) (onto) Given any b ∈ B, define an h: A → B by reduced induction
as

h(∅) = b ,

h(l, v) = βl(h(v)) , h(r, v) = βr(h(v)) for all v ∈ W(116)

and h(a, a′) = βd(h(a), h(a′)) for all 〈a, a′〉 ∈ D′.(117)
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Then, we only have to prove (110) and (109).
When a is a composed jump, a = 〈a′, a′′〉, by (108), (97) and 4.1 (F)

h(αl(a)) = h(a′), as a′ = p1(a) ∈ A.
Then, by (112), where b = h(a′) and b′ = h(a′′), 4.1 (G) and (117)

h(αl(a)) = βl(βd(h(a′), h(a′′))) = βl(h(a′, a′′)) = βl(h(a)). When a is a
word, by (108), 5.1 (A), (97) and (116) we immediately get h(αl(a)) =
h(l, a) = βl(h(a)). Then, by replacing l with r as usual, we get all of (110).

To get (109), first consider the case of confluent a, a′ ∈ A, which im-
plies a, a′ ∈ W . By (107), (96), (111) and (116) h(αd(a, a′)) = h(p1(a)) =
βd(βl(h(p1(a))), βr(h(p1(a)))) = βd(h(l, p1(a))), h(r, p1(a′))) = βd(h(a)),
h(a′)), since p1(a) = p1(a′). Then, for the case of non confluent a, a′ ∈ A, by
(107), 5.1 (B), (96) and (117) we immediately get h(αd(a, a′)) = h(a, a′) =
βd(h(a), h(a′)).

(B) (inverse) By (A) we know that r′: Eα 7 7→ÂA. Hence, we only show
that for all b ∈ A the endomorphism h in (A) (onto), such that r′(h) = b,
for β = α is η′b. By (106) this is to show that

h(a) = h(∅) + a = b + a for all a ∈ A(118)

and we do by reduced induction on a. The lowest basis step follows from
(105), (36) and 4.2 (B): b + ∅ = ρ(b⊕ ∅) = ρ(b) = b = h(∅).

To get b + 〈l, v〉 = h(l, v) from b + v = h(v) for all v ∈ W , start
from b ⊕ v ³ ρ(b ⊕ v) as in 4.2 (A) and get ρ(l, b ⊕ v) = ρ(l, ρ(b ⊕ v))
by (85) and 4.3. Then, by (105), (108), (38) and (116) (with β = α) get
b+〈l, v〉 = ρ(b⊕〈l, v〉) = ρ(l, b⊕v) = ρ(l, ρ(b⊕v)) = ρ(l, b+v) = αl(b+v) =
αl(h(v)) = h(l, v). The same for b + 〈r, v〉 = h(r, v).

For the remaining step, h(a, a′) = b + 〈a, a′〉 from two premises as in
(118), we first get ρ(ρ(b ⊕ a), ρ(b ⊕ a′)) = ρ(b ⊕ a, b ⊕ a′) as before. Then,
h(a, a′) = αd(h(a), h(a′)) = αd(b + a, b + a′) = ρ(b + a, b + a′) = ρ(ρ(b ⊕
a), ρ(b⊕a′)) = ρ(b⊕a, b⊕a′) = ρ(b⊕〈a, a′〉) = b+ 〈a, a′〉, follows from (117)
(with β = α), (107), (105) and (37).

(B) (jump sum) Finally, we get r′(h′′) + r′(h′) as the representation
r′(h′′·h′) of composition, for all h′′, h′ ∈ Eα, merely by (118). In fact, by (113)
this is to prove that h′′(∅) + h′(∅) = h′′(h′(∅)) and, if we set a = h′(∅) and
h = h′′ in (118), we find that we already proved it by reduced induction on
h′(∅). Since jump sum is isomorphic to the composition of endomorphisms,
(114) and (115) are trivial. Anyway, we can get them as in 1.8 (A).
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5.5. Jump Arithmetics
The finding that the jump algebra is the free binary invertible algebra is a
test for semantic constructions. In fact, both the problem of transforming
binary (or LISP) trees and the latter algebra are known since half century,
without any acknowledgment that the problem solution is this algebra.

Early LISP versions [29] embodied some embryonic jumps (the exten-
sions of car and cdr to the primitives corresponding to our words) and merely
observed the partial identities in 1.3 (B), forerunners of the Jónsson–Tarski’s
ones. Yet, later on [28] this was relinquished and no free algebra appeared.

Conversely, since [8] appeared, this free algebra was the subject of an
extensive work, e.g. see [26], [5], [27] and [10]. Yet, they neither perceived
its relevance to binary trees nor developed its arithmetic.

Here, the sum of jumps begins such a development. Such an operation
comes from 5.4 (B), which is an instance of the general theory of Univer-
sal Matrices, recalled in 0.3. Since we are only concerned with semantic
constructions, we will not develop it any further.

From the recalled extensive work, however, Universal Matrices provide
us a preview of such arithmetics. E. Marczewski found that this free algebra
has bases with every finite positive number of generators, see §31 in [6]. This
implies that it is free with any such number of generators. It also implies
that for each such a base we have a product of “(square) universal matrices”
with as many “columns” as the generators.

Such products define analytic monoids of any dimension as in [20]. Every
analytic monoid defines an “arithmetic” for jumps. Some of such arithmetics
will collapse into a single one up to jump “transformations”. For instance,
with a singleton base its arithmetic is the one of our jump sum, because
the isomorphism sending its generator to the empty jump provides its (one-
dimensioned) analytic monoid with the required transformation.

Such collapsing transformations will generate a hierarchy of arithmetics.
We do not yet know neither its structure (the theory of Universal Transfor-
mations that can enlighten it has yet to appear in print) nor the single
arithmetics.

Still, two-ary integers promise to be arithmetically rich, in spite of their
difference from usual integers.

5.6. Algebras as pairs
Many textbooks of Algebra and Universal Algebra denote and define
a (homogeneous) algebra as a pair 〈A,F 〉, where A denotes its carrier set
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and F denotes either a set of operations on A or a function indexing them.
(The reason to call it “function”, instead of “family”, is in 0.6 of [20].)
Our algebras, on the contrary, are not pairs: only an F occurs, in the form
of an indexing function α or β, see also τ ′ in 1.1.

None of such textbooks motivates such pairs, while the set-theoretical
point of view in 7.6 of [14] criticize them. Anyway, the theory we are using
(the one of analytic monoids) does not need them.

In general, most (homogeneous total) operations determines
their carrier, e.g. for αl: A → A the carrier is Dom αl. As far as we
are concerned, this always makes our algebras equivalent to conventional
algebras.

In fact, the only exception is an algebra where F contains (or
indexes) nullary operations only. Then, given such an F , we have a
conventional algebra 〈A,F 〉 for every superset A of the set B of the
corresponding constant values, whereas here we have just one
algebra F . However, when we say that our algebra F has any such
superset A as a carrier, such a statement provides us the conventional
specification.

5.7. Definitions
By 5.4 (B) the sum and ∅ form a monoid that we call the prime analytic
monoid. (Recall that by 5.0 in this monoid the composition of u with a is
a + u, see also [18].) On the contrary, we call sum monoid the reversed one
where the composition of u with a is u + a.

5.8. Corollary
The prime semantics s′ is an isomorphism from the sum monoid onto the
prime semantic monoid. Hence, s′ · r′ is an isomorphism from the jump
endomorphism monoid onto the prime semantic monoid, up to a composition
reversal.

Proof.

By 4.7 (A) s′: A7 7→ÂS′. For all a, u ∈ A, S′ 3 s′a+u = σa+u =
σρ(a⊕u) ⊇ σa⊕u = σu · σa ∈ Σ, by (105), 4.2 (A), 4.4 (A) and 2.2 (B).
Hence, s′a+u = %(s′u · s′a) = s′u ¯ s′a as in 4.6. Finally, s′∅ = σ∅ = iT by
(61). Therefore, s′ is the required isomorphism and by 5.4 (B) also s′ · r′ is,
up to the reversal in 5.7.
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