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Abstract

It is well-known that the composition of two functors between cat-
egories yields a functor again, whenever it exists. The same is true
for functors which preserve in a certain sense the structure of sym-
metric monoidal categories. Considering small symmetric monoidal
categories with an additional structure as objects and the structure
preserving functors between them as morphisms one obtains different
kinds of functor categories, which are even dt-symmetric categories.
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1. Introduction

Categories of ”partial morphisms” have become a subject of stronger in-
terest by several authors more than 25 years ago, since such categories are
of importance in different branches of mathematics and computer science.
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Hoehnke ([8]) introduced already in 1976 the basic concept of a ”Hoehnke
category”, by himself named ”diagonal-halfterminal-symmetric category”,
as a symmetric monoidal category in the sense of Eilenberg-Kelly ([4]) with
additional properties.

It is easy to see that other approaches, given e.g. in [1], [2], [3], [13], [15],
or [16], respectively, are more or less related to the concept of Hoehnke. More
precisely, the concept of a Hoehnke category comprises the other concepts
mentioned above and reflects best the properties of the category Par of all
partial functions between arbitrary sets. A Hoehnke category K, endowed
with a morphism family ∇ = (∇A ∈ K[A ⊗ A,A] | A ∈ |K|) characterized
by two conditions, allows a category-theoretical characterization of Par (cf.
[19], [9]). This observation leads to the introduction of dht-symmetric cate-
gories endowed with so called diagonal inversions ∇, see [22].

A symmetric monoidal category in the sense of Eilenberg-Kelly ([4]) is
a sequence

K• = (K,⊗, I, a, r, l, s)

consisting of a category K, a bifunctor ⊗ : K × K → K, a distinguished
object I ∈ |K|, and families a = (aA,B,C ∈ K[A ⊗ (B ⊗ C), (A ⊗ B) ⊗
C] | A, B,C ∈ |K|), r = (rA ∈ K[A ⊗ I, A] | A ∈ |K|), l = (lA ∈
K[I ⊗ A,A] | A ∈ |K|), s = (sA,B ∈ K[A ⊗ B, B ⊗ A] | A,B ∈ |K|)
of isomorphisms in K (associativity, right-identity, left-identity, symmetry)
such that the following conditions are fulfilled:

Bifunctor conditions:

(F1) ∀ρ, ρ′ ∈ K (dom (ρ⊗ ρ′) = dom ρ⊗ dom ρ′),

(F2) ∀ρ, ρ′ ∈ K (cod (ρ⊗ ρ′) = cod ρ⊗ cod ρ′),

(F3) ∀A,B ∈ |K| (1A⊗B = 1A ⊗ 1B),

(F4) ∀A,B, C, A′, B′, C ′ ∈ |K| ∀ρ ∈ K[A,B], σ ∈ K[B, C],

ρ′ ∈ K[A′, B′], σ′ ∈ K[B′, C ′] ((ρ⊗ ρ′)(σ ⊗ σ′) = ρσ ⊗ ρ′σ′),
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Conditions of monoidality:

(M1) ∀A,B,C, D ∈ |K|

(aA,B,C⊗DaA⊗B,C,D = (1A ⊗ aB,C,D)aA,B⊗C,D(aA,B,C ⊗ 1D)),

(M2) ∀A,B ∈ |K| (aA,I,B(rA ⊗ 1B) = 1A ⊗ lB),

(M3) ∀A, B,C∈|K| (aA,B,CsA⊗B,CaC,A,B =(1A⊗sB,C)aA,C,B(sA,C⊗1B)),

(M4) ∀A,B ∈ |K| (sA,BsB,A = 1A⊗B),

(M5) ∀A ∈ |K| (sA,I lA = rA),

(M6) ∀A,B,C, A′, B′, C ′ ∈ |K| ∀ρ ∈ K[A,A′], σ ∈ K[B, B′], τ ∈ K[C,C ′]

(aA,B,C((ρ⊗ σ)⊗ τ) = (ρ⊗ (σ ⊗ τ))aA′,B′,C′),

(M7) ∀A,A′ ∈ |K| ∀ρ ∈ K[A,A′] (rAρ = (ρ⊗ 1I)rA′),

(M8) ∀A,B ∈ |K| ∀ρ∈K[A,A′], σ∈K[B, B′](sA,B(σ ⊗ ρ)=(ρ⊗σ)sA′,B′).

The defining conditions of a symmetric monoidal category determine a lot of
properties (see for example [22] or [26]), especially concerning the so-called
”middle-exchange isomorphism”

bA,B,C,D ∈ K[(A⊗B)⊗ (C ⊗D), (A⊗ C)⊗ (B ⊗D)]

defined for arbitrary A,B, C,D ∈ |K| by

(B1) bA,B,C,D := aA⊗B,C,D

(
a−1

A,B,C(1A ⊗ sB,C)aA,C,B ⊗ 1D

)
a−1

A⊗C,B,D,

for instance:
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(M15) ∀A,B, C, D, A′, B′, C ′, D′ ∈ |K|

∀ρ ∈ K[A,A′] ∀σ ∈ K[B, B′] ∀λ ∈ K[C,C ′] ∀µ ∈ K[D,D′]

(bA,B,C,D((ρ⊗ λ)⊗ (σ ⊗ µ)) = ((ρ⊗ σ)⊗ (λ⊗ µ))bA′,B′,C′D′).

(M19) ∀A,B ∈ |K| (bA,I,I,B = 1A⊗I ⊗ 1I⊗B),

Let K• be a symmetric monoidal category as above. A sequence (K•; d)
is called diagonal-symmetric monoidal category or shortly, ds-category (in
[7] considered in the strict case as a special Kronecker-category, in [22]
”diagonal-symmetrische Kategorie”) if d = (dA ∈ K[A, A⊗A] | A ∈ |K|) is
a family of morphisms of K such that the

Conditions of diagonality:

(D1) ∀A,A′ ∈ |K| ∀ϕ ∈ K[A,A′] (ϕd[A′ = dA(ϕ⊗ ϕ)),

(D2) ∀A ∈ |K| (dA(dA ⊗ 1A) = dA(1A ⊗ dA)aA,A,A),

(D3) ∀A ∈ |K| (dAsA,A = dA),

(D4) ∀A,B ∈ |K| ((dA ⊗ dB)bA,A,B,B = dA⊗B)

are fulfilled, where bA,B,C,D is the middle exchange isomorphism defined as
above.

(K•, d, t) is called diagonal-terminal-symmetric monoidal category
or dts-category (cf. [7]) if (K•, d) is a ds-category containing a family
t = (tA | A ∈ |K|) of terminal morphisms tA ∈ K[A, I] such that
the conditions

(T1) ∀A, A′ ∈ |K| ∀ϕ ∈ K[A,A′] (ϕtA′ = tA) and

(DTR) ∀A ∈ |K| (dA(1A ⊗ tA)rA = 1A)

are right.
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(K•; d, t) will be called diagonal-halfterminal-symmetric monoidal
category or, shortly, dhts-category (cf. [8], [18]), if K• is a symmetric
monoidal category endowed with morphism families d and t as above, such
that

(D1) ∀A,A′ ∈ |K| ∀ϕ ∈ K[A,A′] (dA(ϕ⊗ ϕ) = ϕdA′),

(DTR) ∀A ∈ |K| (dA(1A ⊗ tA)rA = 1A),

(DTL) ∀A ∈ |K| (dA(tA ⊗ 1A)lA = 1A),

(DTRL) ∀A1, A2 ∈ |K| (dA1⊗A2((1A1⊗tA2)rA1⊗(tA1⊗1A2)lA2)=1A1⊗A2)),

(TT) ∀A, B ∈ |K| (tA⊗B = (tA ⊗ tB)tI⊗I)

are fulfilled. (K•; d,∇) is called diagonal-diagonalinversional-symmetric
monoidal category or d∇s-category (cf. [22]) if (K•; d) is a ds-category such
that there is a family ∇ = (∇A : A⊗A → A | A ∈ |K|) of morphisms in K
(so-called diagonal inversions) fulfilling the conditions

(D∗1) ∀A ∈ |K| (dA∇A = 1A),

(D∗2) ∀A ∈ |K| (∇AdAdA⊗A = dA⊗A(∇AdA ⊗ 1A⊗A)),

(D∗3) ∀A ∈ |K| (∇AdA = (1A ⊗ dA)aA,A,A(∇A ⊗ 1A)),

(D∗4) ∀A ∈ |K| (∇AdA =
(
dA ⊗ 1A)a−1

A,A,A(1A ⊗∇A)
)

, and

(∇1) ∀A,A′ ∈ |K| ∀ϕ ∈ K[A,A′] ((ϕ⊗ ϕ)∇A′ = ∇Aϕ).

Let (K•, d) be a ds-category.
Then (K•, d,∇) is called diagonal-halfdiagonalinversional-symmetric

monoidal category or dh∇s-category (cf. [22]) if ∇ = (∇A ∈ K[A⊗ A,A] |
A ∈ |K|) is a family of morphisms of K (diagonal inversions) such that (D∗1),
(D∗2), (D∗3), (D∗4), and

(∇∇) ∀A ∈ |K| ((∇A ⊗∇A)∇A = ∇A⊗A∇A)

hold.
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A diagonal-halfterminal-halfdiagonalinversional-symmetric monoidal
category, for short dhth∇s-category, is a sequence (K•; d, t,∇) such that
(K•; d, t) is a dhts-category and ∇ = (∇A : A ⊗ A → A | A ∈ |K|) is a
family of morphisms in K with the properties (D∗1) and (D∗2).

Example. The category consisting of one object I and one morphism 1I

forms the simplest model of the axioms above, where I ⊗ I = I, aI,I,I =
1I , rI = lI = sI,I = 1I⊗I = 1I , dI = 1I , tI = 1I ,∇I = 1I , 1I1I = 1I , 1I ⊗
1I = 1I . This symmetric monoidal category will be denoted by Ω.

(K•; d, t, o) is called Hoehnke category (in [8], [18], and [22] named dhts-
category), if (K•; d, t) is a dhts-category as above endowed with a distin-
guished object O and a distinguished morphism o ∈ K[I, O] such that

(O1) ∀A ∈ |K| (A⊗O = O ⊗A = O),

(o1) ∀A ∈ |K| ∀ϕ ∈ K[A,O] (tAo = ϕ), and

(o2) ∀A ∈ |K| ∀ψ ∈ K[O, A] ((1A ⊗ tO)rA = ψ)

are valid.
Finally, a di-Hoehnke category or Hoehnke category with half-

diagonalinversions (in [22] denoted as dht∇-symmetric category)
(K•; d, t,∇, o) is defined by the conditions that (K•; d, t, o) is a Hoehnke
category and (K•; d, t,∇) is a dhth∇s-category.

Example. A simple model of a Hoehnke category (di-Hoehnke category),
denoted by Γ, is given as follows:

There are exactly 2 objects and 5 morphisms:

|Γ| = {I,O 6= I}, and Γ = Γ[O, O] ∪ Γ[O, I] ∪ Γ[I,O] ∪ Γ[I, I],

where

Γ[O, O] = {1O}, Γ[O, I] = {tO}, Γ[I,O] = {o}, Γ[I, I] = {1I , oI,I 6= 1I},

the ⊗-operation for the objects is defined by
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O ⊗O = I ⊗O = O ⊗ I = O; I ⊗ I = I,

the composition of morphisms by

1O1O = 1O, o1O = o = 1Io = oI,Io, otO = oI,I , tOo = 1O,

tO = tO1I = 1OtO = tOoI,I , 1IoI,I = oI,I1I = oI,I , 1I1I = 1I ,

the distinguished morphisms are

aI,I,I = rI = lI = sI,I = 1I ,

aX,Y,Z = rX = lX = sX,Y = 1O if X = O ∨ Y = O ∨ Z = O,

dI = tI = ∇I = 1I , dO = tO = ∇O = 1O,

and the ⊗-operation for morphisms is defined by

∀ϕ ∈ Γ (1O ⊗ ϕ = ϕ⊗ 1O = 1O),

o⊗ o = o, tO ⊗ tO = tO, o⊗ tO = tO ⊗ o = 1O,

1I ⊗ o = o⊗ 1I = o⊗ oI,I = oI,I ⊗ o = o,

1I ⊗ oI,I = oI,I ⊗ 1I = oI,I ⊗ oI,I = oI,I ,

1I ⊗ 1I = 1I .

It is easy to show that a dhts-category is a ds-category and each
dts-category is a dhts-category too. Moreover, every Hoehnke category
is a dhts-category, every d∇s-category is a dh∇s-category and each di-
Hoehnke category is a dhth∇s-category. Altogether, there are the inclu-
sions between the classes s-C of symmetric monoidal categories, ds-C of
ds-categories, dhts-C of dhts-categories, dh∇s-C of dh∇s-categories, dts-C
of dts-categories, d∇s-C of d∇s-categories, dhth∇s-C of dhth∇s-categories,
Hoe-C of Hoehnke categories, and di-Hoe-C of di-Hoehnke categories,
respectively, as described in Figure 1.
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Figure 1.

Of importance is the fact that the relation ≤, defined by

ϕ ≤ ψ :⇔ ∃A,B ∈ |K| (ϕ, ψ ∈ K[A,B] ∧ dA(ϕ⊗ ψ) = ϕdB)

is a nontrivial partial order relation in each dhts-category as well as in each
dh∇s-category K ([18], [22]). Morphisms ϕ fulfilling ϕ ≤ ψ ∧ ϕ 6= ψ for
any ψ ∈ K are partial morphisms. In each Hoehnke category there exists the
so-called zero morphism oI,I ∈ K[I, I], which is, because of 1I 6= oI,I ≤ 1I ,
a proper partial morphism. Several important subcategories exist in every
dhts-category K as follows (cf. [8], [18]):
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Md,t
K , the dts-category generated by the families a, r, l, s, d, and t in K,

Isod,t
K , the dts-category generated by all isomorphisms and the families d

and t in K,

Cort
K , the dts-category generated by all coretractions and the family t

in K,

TotK := {ϕ ∈ K | ϕtcodϕ = tdomϕ}, the dts-category of all ”total mor-
phisms” in K, such that

Md,t
K ⊆ Isod,t

K ⊆ Cort
K ⊆ TotK .

The classes CenK of all morphisms generated by the unit, associativity,
right- and left-identity isomorphisms, and all their inverses in K (”central
morphisms”), IsoK of all isomorphisms of K, and CorK of all coretractions
of K form always symmetric monoidal subcategories of K. Moreover, CorK

is even a ds-category since all diagonal morphisms dA are coretractions by
(DTR).

Furthermore, of interest are functors between symmetric monoidal cat-
egories which preserve this structure in a certain sense ([24]). Such functors
between dt-, dht-, d∇-, dh∇-, and dhth∇-symmetric categories, respectively,
together with different kinds of ”pseudonatural” transformations form cer-
tain symmetric monoidal categories ([24]).

Monoidal functors between different kinds of symmetric strictly monoidal
categories K• and L• and their properties were investigated in [24], but the
investigation is easely extendable to the general case.

If there is no danger of confusion, we will omit the index at the symbols
⊗(K) and ⊗(L), respectively, in the sequel.

A monoidal functor F from K• into L• is characterized by a family

(
F̃ 〈A,B〉 : AF ⊗BF → (A⊗B)F | A,B ∈ |K|

)

of morphisms in L and a morphism iF : I(L) → I(K)F ∈ L such that the
following conditions are fulfilled.
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(F∼) ∀A,B ∈ |K|
(
F̃ 〈A,B〉 ∈ IsoL

)
,

(FI) iF ∈ IsoL,

(FA) ∀A,B, C ∈ |K|
((

1(L)
AF ⊗ F̃ 〈B, C〉

)
F̃ 〈A,B ⊗ C〉

(
a

(K)
A,B,CF

)
=

= a
(L)
AF,BF,CF

(
F̃ 〈A, B〉 ⊗ 1(L)

CF

)
F̃ 〈A⊗B, C〉

)
,

(FR) ∀A ∈ |K|
(
F̃ 〈A, I(K)〉

(
r
(K)
A F

)
=

(
1(L)

AF ⊗ i−1
F

)
r
(L)
AF

)
,

(FS) ∀A, B ∈ |K|
(
F̃ 〈A,B〉

(
s
(K)
A,BF

)
= s

(L)
AF,BF F̃ 〈B, A〉

)
,

(FM) ∀A,A′, B,B′ ∈ |K| ∀ϕ ∈ K[A,A′] ∀ψ ∈ K[B, B′]

(
(ϕF ⊗ ψF ) F̃ 〈A′, B′〉 = F̃ 〈A,B〉 (ϕ⊗ ψ) F

)
.

A monoidal functor F between ds-categories is called d-monoidal if in
addition the condition

(FD) ∀A ∈ |K|
(
d

(K)
A F = d

(L)
AF F̃ 〈A,A〉

)

is valid. (F, F̃ , iF ) is called strongly monoidal (strongly d-monoidal) functor
if (F, F̃ , iF ) is a monoidal (d-monoidal) functor having the properties

∀A,B ∈ |K|
(
F̃ 〈A,B〉 = 1(L)

AF⊗BF

)
and iF = 1(L)

I(L) .

Hoehnke proved in [8] the following fact:
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Let K and L be at least dhts-categories and let pA,B
1 = (1(K)

A ⊗ t
(K)
B )r(K)

A ,

pA,B
2 = (t(K)

A ⊗ 1(K)
B )l(K)

B , be the so-called canonical projections in K. Then
each functor F : K → L defines in a natural manner in L the morphism
family

F ∗ :=
(
F ∗〈A,B〉 := d

(L)
(A⊗B)F

(
pA,B
1 F ⊗ pA,B

2 F
)

∈ L[(A⊗B)F, AF ⊗BF ] | A,B ∈ |K|
)
,

satisfying the identities

(FA∗) ∀A, B,C ∈ |K|
((

a
(K)
A,B,CF

)
F ∗〈A⊗B, C〉

(
F ∗〈A,B〉 ⊗ 1(L)

CF

)
=

= F ∗〈A,B ⊗ C〉
(
1(L)

AF ⊗ F ∗〈B, C〉
)

a
(L)
AF,BF,CF

)
,

(FS∗) ∀A,B ∈ |K|
((

s
(K)
A,BF

)
F ∗〈B,A〉 = F ∗〈A,B〉s(L)

AF,BF

)
,

(FD∗) ∀A ∈ |K|
((

d
(K)
A F

)
F ∗〈A,A〉 = d

(L)
AF

)
,

(FMT∗) ∀A,A′, B, B′ ∈ |K| ∀ϕ ∈ TotK [A,A′] ∀ψ ∈ TotK [B, B′]

(F ∗〈A,B〉(ϕF ⊗ ψF ) = (ϕ⊗ ψ)FF ∗〈A′, B′〉),

(wFR∗) ∀A ∈ |K|
(
F ∗〈A, I〉

(
1(L)

AF ⊗ t
(L)
IF

)
r
(L)
AF ≤ r

(K)
A F

)
,

(wFL∗) ∀A ∈ |K|
(
F ∗〈I, A〉

(
t
(L)
IF ⊗ 1(L)

AF

)
l
(L)
AF ≤ l

(K)
A F

)
,
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(wFM∗) ∀A,A′, B, B′ ∈ |K| ∀ϕ ∈ K[A,A′] ∀ψ ∈ K[B,B′]

((ϕ⊗ ψ) FF ∗〈A′, B′〉 ≤ F ∗〈A,B〉(ϕF ⊗ ψF )).

Moreover, there is the morphism t
(L)

I(K)F
∈ L[I(K)F, I(L)]. In the case that F

is a d-monoidal functor with respect to F̃ and iF , one obtains

∀A,B ∈ |K|
(

F ∗〈A,B〉 =
(
F̃ 〈A, B〉

)−1
)

,

t
(L)

I(K)F
= (iF )−1,

and

(FT) ∀A ∈ |K|
(
t
(K)
A Ft

(L)

I(K)F
= t

(L)
AF

)
.

Conversely, let F be a functor between dhts-categories K and L such that
all morphisms F ∗〈A,B〉 and t

(L)

I(K)F
are isomorphisms in L and the condition

(FM∗) ∀A,A′, B, B′ ∈ |K| ∀ϕ ∈ K[A,A′] ∀ψ ∈ K[B,B′]

((ϕ⊗ ψ)FF ∗〈A′, B′〉 = F ∗〈A,B〉(ϕF ⊗ ψF ))

is true.

Then (F, (F ∗)−1, (t(L)

I(K)F
)−1) : K → L is a d-monoidal functor ([8]), [24]).

Moreover, let F be a functor fulfilling (FM∗) such that

(sF∗) ∀A,B ∈ |K|
(
F ∗〈A,B〉 = 1(L)

(A⊗B)F

)
and

(sFI∗) t
(L)

I(K)F
= 1(L)

I(L)

are satified. Then (F, (1(L)
(A⊗B)F | A,B ∈ |K|), 1(L)

I(L)) is a strongly d-monoidal
functor.
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Example. A simple example of a monoidal functor between symmetric
monoidal categories K• and L• is given by (E, Ẽ, iE) with the properties
∀A ∈ |K| (AE = I(L)), ∀ϕ ∈ K (ϕE = 1(L)

I(L)), ∀A,B ∈ |K| (Ẽ〈A,B〉 =

r
(L)

I(L)), iE = 1(L)

I(L) .

Let K and L be dhts-categories. Then the functor E : K → L is even
d-monoidal, since:

∀A, B ∈ |K|
(
E∗〈A,B〉 = d

(L)
(A⊗B)E

(
pA,B
1 E ⊗ pA,B

2 E
)

= d
(L)

I(L) ∈ IsoL

)
,

t
(L)

I(K)E
= t

(L)

I(L) = 1(L)

I(L) ∈ IsoL, and

∀A, A′, B, B′ ∈ |K| ∀ϕ ∈ K[A, A′] ∀ψ ∈ K[B, B′]

(
(ϕ⊗ ψ)EE∗〈A′, B′〉 = 1(L)

I(L)d
(L)

I(L)

= d
(L)

I(L)

(
1(L)

I(L) ⊗ 1(L)

I(L)

)
=E∗〈A,B〉(ϕE ⊗ ψE)

)
.

Remark. Hoehnke introduced in [8] the concept of a dht-symmetric functor
between Hoehnke categories. This concept differs from that of a d-monoidal
functor presented here as follows:

Instead of (FM) Hoehnke demands the weaker condition

(FMT) ∀A,A′, B, B′ ∈ |K| ∀ϕ ∈ TotK [A,A′] ∀ψ ∈ TotK [B, B′]

(
(ϕF ⊗ ψF )F̃ 〈A′, B′〉 = F̃ 〈A,B〉(ϕ⊗ ψ)F

)

and instead of (FI) the fact t
(L)

I(K)F
F 1 = 1(L)

IF for a suitable morphism F 1 in L.
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A Hoehnke functor F : K → L is, by definition, a d-monoidal functor which
preserves the zero object, i.e. O(K)F = O(L), or it is one of the functors U

(∀A ∈ |K| (AU = O(L), ∀ϕ ∈ K (ϕU = 1(L)

O(L))) or E as above.

Functors between symmetric monoidal categories which preserve the whole
symmetric monoidal structure directly are of importance for the further
considerations.

Lemma 1.1 (cf. [24]). Let F : K• → L• be an arbitrary functor between
the symmetric monoidal categories K• and L• possessing the properties

(sFI) I(K)F = I(L),

(sFA) ∀A,B, C ∈ |K|
(
a

(K)
A,B,CF = a

(L)
AF,BF,CF

)
,

(sFR) ∀A ∈ |K|
(
r
(K)
A F = r

(L)
AF

)
,

(sFS) ∀A,B ∈ |K|
(
s
(K)
A,BF = s

(L)
AF,BF

)
,

(sFM) ∀A,A′, B,B′ ∈ |K| ∀ϕ ∈ K[A,A′] ∀ψ ∈ K[B, B′]

((ϕF ⊗ ψF ) = (ϕ⊗ ψ)F ).

Then (F, (1(L)
AF⊗BF | A,B ∈ |K|), 1(L)

I(L)) is a strongly monoidal functor and

(sFL) ∀A ∈ |K|
(
l
(K)
A F = l

(L)
AF

)

is right.

If in addition K and L are ds-categories and F has the property
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(sFD) ∀A ∈ |K|
(
d

(K)
A F = d

(L)
AF

)
,

then (F, (1(L)
AF⊗BF | A,B ∈ |K|), 1(L)

I(L)) is a strongly d-monoidal functor.

Proof. First, for all A,B ∈ |K|,

1(L)
(A⊗B)F = 1(K)

A⊗BF =
(
1(K)

A ⊗ 1(K)
B

)
F

= 1(K)
A F ⊗ 1(K)

B F = 1(L)
AF ⊗ 1(L)

BF = 1(L)
AF⊗BF

by the properties of symmetric monoidal categories and the usual functor
properties, hence

∀A,B ∈ |K| ((A⊗B)F = AF ⊗BF ).

All unit morphisms are isomorphism, therefore (F∼) is true for F̃ 〈A, B〉 :=
1(L)

AF⊗BF and there is the morphism iF = 1(L)

I(L) ∈ L[I(L), I(K)F ]. With
respect to the suitable unit morphisms, the conditions (FI), (FA), (FR),
(FS), and (FM) are fulfilled via (sFI), (sFA), (sFR), (sFS), and (sFM),
respectively.

Let K and L be ds-categories. Then (FD) is a trivial consequence
of (sFD).

Corollary 1.2. Let F be a functor between dh∇s-categories which has the
properties (sFI), (sFA), (sFR), (sFS), (sFM), and (sFD). Then F has the
property

(sF∇) ∀A ∈ |K|
(
∇(K)

A F = ∇(L)
AF

)
.

Proof. For an arbitrary object A in K, the equations

d
(K)
A ∇(K)

A = 1(K)
A and d

(K)
A⊗A

(
∇(K)

A d
(K)
A ⊗ 1(K)

A⊗A

)
= ∇(K)

A d
(K)
A d

(K)
A⊗A
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are valid, hence

1(L)
AF = 1(K)

A F =
(
d

(K)
A ∇(K)

A

)
F = d

(K)
A F∇(K)

A F = d
(L)
AF

(
∇(K)

A F
)

and

d
(L)
AF⊗AF

((
∇(K)

A F )d(L)
AF ⊗ 1(L)

AF⊗AF

)
=

=
(
d

(K)
A⊗AF

)((
∇(K)

A F
)(

d
(K)
A F

)
⊗

(
1(K)

A⊗AF
))

=

(by (sFD))

=
(
d

(K)
A⊗A

(
∇(K)

A

(
d

(K)
A ⊗ 1(K)

A⊗A

)))
F =

(by (sFM))

=
(
∇(K)

A d
(K)
A d

(K)
A⊗A

)
F =

(by (sFD))

=
(
∇(K)

A F
)

d
(L)
AF d

(L)
AF⊗AF .

Since there is at most one morphism family in any dh∇s-category which
fulfils both identities with respect to the diagonal morphisms (cf. [18]), one
receives the claim.

Lemma 1.3 ([24]). Let K and L be at least dhts-categories and let F :
K → L be a functor between the underlying categories fulfilling the condi-
tions (sFM) and

(sFT) ∀A ∈ |K| (t(K)
A F = t

(L)
AF ).

Then

(F∗) ∀A, B ∈ |K| (F ∗〈A, B〉 = d
(L)
(A⊗B)F (pA,B

1 F ⊗ pA,B
2 F ) ∈ IsoL) and
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(sFI∗) t
(L)

I(K)F
= t

(L)

I(L) = 1(L)

I(L)

are right, where the properties (sFI∗) and (sFI) are equivalent.
Moreover, the functor F possesses in addition even the properties (sF∗),

(sFA), (sFR), (sFL), and (sFS), whenever F fulfils beside (sFT) and (sFM)
the condition (sFD).

In other words, (F, (1(L)
AF⊗BF | A,B ∈ |K|), 1(L)

I(L)) is a strongly d-monoidal
functor between dhts-categories, whenever (sFM), (sFT), and (sFD) are
right.

Proof. Putting A = I(K) in (sFT), one obtains 1(L)

I(K)F
= 1(K)

I(K)F = t
(K)

I(K)F =

t
(L)

I(K)F
, hence I(K)F = codom(L)(1(L)

I(K)F
) = codom(L)(t(L)

I(K)F
) = I(L), thus

t
(L)

I(K)F
= t

(L)

I(L) = 1(L)

I(L) .

The equivalence of (sFI) and (sFI∗) is obvious.
As already proved, ∀A,B ∈ |K| ((A ⊗ B)F = AF ⊗ BF ) (cf. Lemma

1.1), therefore via (sFT),

F ∗〈A,B〉=d
(L)
AF⊗BF

((
1(L)

AF⊗t
(L)
BF

)
⊗

(
t
(L)
AF⊗1(L)

BF

))(
r
(K)
A F⊗l

(K)
B F

)
∈ IsoL,

since d
(L)
AF⊗BF ((1(L)

AF ⊗ t
(L)
BF ) ⊗ (t(L)

AF ⊗ 1(L)
BF ))(r(L)

AF ⊗ l
(L)
BF ) = 1(L)

AF⊗BF

and r
(K)
A F and l

(K)
B F are isomorphisms too.

Assuming the validity of (sFD), one receives

F ∗〈A,B〉 = d
(L)
AF⊗BF

((
1(L)

AF⊗t
(L)
BF

)
⊗

(
t
(L)
AF⊗1(L)

BF

))(
r
(K)
A F⊗l

(K)
B F

)

=
(
d

(L)
AF⊗d

(L)
BF

)
b
(L)
AF,AF,BF,BF

((
1(L)

AF⊗t
(L)
BF )⊗(t(L)

AF⊗1(L)
BF

))(
r
(K)
A F⊗l

(K)
B F

)
=

(by (D4) in L)
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=
(
d

(L)
AF⊗d

(L)
BF

)((
1(L)

AF⊗t
(L)
AF

)
⊗

(
t
(L)
BF⊗1(L)

BF

))
b
(L)

AF,I(K)F,I(K)F,BF

(
r
(K)
A F⊗l

(K)
B F

)
=

(by (M15) in L)

=
(
d

(L)
AF

(
1(L)

AF⊗t
(L)
AF

)
⊗d

(L)
BF

(
t
(L)
BF⊗1(L)

BF

))
b
(L)

AF,I(L),I(L),BF

(
r
(K)
A F⊗l

(K)
B F

)
=

(by (sFI))

=
(
d

(L)
AF

(
1(L)

AF⊗t
(L)
AF

)
⊗d

(L)
BF

(
t
(L)
BF⊗1(L)

BF

))(
1(L)

AF,I(L)⊗1(L)

I(L),BF

)(
r
(K)
A F⊗l

(K)
B F

)
=

(by (M19) in L)

=
(
d

(L)
AF

(
1(L)

AF⊗t
(L)
AF

)
r
(K)
A F⊗d

(L)
BF

(
t
(L)
BF⊗1(L)

BF

)
l
(K)
B F

)
=

=
(
d

(K)
A F

(
1(K)

A F⊗t
(K)
A F

)
r
(K)
A F⊗d

(K)
B F

(
t
(K)
B F⊗1(K)

B F
)

l
(K)
B F

)
=

(by (sFT), (sFD))

=
((

d
(K)
A F

(
1(K)

A ⊗t
(K)
A

)
r
(K)
A

)
F⊗

(
d

(K)
B

(
t
(K)
B ⊗1(K)

B

)
l
(K)
B

)
F

)
=
(by (sFM))

=
(
1(K)

A F⊗1(K)
B F

)
=1(L)

AF⊗BF .

Since t
(L)

I(K)F
= 1(L)

I(L) is an isomorphism, all F ∗〈A,B〉 = 1(L)
AF⊗BF are iso-

morphisms and (sFM) is expected, (F, (1(L)
AF⊗BF | A,B ∈ |K|), 1(L)

I(L)) is
a d-monoidal functor between the dhts-categories K and L, therefore the
conditions (sFA), (sFR), (sFL), and (sFS) are fulfilled.

Example. Let K• be a symmetric monoidal category. Then ΘK : K → Ω,
defined by (A 7→ I, ϕ 7→ 1I), is a strongly monoidal (d-monoidal) functor
with respect to Θ̃K (Θ̃K〈A, B〉 := 1I) and iΘK

:= 1I .
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2. The cartesian product of categories

It is well-known that two categories K and L determine a new category
K×L, the so-called cartesian product, consisting of objects (A,B), A ∈ |K|,
B ∈ |L| and morphisms (ϕ,ψ), ϕ ∈ K, ψ ∈ L, where the structure of
K × L is defined via the components in the ordered pairs by the structure
in K and L, respectively.

The cartesian product (K × L)• of symmetric monoidal categories K•

and L• is a symmetric monoidal category too. More precisely:

Proposition 2.1. Let K• and L• be symmetric monoidal categories. Then
all ordered pairs (A,B) of objects A ∈ |K| and B ∈ |L| together with all
ordered pairs (ϕ, ψ) of morphisms ϕ ∈ K and ψ ∈ L form in a natural man-
ner a symmetric monoidal category (K ×L)•, where the monoidal structure
is defined componentvise:

(A1, B1)⊗ (A2, B2) := (A1 ⊗K A2, B1 ⊗L B2),

(ϕ1, ψ1)⊗ (ϕ2, ψ2) := (ϕ1 ⊗K ϕ2, ψ1 ⊗L ψ2),

I := (I(K), I(L)), a(A1,A2),(B1,B2),(C1,C2) :=
(
a

(K)
A1,B1,C1

, a
(L)
A2,B2,C2

)
,

r(A1,A2) :=
(
r
(K)
A1

, r
(L)
A2

)
, l(A1,A2) :=

(
l
(K)
A1

, l
(L)
A2

)
,

s(A1,A2),(B1,B2) :=
(
s
(K)
A1,B1

, s
(L)
A2,B2

)
.

Moreover, if two symmetric monoidal categories possess additional proper-
ties concerning the monoidal structure, then the cartesian product (K ×L)•

has the same properties, especially:

Defining in addition

d(A1,A2) :=
(
d

(K)
A1

, d
(L)
A2

)
, t(A1,A2) :=

(
t
(K)
A1

, t
(L)
A2

)
,
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∇(A1,A2) :=
(
∇(K)

A1
,∇(L)

A2

)
,

O :=
(
O(K), O(L)

)
, o :=

(
o(K), o(L)

)
, respectively,

one obtains a ds-, dts-, dhts-, d∇s-, dh∇s-, dhth∇s-category, Hoehnke
category, and di-Hoehnke category K × L, respectively, whenever K and L
are ds-, dts-, dhts-, d∇s-, dh∇s-, dhth∇s-categories, Hoehnke categories,
and di-Hoehnke categories.

The necessary proofs of all the presented assertions are easy to do and will
be left to the reader.

3. Composition of functors

Besides the ⊗-operation for functors between symmetric monoidal cate-
gories, investigated in [24] and already introduced in [8] by A(F ⊗ G) :=
AF ⊗AG, ϕ(F ⊗G) := ϕF ⊗ϕG, there is the usual composition of functors
F : K• → L• and G : L• → P •.

Lemma 3.1 (cf. [8]). Let (F, F̃ , iF ) : K•→M• and (G, G̃, iG) : M•→P •

be monoidal functors between symmetric monoidal categories. Then
FG : K → P , defined by the usual functor composition, is a monoidal
functor with respect to

F̃G :=
(
F̃G〈A,B〉 = G̃〈AF, BF 〉(F̃ 〈A,B〉G) | A,B ∈ |K|

)

and iFG := iG(iF G).

(FG, F̃G, iFG) is a strongly monoidal functor whenever both (F, F̃ , iF )
and (G, G̃, iG) are strongly monoidal functors.

Finally, 1〈K〉F = F = F1〈M〉 for all monoidal functors F , where 1〈K〉
is the identical functor of K.

Proof. Each morphism of the kind G̃〈AF,BF 〉(F̃ 〈A,B〉G) is an isomor-
phism in P, since ∀A′, B′ ∈ |M | (G̃〈A′, B′〉 ∈ IsoP ), ∀A,B ∈ |K| (F̃ 〈A,B〉 ∈
IsoM ), and every functor preserves isomorphisms. For the same reason,
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iG ∈ IsoP ∧ iF ∈ IsoM ⇒ iFG = iG(iF G) ∈ IsoP ∩ P [I(P ), I(FG)].

To prove the conditions (FA), (FR), (FS), and (FM) for (FG, F̃G, iFG)
one uses in a natural manner the properties of functors, the properties of
symmetric monoidal categories, and the properties of the monoidal functors
(F, F̃ , iF ) and (G, G̃, iG), respectively, as follows, where A,B, C,D are arbi-
trary objects of K:

Ad (FA):
Using the validity of the condition (FA) for the functors F and G one obtains

(
1(P )

A(FG) ⊗ F̃G〈B,C〉
)

F̃G〈A,B ⊗ C〉a(K)
A,B,C(FG) =

=
(
1(P )

A(FG) ⊗ G̃〈BF, CF 〉
(
F̃ 〈B, C〉

)
G

)
G̃〈AF, (B ⊗ C)F 〉

(
F̃ 〈A,B ⊗ C〉

)
G

(
a

(K)
A,B,CF

)
G =

=
(
1(P )

A(FG) ⊗ G̃〈BF, CF 〉
) ((

1(M)
AF

)
G⊗

(
F̃ 〈B, C〉

)
G

)
G̃〈AF, (B ⊗ C)F 〉

(
F̃ 〈A,B ⊗ C〉

)
G

(
a

(K)
A,B,CF

)
G =

=
(
1(P )

A(FG) ⊗ G̃〈BF, CF 〉
)

G̃〈AF, BF ⊗ CF 〉
((

1(M)
AF ⊗ F̃ 〈B,C〉

)
G

)(
F̃ 〈A,B ⊗ C〉

)
G

(
a

(K)
A,B,CF

)
G =

=
(
1(P )

A(FG) ⊗ G̃〈BF, CF 〉
)

G̃〈AF, BF ⊗ CF 〉
((

1(M)
AF ⊗ F̃ 〈B, C〉

)(
F̃ 〈A,B ⊗ C〉

)
a

(K)
A,B,CF

))
G =

=
(
1(P )

A(FG) ⊗ G̃〈BF, CF 〉
)

G̃〈AF, BF ⊗ CF 〉
(
a

(M)
AF,BF,CF

(
F̃ 〈A,B〉 ⊗ 1(M)

CF

)
F̃ 〈A⊗B,C〉

)
G =
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=
(
1(P )

A(FG) ⊗ G̃〈BF, CF 〉
)

G̃〈AF, BF ⊗ CF 〉
(
a

(M)
AF,BF,CF

)
G

((
F̃ 〈A,B〉 ⊗ 1(M)

CF

)
F̃ 〈A⊗B,C〉

)
G =

= a
(P )
(AF )G,(BF )G,(CF )G

(
G̃〈AF,BF 〉 ⊗ 1(P )

(CF )G

)
G̃〈AF ⊗BF,CF 〉

((
F̃ 〈A,B〉 ⊗ 1(M)

CF

)
F̃ 〈A⊗B,C〉

)
G =

= a
(P )
(AF )G,(BF )G,(CF )G

(
G̃〈AF,BF 〉 ⊗ 1(P )

(CF )G

)

G̃〈AF ⊗BF, CF 〉
(
F̃ 〈A,B〉 ⊗′ 1′CF

)
G

(
F̃ 〈A⊗B,C〉

)
G =

= a
(P )
(AF )G,(BF )G,(CF )G

(
G̃〈AF,BF 〉 ⊗ 1(P )

(CF )G

)

(
F̃ 〈A,B〉

)
G⊗

(
1(M)

CF

)
GG̃〈(A⊗B)F,CF 〉

(
F̃ 〈A⊗B,C〉

)
G =

= a
(P )
(AF )G,(BF )G,(CF )G

(
G̃〈AF,BF 〉

(
F̃ 〈A,B〉

)
G⊗ 1(P )

(CF )G

)

G̃〈(A⊗B)F,CF 〉
(
F̃ 〈A⊗B,C〉

)
G =

= a
(P )
(AF )G,(BF )G,(CF )G

(
F̃G〈A,B〉 ⊗ 1(P )

(CF )G

)
F̃G〈A⊗B, C〉.

Ad (FR):
Since F and G both fulfil (FR), the following is true:

F̃G〈A, I(K)〉r(K)
A (FG) =

= G̃〈AF, I(K)F 〉
(
F̃ 〈A, I(K)〉G

)(
r
(K)
A F

)
G =

= G̃〈AF, I(K)F 〉
(
F̃ 〈A, I(K)〉r(K)

A F
)

G =

= G̃〈AF, I(K)F 〉
((

1(M)
AF ⊗i−1

F

)
r
(M)
AF

)
G=
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= G̃〈AF, I(K)F 〉
(
1(M)

AF ⊗i−1
F

)
Gr

(M)
AF G =

=
(
1(M)

AF G⊗ i−1
F G

)
G̃〈AF, I(M)〉r(M)

AF G =

=
(
1(P )

A(FG) ⊗ (iF G)−1
)(

1(P )
(AF )G ⊗ i−1

G

)
r
(P )
(AF )G =

=
(
1(P )

A(FG) ⊗ (iG(iF G)
)−1

r
(P )
A(FG) =

(
1(P )

A(FG) ⊗ (iFG)−1
)

r
(P )
A(FG) .

Ad (FS):
The functor FG has this property since

F̃G〈A,B〉sA,B(FG) = G̃〈AF,BF 〉
(
F̃ 〈A, B〉sA,BF

)
G =

= G̃〈AF, BF 〉
(
s
(M)
AF,BF F̃ 〈B, A〉

)
G=G̃〈AF,BF 〉

(
s
(M)
AF,BF G

)(
F̃ 〈B,A〉

)
G =

= s
(P )
(AF )G,(BF )GG̃〈BF, AF 〉

(
F̃ 〈B,A〉

)
G = s

(P )
A(FG),B(FG)F̃G〈B,A〉

via the definition of F̃G and the validity of (FS) for F and G.

Ad (FM):
Let ϕ ∈ K[A,C], ψ ∈ K[B, D] be arbitrary morphisms of K. Then

F̃G〈A,B〉(ϕ⊗ ψ)(FG) = G̃〈AF,BF 〉
(
F̃ 〈A,B〉

)
G((ϕ⊗ ψ)F )G =

= G̃〈AF, BF 〉
((

F̃ 〈A,B〉
)

(ϕ⊗ ψ) F
)

G =

= G̃〈AF, BF 〉
(
(ϕF ⊗ ψF ) F̃ 〈C,D〉

)
G =

= G̃〈AF, BF 〉(ϕF ⊗ ψF )G
(
F̃ 〈C, D〉

)
G =

= ((ϕF )G⊗ (ψF )G) G̃〈CF, DF 〉
(
F̃ 〈C, D〉

)
G =

= (ϕ(FG)⊗ ψ(FG))F̃G〈C, D〉.
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Now let (F, F̃ , iF ) and (G, G̃, iG) be strongly monoidal functors. Then

∀A,B ∈ |K|
(
F̃ 〈A,B〉 = 1(M)

AF⊗BF

)
∧ ∀X, Y ∈ |M |

(
G̃〈X, Y 〉 = 1(P )

XG⊗Y G

)
,

therefore

∀A, B ∈ |K|
(
F̃G〈A,B〉 = 1(P )

(AF )G⊗(BF )G

(
1(M)

AF⊗BF

)
G =

= 1(P )
(AF )G⊗(BF )G1(P )

(AF⊗BF )G = 1(P )
A(FG)⊗B(FG)

)
.

Because of iF = 1(M)

I(M) and iG = 1(P )

I(P ) one obtains

iFG = iG(iF )G = 1(P )

I(P )

(
1(M)

I(M)

)
G = 1(P )

I(P )

Obviously, the validity of (sFA), (sFR), (sFS), and (sFM) is transmitted
from F and G to the functor FG.

Theorem 3.2. The class |MON | of all small symmetric monoidal cate-
gories together with the monoidal functors between them forms a category
MON.

All strongly monoidal functors establish a subcategory sMON of MON.

Proof. There is the identical functor 1〈K〉 to each symmetric monoidal
category K• and 1〈K〉 is a monoidal functor with respect to

1̃〈K〉 =
{

1(K)
A⊗B | A,B ∈ |K|

}
and i1〈K〉 = 1(K)

I(K) .

Because of Lemma 3.1, the composition of two monoidal funtors is a monoidal
functor too and

(
1〈K〉, 1̃〈K〉, i1〈K〉

)(
F, F̃ , iF

)
=

(
F, F̃ , iF

)
=

(
F, F̃ , iF

)(
1〈M〉, 1̃〈M〉, i1〈M〉

)

for every monoidal functor (F, F̃ , iF ) : K• → M•, since
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1̃〈K〉F 〈A,B〉 = 1̃〈K〉〈A,B〉
(
F̃ 〈A,B〉

)
1〈K〉 = F̃ 〈A,B〉 =

= F̃ 〈A,B〉
(
1̃〈M〉〈A,B〉

)
F = F̃1〈M〉〈A,B〉

and

i1〈K〉F = iF
(
i1〈K〉

)
F = (iF )

(
1(K)

I(K)

)
F = iF 1(M)

I(M) = iF =

= 1(K)

I(K)(iF )1〈M〉 = i1〈M〉(iF )1〈M〉 = iF1〈M〉.

The usual functor composition is associative, i.e. F (GH) = (FG)H. More-
over, for all objects A and B of K the following is true:

F̃ (GH)〈A,B〉 = G̃H〈AF, BF 〉
(
F̃ 〈A, B〉

)
(GH) =

= H̃〈(AF )G, (BF )G〉
(
G̃〈AF, BF 〉

)
H

((
F̃ 〈A,B〉

)
G

)
H =

= H̃〈A(FG), B(FG)〉
(
G̃〈AF, BF 〉

(
F̃ 〈A,B〉

)
G

)
H =

= H̃〈A(FG), B(FG)〉
(
F̃G〈A,B〉

)
H =

= ˜(FG)H〈A,B〉.

Therefore, F̃ (GH) = ˜(FG)H.

The assertion concerning strongly monoidal functors is obvious.

Corollary 3.3. There are the following subcategories of MON. The class
• |dMON | of all small ds-categories together with the d-monoidal functors
between them forms a category dMON,

• |dhtMON | of all small dhts-categories together with the d-monoidal
functors between them forms a category dhtMON,
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• |HOE| of all small Hoehnke categories together with the Hoehnke functors
between them forms a category HOE,

• |dh∇MON | of all small dh∇s-categories together with the d-monoidal
functors between them forms a category dh∇MON,

• |dtMON | of all small dts-categories together with the d-monoidal functors
between them forms a category dtMON,

• |dhth∇MON | of all small dhth∇s-categories together with the d-monoidal
functors between them forms a category dhth∇MON,

• |di-HOE| of all small di-Hoehnke categories together with the Hoehnke
functors between them forms a category di−HOE,

• |d∇MON | of all small d∇s-categories together with the d-monoidal func-
tors between them forms a category d∇MON.

Proof. By Theorem 3.2, it remains to show that the composition of two
d-monoidal functors is d-monoidal too. This is true because of

d
(K)
A (FG)=

((
d

(K)
A

)
F

)
G=

(
d

(M)
AF F̃ 〈A,A〉

)
G=

(
d

(M)
AF G

)(
F̃ 〈A,A〉

)
G=

=
(
d

(P )
A(FG)G̃〈AF, AF 〉

)(
F̃ 〈A, A〉

)
G = d

(P )
(AF )GF̃G〈A, A〉.

One has for strongly monoidal functors F and G immediately:

d
(K)
A (FG) =

((
d

(K)
A

)
F

)
G =

(
d

(M)
AF

)
G = d

(P )
(AF )G = d

(P )
A(FG).

The diagram in Figure 2 illustrates the mutual inclusions in the general case.
Similarly, one has the subcategories sdMON, sdhtMON, sHOE,

sdh∇MON, sdhth∇MON, sdi-HOE, sdtMON, and sd∇MON of
sMON in the case of strongly monoidal functors, i.e. a similar diagram
for the subcategories of all strongly monoidal functors.
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MON

dMON

dhtMON

dtMON

dh∇MON

d∇MONdhth∇MON

HOE
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@
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Figure 2.

Hoehnke proved in [8] (Theorem 6.1) that “the composition FG : K → K′′
of two dht-symmetric functors F : K → K′, G : K′ → K′′ is again
dht-symmetric ...”. In addition to this result one receives:

Lemma 3.4. Let K, M, P be dhts-categories and let F : K → M,
G : M → P be functors. Then FG satisfies

(FC∗) ∀A,B ∈ |K| ((FG)∗〈A,B〉 = (F ∗〈A,B〉)GG∗〈AF, BF 〉)
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and

∀A,B ∈ |K| ((FG)∗〈A,B〉 ∈ IsoP ),

whenever

∀A,B ∈ |K| (F ∗〈A,B〉 ∈ IsoM ) and ∀X; Y ∈ |M | (G∗〈X,Y 〉 ∈ IsoP ).

Moreover, let F and G fulfil (FT). Then FG also has the property (FT).

Proof. Ad (FC∗):

(FG)∗〈A, B〉 = d
(P )
(A⊗B)(FG)

((
p1

A,B
)
(FG)⊗ (p2

A,B)(FG)
)

=

= d
(P )
((A⊗B)F )G

(((
p1

A,B
)
F

)
G⊗ ((

p2
A,B

)
F

)
G

)
=

(by functor property)

=
(
d

(M)
(A⊗B)F

)
GG∗〈(A⊗B)F, (A⊗B)F 〉(((p1

A,B)F )G⊗ ((p2
A,B)F )G) =

(by (FD∗) for G)

=
(
d

(M)
(A⊗B)F

)
G((p1

A,B)F ⊗ (p2
A,B)F )GG∗〈AF,BF 〉 =

(by (FMT∗) for G)

=
((

d
(K)
A⊗B

)
FF ∗〈A⊗B, A⊗B〉

)
G((p1

A,B)F ⊗ (p2
A,B)F )GG∗〈AF, BF 〉 =

(by (FD∗) for F )

=
((

d
(K)
A⊗B

)
F

)
G((p1

A,B ⊗ p2
A,B)F )(F ∗〈A,B〉)GG∗〈AF, BF 〉 =

(by (FMT∗) for F )

=
((

d
(K)
A⊗B

(
p1

A,B⊗p2
A,B

))
F
)
G(F ∗〈A,B〉)GG∗〈AF,BF 〉 =

(by functor property)

= (F ∗〈A,B〉)GG∗〈AF, BF 〉
(by (DTRL) in K).
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The claim about the isomorphism property follows immediately by (FC∗)
and the fact that each functor maps isomorphisms onto isomorphisms.

Because of functor properties and the property (FT) for F and G, we have

t
(K)
A (FG)t(P )

I(K)(FG)
=

(
t
(K)
A F

)
Gt

(P )

(I(K)F )G
=

((
t
(K)
A F

)
Gt

(M)

I(K)F

)
Gt

(P )

I(M)G
=

=
(
t
(K)
A Ft

(M)

I(K)F

)
Gt

(P )

I(M)G
=

(
t
(M)
AF G

)
t
(P )

I(M)G
= t

(P )
(AF )G = t

(P )
A(FG).

Proposition 3.5. Let F : K → M and G : M → P be functors between
dhts-categories K, M, P , such that both fulfil the conditions (F∗), (FI∗),
and (FM∗). Then the composition yields a functor FG : K → P between
the dhts-categories K and P fulfilling (F∗), (FI∗), and (FM∗) too. If both
are even Hoehnke functors between Hoehnke categories, then FG is also a
Hoehnke functor.

Moreover, if both functors have the property

(FZ) O(K)F = O(M) ∧ ∀X ∈ |K| (
XF = O(M) ⇒ X = O(K)

)
,

then the functor FG has the same property.
Finally, let F and G be strongly d-monoidal functors between

dhts-categories. Then FG is a strongly d-monoidal functor from K into P .

Proof. Ad (F*):
The assertion is true because of

(FG)∗〈A,B〉 = d
(P )
(A⊗B)(FG)

(
pA;B
1 (FG)⊗ pA,B

2 (FG)
)

=

= d
(P )
((A⊗B)F )G

((
pA;B
1 F

)
G⊗

(
pA,B
2 F

)
G

)
=

=
(
d

(M)
(A⊗B)F G

)
G∗〈(A⊗B)F, (A⊗B)F 〉

((
pA;B
1 F

)
G⊗

(
pA,B
2 F

)
G

)
=

(because G is a d-monoidal functor by the assumptions)
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=
(
d

(M)
(A⊗B)F G

)((
pA;B
1 F

)
⊗

(
pA,B
2 F

))
GG∗〈AF,BF 〉 =

(by (FM∗) for G)

=
(
d

(M)
(A⊗B)F

((
pA;B
1 F

)
⊗

(
pA,B
2 F

)))
GG∗〈AF, BF 〉 =

(since F and G fulfil (F∗))

= (F ∗〈A,B〉)GG∗〈AF,BF 〉 ∈ IsoP .

Ad (FI∗):
Because of t

(M)

I(K)F
∈ IsoM and t

(P )

I(M)G
∈ IsoP one observes

t
(P )

I(K)(FG)
=

(
t
(M)

I(K)F

)
Gt

(P )

I(M)G
∈ IsoP .

Ad (FM∗):
Let ϕ ∈ K[A,B], ψ ∈ K[C,D]. Then

(ϕ⊗ ψ)(FG)(FG)∗〈B, D〉=((ϕ⊗ ψ)F )G(F ∗〈B, D〉)GG∗〈BF, DF 〉 =
(by (FC∗))

= ((ϕ⊗ ψ)FF ∗〈B,D〉)GG∗〈BF,DF 〉 =
(by (FM∗) for F )

= (F ∗〈A,C〉(ϕF ⊗ ψF ))GG∗〈BF,DF 〉 =

= (F ∗〈A,C〉)G((ϕF )⊗ (ψF ))GG∗〈AF,CF 〉 =
(by (FM∗) for G)

= (F ∗〈A,C〉)GG∗〈AF, CF 〉((ϕF )G⊗ (ψF )G) =
(by (FC∗))

= (FG)∗〈A,C〉)(ϕ(FG)⊗ ψ(FG).

Now let F 6= U and G 6= U be even O-preserving functors between
Hoehnke categories. Then the functor FG is an O-preserving functor
between Hoehnke categories since
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O(K)(FG) = (O(K)F )G = O(M)G = O(P ).

Moreover, if F and G both fulfil the condition (FZ), then

O(P ) = A(FG) = (AF )G ⇒ AF = O(M) ⇒ A = O(K)

shows that (FG) has the property (FZ) too.

If one of the functors F or G is the functor U , then obviously FG = U .
The functor FG satisfies the conditions (sFM), (sFT), and (sFD), since

F and G have these properties.

Ad (sFM):

(ϕ⊗ψ)(FG)=((ϕ⊗ψ)F )G=(ϕF⊗ψF )G=(ϕF )G⊗(ψF )G=ϕ(FG)⊗ψ(FG).

Ad (sFT):

t
(K)
A (FG)=

(
t
(K)
A F

)
G = t

(M)
AF G = t

(P )
(AF )G = t

(P )
A(FG).

Ad (sFD):

d
(K)
A (FG)=

(
d

(K)
A F

)
G = d

(M)
AF G = d

(P )
(AF )G = d

(P )
A(FG).

Therefore, FG is a strongly d-monoidal functor.

4. The cartesian product of monoidal functors

Furthermore, it will be of interest to investigate the ”cartesian product”
of functors between symmetric monoidal categories. In such a way one
constructs functor categories with a symmetric monoidal structure.

Lemma 4.1. Let (F, F̃ , iF ) : K• → M• and (G, G̃, iG) : P • → Q• be
monoidal functors (strongly monoidal functors) between the symmetric
monoidal categories K• and M•, P • and Q•, respectively.
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Then (F × G, F̃ ×G, iF×G) : (K × P )• → (M ×Q)• is a monoidal
functor (strongly monoidal functor) defined by

(A,X)(F ×G) := (AF, XG), (ϕ,ψ)(F ×G) := (ϕF, ψG),

F̃ ×G〈(A, X), (B, Y )〉 :=
(
F̃ 〈(A,B)〉, G̃〈(X,Y )〉

)
,

iF×G := (iF , iG).

Moreover, if the considered categories are ds-categories and F and G are
d-monoidal functors (strongly d-monoidal functors), then F × G is a
d-monoidal functor (strongly d-monoidal functor) too.

Finally, if the considered categories are even Hoehnke categories and F
as well as G fulfil the condition (FO) or (FZ), then F ×G satisfies the same
condition.

Proof. All conditions for the fact that (F ×G, F̃ ×G, iF×G) is a monoidal
functor follow from the relevant properties of the monoidal functors (F, F̃ , iF )
and (G, G̃, iG) via the definition above as well as the composition and
⊗-operation are defined componentwise. Altogether, one has to show the
usual functor conditions and the validity of (F∼), (FI), (FA), (FR), (FS),
and (FM) for F ×G.

The functor properties are easy to verify, for instance:

((ϕ1, ψ1) · (ϕ2, ψ2))(F ×G) = (ϕ1 · ϕ2, ψ1 · ψ2)(F ×G) =

= ((ϕ1 · ϕ2)F, (ψ1 · ψ2)G) =

= ((ϕ1F ) · (ϕ2F ), (ψ1G) · (ψ2G)) =

= ((ϕ1F ), (ψ1G)) · ((ϕ2)F, (ψ2G)) =

= (ϕ1, ψ1)(F ×G) · (ϕ2, ψ2)(F ×G).

Ad (F∼):
The isomorphisms of M ×Q are pairs of isomorphisms of M and Q, respec-
tively, hence F̃ ×G〈(A,X), (B, Y )〉 is an isomorphism in all cases.
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Ad (FI):
iF×G is an isomorphism since iF and iG are isomorphisms.

Ad (FA), (FR), (FS), and (FM):
By definition, all wished properties of F ×G are immediate consequences of
the relevant properties of F and G, for instance:

˜(F ×G)〈(A1, X1), (A2, X2)〉((ϕ1, ψ1)⊗ (ϕ2, ψ2))(F ×G) =

=
(
F̃ 〈A1, A2〉, G̃〈X1, X2〉

)
((ϕ1 ⊗ ϕ2)F, (ψ1 ⊗ ψ2)G) =

=
(
F̃ 〈A1, A2〉(ϕ1 ⊗ ϕ2)F, G̃〈X1, X2〉(ψ1 ⊗ ψ2)G

)
=

=
(
(ϕ1F ⊗ ϕ2F )F̃ 〈B1, B2〉, (ψ1G⊗ ψ2G)G̃〈Y1, Y2〉

)
=

= ((ϕ1F ⊗ ϕ2F ), (ψ1G⊗ ψ2G))
(
F̃ 〈B1, B2〉, G̃〈Y1, Y2〉

)
=

= ((ϕ1F,ψ1G)⊗ (ϕ2F, ψ2G))
(
F̃ 〈B1, B2〉, G̃〈Y1, Y2〉

)
=

= ((ϕ1, ψ1)(F ×G)⊗ (ϕ2, ψ2)(F ×G)) ˜(F ×G)〈(B1, Y1), (B2, Y2)〉.

Now let K, M, P , Q be ds-categories. Then one has in addition:

d
(K×P )
(A,X) (F ×G) =

(
d

(K)
A , d

(P )
X

)
(F ×G) =

=
(
d

(K)
A F, d

(P )
X G

)
=

(
d

(M)
AF F̃ 〈A,A〉, d(Q)

XGG̃〈X,X〉
)

=

=
(
d

(M)
AF , d

(Q)
XG

)(
F̃ 〈A,A〉, G̃〈X,X〉

)
=

= d
(M×Q)
(AF,XG)F̃ ×G〈(A,X), (A, X)〉,
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i.e. F ×G is a d-monoidal functor.

Ad (FO) and (FZ):

O(M×Q) = (O(M), O(Q)) = (AF, XG) = (A,X)(F ×G)

⇔ O(M) = AF ∧ O(Q) = XG ⇔ O(K) = A ∧ O(P ) = X

⇔ (A,B) = (O(K), O(P )) = O(K×P ).

If F and G both are strongly d-monoidal functors, then the functor F ×G
satisfies the conditions (sFM), (sFT), (sFD), since F and G both have this
properties, e.g.

((ϕ1, ψ1)⊗ (ϕ2, ψ2))(F ×G) = (ϕ1 ⊗ ϕ2, ψ1 ⊗ ψ2)(F ×G)

= ((ϕ1 ⊗ ϕ2)F, (ψ1 ⊗ ψ2)G) = ((ϕ1F ⊗ ϕ2F ), (ψ1G⊗ ψ2G))

= (ϕ1F,ψ1G)⊗ (ϕ2F,ψ2G) = (ϕ1, ψ1)(F ×G)⊗ (ϕ2, ψ2)(F ×G).

Lemma 4.2. Let K, M, P be arbitrary symmetric monoidal categories.
Then one receives the strongly d-monoidal functors

AK,M,P : K × (M × P ) → (K ×M)× P,

((A, (B,C)) 7→ ((A,B), C), (ϕ, (ψ, ρ)) 7→ ((ϕ,ψ), ρ))

(associativity functor);

RK : K × Ω → K, ((A, I) 7→ A, (ϕ, 1I) 7→ ϕ)

(right-identity functor);

LK : Ω×K → K, ((I, A) 7→ A, (1I , ϕ) 7→ ϕ)
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(left-identity functor);

SK,M : K ×M → M ×K, ((A,B) 7→ (B, A), (ϕ,ψ) 7→ (ψ, ϕ))

(symmetry functor);

DK : K → K ×K, (A 7→ (A,A), ϕ 7→ (ϕ,ϕ))

(diagonality functor);

ΘK : K → Ω, (A 7→ I, ϕ 7→ 1I) (terminality functor).

If K, M, P are even Hoehnke categories, then the functors AK,M,P , RK ,
LK , SK,M , DK are strong Hoehnke functors.

Proof. At first one has to prove the functor conditions for all the
mappings defined above. Some selected examples shall demonstrate the
argumentations.

AK,M,P preserves the domains:

dom(K×M)×P )((ϕ, (ψ, ρ))AK,M,P ) = dom(K×M)×P )((ϕ,ψ), ρ)) =

= ((dom(K)(ϕ), dom(M)(ψ)), dom(P )(ρ)) =

= ((dom(K)(ϕ), (dom(M)(ψ), dom(P )(ρ))AK,M,P =

= (dom(K×(M×P ))(ϕ, (ψρ)))AK,M,P .

RK preserves the codomains:

cod(K)((ϕ, 1I)RK) = cod(K)(ϕ) =

= (cod(K)(ϕ), cod(Ω)(1I))RK = (cod(K×Ω)(ϕ, 1I))RK .
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SK,M preserves the units:

(
1(K,M)
(A,B)

)
SK,M =

(
1(K)

A , 1(M)
B

)
SK,M =

(
1(M)

B , 1(K)
A

)
=1(M×K)

(B,A) =1(M×K)
(A,B)SK,M

.

DK is compatible with the composition:

(ϕ1ϕ2)DK = (ϕ1ϕ2, ϕ1ϕ2) = (ϕ1, ϕ1)(ϕ2, ϕ2) = (ϕ1DK)(ϕ2DK).

The proof of the missing facts concerning the functor properties is left to
the reader.

In a next step one has to verify the properties (sFI), (sFA), (sFR), (sFS),
(sFM), and (sFD) for the functors introduced above. Several examples shall
demonstrate the proofs.

AK,M,P satisfies (sFI), since

I(K×(M×P ))AK,M,P = (I(K), (I(M), I(P )))AK,M,P =

= ((I(K), I(M)), I(P )) = I((K×M)×P ).

RK fulfils (sFA) as follows:

a
(K×Ω)
(A,I),(B,I),(C,I)RK =

(
a

(K)
A,B,C , a

(Ω)
I,I,I

)
RK =

=
(
a

(K)
A,B,C , 1(Ω)

I

)
RK = a

(K)
A,B,C = a

(K)
(A,I)RK ,(B,I)RK ,(C,I)RK

.

(sFS) for SK,M :

s
(K×M)
(A,X),(B,Y )SK,M =

(
s
(K)
(A,B), s

(M)
(X,Y )

)
SK,M =

=
(
s
(M)
(X,Y ), s

(K)
(A,B)

)
= s

(M⊗K)
(X,A),(Y,B) = s

(M⊗K)
(A,X)SK,M ,(B,Y )SK,M

.
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(sFM) for DK :

(ϕ1⊗ϕ2)DK =(ϕ1⊗ϕ2, ϕ1⊗ϕ2)=(ϕ1, ϕ1)⊗ (ϕ2, ϕ2)=(ϕ1DK)⊗ (ϕ2DK).

(sFD) for LK :

d
(Ω×K)
(I,A) LK =

(
d

(Ω)
I , d

(K)
A

)
LK =

(
1(Ω)

I , d
(K)
A

)
LK = d

(K)
A = d

(K)
(I,A)LK

.

(sFT) for AK,M,P :

t
(K×(M×P ))
(A,(B,C)) AK,M,P =

((
t
(K)
A , t

(M)
B

)
, t

(P )
C

)
= t

((K×M)×P )
((A,B),C) = t

((K×M)×P )
(A,(B,C))AK,M,P

.

Obviously, all mentioned functors excluding ΘK fulfil the condition (FZ) by
definition.

The corresponding morphisms to the d-monoidal functors above are the
following:

ÃK,M,P 〈(A1, (B1, C1)), (A2, B2), C2))〉 := 1((K×M)×P )
((A1⊗A2,B1⊗B2),C1⊗C2) =

=
((

1(K)
A1⊗A2

, 1(M)
B1⊗B2

)
, 1(P )

C1⊗C2

)

and iAK,M,P
:= 1((K×M)×P )

I((K×M)×P )) =
((

1(K)

I(K) , 1
(M)

I(M)

)
, 1(P )

I(P )

)
;

R̃K〈(A1, I), (A2, I)〉 := 1(K)
A1⊗A2

and iRK
:= 1(K)

I(K) ;

L̃K〈(I, A1), (I, A2)〉 := 1(K)
A1⊗A2

and iLK
:= 1(K)

I(K) ;
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S̃K,M 〈(A1, B1), (A2, B2)〉 := 1(K×M)
(B1⊗B2,A1⊗A2) =

(
1(M)

B1⊗B2
, 1(K)

A1⊗A2

)

and iSK,M
:= 1(M×K)

I(M×K) =
(
1(M)

I(M) , 1
(K)

I(K)

)
;

D̃K〈A1, A2〉 := 1(K×K)
(A1⊗A2,A1⊗A2) =

(
1(K)

A1⊗A2
, 1(K)

A1⊗A2

)

and iDK
:= 1(K×K)

I(K×K) =
(
1(K)

I , 1(K)
I

)
;

Θ̃K〈A,B〉 := 1I and iΘK
:= 1I .

The different classes of distinguished functors will be denoted by A (asso-
ciativity functors), R (right-identity functors), L (left-identity functors), S
(symmetry functors), D (diagonality functors), and Θ (terminal functors),
respectively.

The categories concidered in Corollary 3.3 have the following structure
concerning the cartesian product:

Theorem 4.3. All small symmetric monoidal categories as objects and all
monoidal functors between them form a dts-category

MON = (MON;×, Ω,A,R,L,S,D, Θ).

There are the dts-subcategories of MON:

The dts-category of all d-monoidal functors between ds-categories

dMON = (dMON;×, Ω,A,R,L,S,D, Θ),

the dts-category of all d-monoidal functors between dhts-categories

dhtMON = (dhtMON;×,Ω,A,R,L,S,D, Θ),

the dts-category of all d-monoidal functors between dh∇s-categories
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dh∇MON = (dh∇MON;×,Ω,A,R,L,S,D, Θ),

the dts-category of all d-monoidal functors between dts-categories

dtMON = (dtMON;×, Ω,A,R,L,S,D, Θ),

the dts-category of all d-monoidal functors between dhth∇s-categories

dhth∇MON = (dhth∇MON;×, Ω,A,R,L,S,D, Θ),

the dts-category of all d-monoidal functors between d∇s-categories

d∇MON = (d∇MON;×, Ω,A,R,L,S,D, Θ).

Proof. Since small categories and functors between them form functor
categories, it remains to prove that the composition of monoidal functors
(d-monoidal functors) yields a monoidal functor (d-monoidal functor). That
was done in 3.1. Because of Lemma 4.1, F × G is a monoidal functor (d-
monoidal functor), whenever F and G are monoidal (d-monoidal).

As already mentioned, Ω is a dhth∇s-category. The mapping ”×” for
objects and morphisms (dhts-categories and d-monoidal functors, respec-
tively) defines a bifunctor from (MON×MON) into MON since

dom(F ×G) = domF × domG,

cod(F ×G) = codF × codG,

1〈F ×G〉 = 1〈F 〉 × 1〈G〉,

(F1 ×G1)(F2 ×G2) = F1F2 ×G1G2

by the definition above.
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The families of the functors AK,M,P , RK , LK , SK,M are obviously fami-
lies of functor isomorphisms and the properties for a symmetric monoidal
category are easy to verify by the following considerations. Note that two
mappings are equal, if their immages coincide for all arguments, and it is
sufficient to concider morphisms only in the computation.

Ad (M1):

(ϕ, (ψ, (ρ, σ)))AK,M,P×QAK×M,P,Q =

= ((ϕ,ψ), (ρ, σ))AK×M,P,Q = (((ϕ,ψ), ρ), σ) =

= ((ϕ, (ψ, ρ)), σ)(AK,M,P × 1〈Q〉) =

= (ϕ, ((ψ, ρ), σ))AK,M×P,Q(AK,M,P × 1〈Q〉) =

= (ϕ, (ψ, (ρ, σ)))(1〈K〉 ×AM,P,Q)AK,M×P,Q(AK,M,P × 1〈Q〉),
hence

∀K•,M•, P •, Q• ∈ |MON|

(AK,M,P×QAK×M,P,Q = (1〈K〉 ×AM,P,Q)AK,M×P,Q(AK,M,P × 1〈Q〉)),

Ad (M2):

(ϕ, (1I , ψ))AK,Ω,M (RK × 1〈M〉) = ((ϕ, 1I), ψ)(RK × 1〈M〉) = (ϕ,ψ) =

= (ϕ, (1I , ψ))(1〈K〉 × LK),

hence

∀K•,M• ∈ |MON| (AK,Ω,M (RK × 1〈M〉) = (1〈K〉 × LK)),
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Ad (M3):

(ϕ, (ψ, ρ))AK,M,P SK×M,P AP,K,M = ((ϕ, ψ), ρ)SK×M,P AP,K,M =

= (ρ, (ϕ,ψ))AP,K,M = ((ρ, ϕ), ψ) =

= ((ϕ, ρ), ψ)(SK,P × 1〈M〉) = (ϕ, (ρ, ψ))AK,P,M (SK,P × 1〈M〉) =

= (ϕ, (ψ, ρ))(1〈K〉 × SM,P )AK,P,M (SK,P × 1〈M〉),
hence

∀K•,M•, P • ∈ |MON|

(AK,M,P SK×M,P AP,K,M = (1〈K〉 × SM,P )AK,P,M (SK,P × 1〈M〉)),

Ad (M4):

(ϕ,ψ)SK,MSM,K = (ψ, ϕ)SM,K = (ϕ,ψ) = (ϕ,ψ)1〈K ×M〉,
hence

∀K•,M• ∈ |MON| (SK,MSM,K = 1〈K ×M〉),

Ad (M5):

(ϕ, 1I)SK,ΩLK = (1I , ϕ)LK = ϕ = (ϕ, 1I)RK ,

hence

∀K• ∈ |MON| (SK,ΩLK = RK),

Ad (M6):

(ϕ, (ψ, ρ))AK1,M1,P1((F ×G)×H) =

= ((ϕ,ψ), ρ)((F ×G)×H)=((ϕF,ψG), ρH) =



80 H.-J. Vogel

= (ϕF, (ψG, ρH))AK2,M2,P2 = (ϕ, (ψ, ρ))(F × (G×H))AK2,M2,P2 ,

hence

∀K•
1 ,M•

1 , P •
1 ,K•

2 ,M•
2 , P •

2 ∈ |MON|

∀F ∈ (MON)[K•
1 ,K•

2 ] ∀G ∈ (MON)[M•
1 ,M•

2 ] ∀H ∈ (MON)[P •
1 , P •

2 ]

(AK1,M1,P1((F ×G)×H) = (F × (G×H))AK2,M2,P2),

Ad (M7):

(ϕ, 1I)RK1F = ϕF = (ϕF, 1I)RK2 = (ϕ, 1I)(F × 1〈Ω〉)RK2 ,

hence

∀K•
1 ,K•

2 ∈ |MON| ∀F ∈ (MON)[K•
1 ,K•

2 ] (RK1F = (F × 1〈Ω〉)RK2),

Ad (M8):

(ϕ,ψ)SK1,M1(G×F ) = (ψG,ϕF ) = (ϕF, ψG)SK2,M2 = (ϕ,ψ)(F×G)SK2,M2 ,

hence

∀K•
1 ,K•

2 ,M•
1 ,M•

2 ∈ |MON| ∀F ∈ (MON)[K•
1 , K•

2 ] ∀G ∈ (MON)[M•
1 ,M•

2 ]

(SK1,M1(G× F ) = (F ×G)SK2,M2).

(DK | K• ∈ |MON|) is a |MON|-indexed family of monoidal functors
fulfilling the necessary conditions, namely:

Ad (D1):

ϕDK1(F × F ) = (ϕF, ϕF ) = ϕFDK2 ,

hence

∀K•
1 ,K•

2 ∈ |MON| ∀F ∈ (MON)[K•
1 ,K•

2 ] (DK1(F × F ) = FDK2),
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Ad (D2):

ϕDK(DK × 1〈K〉 = ((ϕ, ϕ), ϕ) =

= (ϕ, (ϕ,ϕ))AK,K,K =ϕDK(1〈K〉 ×DK)AK,K,K ,

hence

∀K• ∈ |MON| (DK(DK × 1〈K〉) = DK(1〈K〉 ×DK)AK,K,K),

Ad (D3):

ϕDKSK,K = (ϕ,ϕ)SK,K = (ϕ,ϕ) = ϕDK ,

hence

∀K• ∈ |MON| (DKSK,K = DK),

Ad (D4):

(ϕ,ψ)(DK ×DM )BK,K,M,M =

= ((ϕ,ϕ), (ψ, ψ))BK,K,M,M = ((ϕ,ψ), (ϕ,ψ)) = (ϕ,ψ)DK×K ,

where

BK,M,P,Q = AK×M,P,Q

(
A−1

K,M,P

(
1〈K〉 × SM,P AK,P,M × 1〈Q〉

))
A−1

K×P,M,Q,

hence

∀K•,M• ∈ |MON| ((DK ×DM )BK,K,M,M = DK×K).

Finally, (ΘK | K• ∈ |MON|) is a family of monoidal functors which is
indexed by the class of all symmetric monoidal categories and, because of

ϕ(FΘK2)) = (ϕF )ΘK2 = 1I = ϕΘK1

⇒ ∀K•
1 ,K•

2 ∈ |MON| ∀F : K1 → K2 (FΘK2 = ΘK1),
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ϕ(DK(1〈K〉 ×ΘK)RK) = (ϕ, 1I)RK = ϕ = ϕ1〈K〉

⇒ ∀K• ∈ |MON| (DK(1〈K〉 ×ΘK)RK) = 1〈K〉),

ϕ(DK(ΘK × 1〈K〉)LK) = (1I , ϕ)LK = ϕ = ϕ1〈K〉

⇒ ∀K• ∈ |MON| (DK(ΘK × 1〈K〉)LK = 1〈K〉),

(ϕ,ψ)(DK×M ((1〈K〉 ×ΘM )RK × (ΘK × 1〈M〉)LM

= ((ϕ, 1I)RK , (1I , ψ)LM ) = (ϕ,ψ) = (ϕ,ψ)1〈K ×M〉

⇒ ∀K•, M• ∈ |MON|(DK×M ((1〈K〉 ×ΘM )RK × (ΘK × 1〈M〉)LM ) =

= 1〈K ×M〉),

the conditions (T1), (DTR), (DTL), (DTRL) are satisfied.

Corollary 4.4. All strongly monoidal functors between symmetric monoidal
categories establish a dts-subcategory sMON of MON. All strongly
d-monoidal functors between small ds-categories (small dhts-categories, small
dh∇s-categories, small dts-categories, small dhth∇s-categories, small
d∇s-categories) establish a dts-subcategory

sdMON (sdhtMON, sdh∇MON, sdtMON, sdhth∇MON, sd∇MON)
of sdMON.

The mutual inclusions of the considered dts-categories are illustrated in the
diagram in Figure 3, where M shortly stands for MON.

Hoehnke proved in [8] (Theorem 6.1) that all ”dht-symmetric categories (as
objects) and the dht-symmetric functors between them (as morphisms) form
an illegitime category, denoted by dht-Sym”.

The statements presented in the theorem above are connected with the
result of Hoehnke, but there are differences in the following aspects:
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1. Each O-preserving nontrivial d-monoidal functor bewteen dhts-
categories is a dht-symmetric functor in the sense of Hoehnke, but not
conversely, since a dht-symmetric functor need not have the property
(FM).

2. All the considered categories possess an additional structure which is
not mentioned in the paper by Hoehnke.

3. The objects of the categories in this volume are small monoidal cat-
egories such that there are not necessary distinguished zero objects,
whereas the objects of dht-Sym are Hoehnke categories only.

4. The distinguished dhth∇s-category Ω is not a Hoehnke category and
the d-monoidal functor E does not preserve the zero object O.

M

sM dM

dhtM sdM dh∇M

dtM sdhtM dhth∇M sdh∇M d∇M

sdtM sdhth∇M sd∇M
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Figure 3.
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Specific dhts-categories are of particular interest, namely dhts-theories,
defined as follows.

A dhts-category T is called J-sorted dhts-theory, iff there exists a set
J ∈ |T | such that I /∈ J and (|T |;⊗, I) is a free algebra of type (2, 0) freely
generated by J .

By this definition, T is a small category since |T | is a set. The algebra
(|T |;⊗, I) contains a subalgebra < I > of the same type consting of all
possible ⊗-products of I with itself in arbitrary brackets. J-sorted dts-
theories and J-sorted dhth∇s-theories will be defined in the same manner.

A Hoehnke category (di-Hoehnke category) T is called J-sorted
Hoehnke theory (J-sorted di-Hoehnke theory ), iff there is a set J ∈ |T |
such that J ∩ {O, I} = ∅ and (|T |;⊗I, O) is the free algebra of type (2, 0, 0)
freely generated by J in the variety of type (2, 0, 0) defined by the identity
X ⊗O = O = O ⊗X.

It is well-known that each class of objects of a given category determines
together with all possible morphisms between them a subcategory and the
defined J-sorted theories are objects of the related functor categories.

Unfortunately, the cartesian product of a J1-sorted theory T1 and a
J2-sorted theory T2 is not necessary a (J1 × J2)-sorted theory, because of

A1, A2 ∈ J1 ∧ B ∈ J2 ⇒ |T1| × |T2| 3 (A1 ⊗A2, B) /∈< J1 × J2 >,

that means, that objects of the form (A1 ⊗ A2, B) are not generated by
elements of J1 × J2. Therefore, the J-sorted theories do not form sym-
metric monoidal subcategories of the suitable symmetric monoidal functor
categories.

Corollary 4.5. All dhts-theories (dts-theories, dhth∇s-theories, Hoehnke
theories, di-Hoehnke theories) together with all d-monoidal functors (Hoehnke
functors) between them in a natural manner form a subcategory dhtTh of
dhtMon (dtTh of dtMon, dhth∇Th of dhth∇Mon, HoeTh of HOE,
di-HoeTh of di-HOE).

The mutual inclusions of the subcategories mentioned above are
presented in Figure 4.
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