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Abstract

There are very strong parallels between the properties of Mal’tsev
and Jónsson-Tarski algebras, for example in the good behaviour of
centrality and in the factorization of direct products. Moreover, the
two classes between them include the majority of algebras that actu-
ally arise “in nature”. As a contribution to the research programme
building a unified theory capable of covering the two classes, along
with other instances of good centrality and factorization, the paper
presents a common framework for the characterisation of Mal’tsev and
Jónsson-Tarski algebras. Mal’tsev algebras are characterized by sim-
plicial identities in the product complex of an algebra. In the dual
of a pointed variety, a simplicial object known as the pointed com-
plex is then constructed. The basic simplicial Mal’tsev identity in
the pointed complex characterises Jónsson-Tarski algebras. Higher-
dimensional simplicial Mal’tsev identities in the pointed complex are
characteristic of a class of algebras lying properly between Goldie and
Jónsson-Tarski algebras.
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1. Introduction

A variety of universal algebras is a Mal’tsev variety if there is a derived
ternary operation P (a so-called Mal’tsev operation or Mal’tsev parallelo-
gram) such that the identities
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(1.1) P (y, y, x) = x = P (x, y, y)

hold (see: [9], [10], [11])∗. Members of a Mal’tsev variety are called Mal’tsev
algebras. A variety of universal algebras is a Jónsson-Tarski variety if there
is a derived binary operation + and a nullary operation (constant) selecting
a subalgebra {0} such that the identities

(1.2) 0 + x = x = x + 0

hold ([7]). Members of a Jónsson-Tarski variety are called Jónsson-Tarski
algebras. A Mal’tsev variety having a nullary operation selecting a subalge-
bra {0} is called a Goldie variety, and its members are called Goldie algebras
([2]). Goldie algebras become Jónsson-Tarski algebras on defining

(1.3) x + y = P (x, 0, y).

Thus the class of Goldie algebras represents the intersection of the classes
of Mal’tsev and Jónsson-Tarski algebras. Goldie algebras include loops,
and, in particular, groups, as well as many kinds of algebras having group
reducts (groups with operators in Emmy Noether’s sense), such as rings,
Lie algebras, Jordan algebras, etc. Equationally defined quasigroups and
Heyting algebras provide examples of Mal’tsev algebras that are not Goldie
algebras. Monoids provide examples of Jónsson-Tarski algebras that are not
Goldie algebras.

Jónsson-Tarski algebras and Mal’tsev algebras share many desirable
properties, in particular the good behaviour of centrality and direct prod-
ucts. For example, under mild finiteness assumptions (which include non-
emptiness in the case of Mal’tsev algebras), one may cancel the factor A
from an isomorphism

A×B ∼= A× C

to obtain a central isotopy ([11], p. 70)

B ' C

∗The various spellings of Mal’tsev’s name are the result of changing conventions for
transliteration from the Cyrillic to the Latin alphabet.
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(compare Theorem 3.11(ii) of [7] and Theorem 424 of [11], recalling that cen-
tral isotopy reduces to isomorphism for Jónsson-Tarski algebras). Given the
very close parallels between the behaviour of Jónsson-Tarski and Mal’tsev
algebras, it is natural to seek a common framework for characterizing the
two classes. The purpose of this paper is to propose such a framework,
as a contribution to the development of a unified treatment of Jónsson-
Tarski and Mal’tsev algebras, along with other classes of algebras that share
their good behaviour.

Following the publication of [11] and the extension of its methods from
Mal’tsev algebras to more general algebras having modular congruence lat-
tices (by Hagemann, Herrmann [5], and many others later), the question of
developing a unified theory for Mal’tsev and Jónsson-Tarski algebras was
raised by the author in an invited paper presented at the Special Session
on Lattice Theory and General Algebra during the American Mathemati-
cal Society meeting in Boulder, Colorado in March, 1980 [12] (cf. p. 68 of
[11]). Except for two results at the end of Gumm’s Habilitationsschrift
([4], Th. 11.11 and Cor. 12.3), however, there was little response to this
challenge. In retrospect, the reason has become clear. Researchers of that
period were focussed almost exclusively on the lattice of congruences as the
primary object of interest. On the other hand, although it is natural to
work with congruences in Mal’tsev algebras, the theory of Jónsson-Tarski
algebras expounded in [7] works with subalgebras instead. There is thus
an evident duality between the two theories: subobjects in Jónsson-Tarski
algebras, quotients in Mal’tsev algebras. The formulation proposed here
recognises this duality. The fundamental object associated with a Mal’tsev
algebra A is its product complex (Section 2 below, cf. (0.13.2.2) of [1] or
p. 117 of [11]), the 0-coskeleton of the truncated complex consisting of
the unique arrow from A to the terminal object. The defining identities
(1.1) for Mal’tsev algebras are formulated in terms of this complex. In fact,
the formulation yields single identities, the simplicial Mal’tsev identities of
Definition 2.3. The main task undertaken in this paper is to exhibit the
corresponding simplicial object associated with each Jónsson-Tarski alge-
bra, the so-called pointed complex of Section 3. This is not itself a simplicial
object in a category of Jónsson-Tarski algebras and homomorphisms (there
are too many degeneracies and too few face operators), but it does become
a simplicial object when one passes to the opposite category (Theorem 3.1).
Once the pointed complex is established, one may translate back and forth
between the theories of Mal’tsev and Jónsson-Tarski by transposing the
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product and pointed complexes. Thus Theorem 4.1 shows that Jónsson-
Tarski varieties are characterized by satisfaction of the basic simplicial
Mal’tsev identity in each pointed complex. Theorems 4.3 and 4.4 show that
satisfaction of the higher-dimensional Mal’tsev identities in each pointed
complex of a pointed variety is characteristic of a class of varieties that lie
properly between Jónsson-Tarski and Goldie varieties.

In general, this paper will follow the algebraic and categorical conven-
tions of [13]. In particular, mappings will normally be placed to the right
of their arguments, so that in passing from text to mathematics one may
continue to read from left to right, avoiding a profusion of parentheses. On
the other hand, mappings that are images of morphisms under contravari-
ant functors (such as the identity functor from a category of Jónsson-Tarski
algebras to its opposite) will usually be placed to the left of their arguments,
and composition of such mappings will be denoted by ◦ rather than by sim-
ple juxtaposition. The description of the product complex in Section 2 is
designed to act as a quick introduction to the calculus of simplicial objects
for readers who might not be familiar with its intricacies.

2. Product complexes and Mal’tsev algebras

Let A be a set. For each positive integer n and natural number i less than
n, define the face map εi or

(2.1) εi
n : An→An−1; (x0, . . . , xn−1) 7→(x0, . . . , xi−1, xi+1, . . . , xn−1)

(mnemonic: εi
n for “excise xi from the n-tuple”). Define the degeneracy

δi or

(2.2) δi
n : An→An+1; (x0, . . . , xn−1) 7→(x0, . . . , xi−1, xi, xi, xi+1, . . . , xn−1)

(mnemonic: δi
n for “duplicate xi within the n-tuple”.) The set of direct

powers of A, together with the face maps and degeneracies, forms the prod-
uct complex (cf. (0.13.2.2) of [1] or p. 117 of [11]). The face maps and
degeneracies satisfy the following simplicial identities: the face identities

(2.3) εi
nεj−1

n−1 = εj
nεi

n−1

for 0 ≤ i < j < n (i.e. consecutively excise xi and xj in either order), the
degeneracy identities

(2.4) δi
nδj+1

n+1 = δj
nδi

n+1
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for 0 ≤ i ≤ j ≤ n (i.e. consecutively duplicate xi and xj in either order),
and the mixed identities

(2.5) δi
nεj

n+1 =





εj
nδi−1

n−1, if j < i,

εj−1
n δi

n+1, if j > i + 1,

1, otherwise

for 0 ≤ i, j ≤ n (cf. (0.1.2) of [1] and VII(11)–(13) of [8]). Note the duality
between the face identities (2.3) and the degeneracy identities (2.4), as well
as the self-duality of the mixed identities (2.5) except in the final cases
j ∈ {i, i + 1}.

In terms of the product complex, the Mal’tsev parallelogram identities
(1.1) reduce to a single equation.

Proposition 2.1. A set A is a Mal’tsev algebra if and only if it is endowed
with a ternary operation P such that

(2.6) P
(
ε0
3, ε

2
3ε

0
2δ

0
1, ε

2
3

)
= ε1

3.

Proof. Applied to the general element (a0, a1, a2) of A3, the equality (2.6)
of the proposition becomes

(P (a1, a1, a0),P (a2, a1, a1)) = P ((a1, a2), (a1, a1), (a0, a1))

= P
(
(a0, a1, a2)ε0

3, (a0, a1, a2)ε2
3ε

0
2δ

0
1, (a0, a1, a2)ε2

3

)

= (a0, a1, a2)P
(
ε0
3, ε

2
3ε

0
2δ

0
1, ε

2
3

)

= (a0, a1, a2)ε1
3

= (a0, a2),

the two components of which are equivalent to (1.1).

In fact, the identity of Proposition 2.1 works in all dimensions for which it
is defined.

Corollary 2.2. A set A is a Mal’tsev algebra if and only if it is endowed
with a ternary operation P such that

(2.7) P
(
ε0, ε2ε0δ0, ε2

)
= ε1

at any object of the product complex for which the equation is defined.
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Proof. Applied to the general element (a0, . . . , an−1) of An for n ≥ 3, the
left hand side of the equality (2.7) of the corollary becomes

(a0,a1, a2, a3, . . . , an−1)P
(
ε0, ε2ε0δ0, ε2

)

=P ((a1, a2, a3, . . . , an−1), (a1, a1, a3, . . . , an−1), (a0, a1, a3, . . . , an−1))

=(P (a1, a1, a0), P (a2, a1, a1), P (a3, a3, a3), . . . , P (an−1, an−1, an−1)),

while the right hand side becomes

(a0, a2, a3, . . . , an−1).

These two expressions certainly agree in a Mal’tsev algebra. On the other
hand, suppose that they agree. Then the equality between their first two
components yields (1.1).

Definition 2.3. The equation (2.6) of Theorem 2.1 is called the (2-dimen-
sional) simplicial Mal’tsev identity. The equation

(2.8) P
(
ε0
n, ε2

nε0
n−1δ

0
n−2, ε

2
n

)
= ε1

n

of Corollary 2.2, for n > 3, is called the simplicial Mal’tsev identity of
dimension n − 1. Collectively, the identities (2.8) for any n > 3 are called
the higher-dimensional simplicial Mal’tsev identities.

3. Pointed complexes

Let C be a category. Recall that a simplicial object in C consists of an object
An of C for each positive integer n (in which case the dimension of An is
defined to be the natural number n− 1), face morphisms εi or εi

n : An−1 →
An−2 for 0 ≤ i < n > 1, and degeneracy morphisms δi or δi

n : An−1 → An

for 0 ≤ i < n ≥ 1, such that the simplicial identities are satisfied (cf. (0.1)
of [1], §VII.4 of [8], p. 114 of [11]). For example, the product complexes of
Section 2 are simplicial objects in the category of sets, and in each variety
of algebras (construed as a category with homomorphisms as morphisms).
In the product complex determined by a set or algebra A, the object at
dimension n, for each natural number n, is the direct power An+1.

A variety V of algebras is said to be pointed if there is a nullary operation
(constant) selecting a subalgebra {0}. Thus {0} becomes a zero object when
V is construed as a category. For each algebra A in a pointed variety V,
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a simplicial object in the opposite category Vop will be constructed, having
the direct power An as the object at dimension n. Note that the object at
dimension zero is the zero object {0}. The complex, the so-called pointed
complex, will play the same role amongst Jónsson-Tarski algebras that the
product complex plays amongst Mal’tsev algebras.

For an integer n > 1 and 0 ≤ i < n, the degeneracy morphism δi
n :

An−1 → An in Vop is defined to be the projection homomorphism

(3.1) δi : An → An−1; (a0, . . . , an−1) 7→ (a0, . . . , ai−1, ai+1, . . . , an−1).

Note that these homomorphisms appear as face maps (2.1) in the product
complex of A. The degeneracy morphism δ0

1 : A0 → A1 is determined
uniquely (as the constant homomorphism from A to {0}) by the fact that
A0 is the zero object of Vop. In similar fashion, the face morphisms εi

2 :
A1 → A0, for 0 ≤ i < 2, are determined uniquely as the homomorphisms
εi
2 : A0 → A1 inserting {0} into A. For an integer n > 2 and 0 < i < n− 1,

the face morphism εi
n : An−1 → An−2 in Vop is defined to be the diagonal

homomorphism

(3.2) εi : An−2 → An−1; (a0, . . . , an−3) 7→ (a0, . . . , ai−1, ai−1, . . . , an−3).

Note that these homomorphisms appear as degeneracies (2.2) in the product
complex of A. The face morphism ε0

n : An−1 → An−2 in Vop is defined to
be the homomorphism

(3.3) ε0 : An−2 → An−1; (a0, . . . , an−3) 7→ (0, a0, . . . , an−3).

Finally, the face morphism εn−1
n : An−1 → An−2 in Vop is defined to be the

homomorphism

(3.4) εn−1 : An−2 → An−1; (a0, . . . , an−3) 7→ (a0, . . . , an−3, 0).

Theorem 3.1. If V is a pointed variety, then the pointed complex is a
simplicial object in Vop.

Proof. The simplicial identities in the pointed complex must be verified.
By the duality between the face identities (2.3) and the degeneracy identities
(2.4), the degeneracy identities

(3.5) δi
n ◦ δj+1

n+1 = δj
n ◦ δi

n+1
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for the pointed complex of A reduce to the face identities (2.3) for the
product complex of A. Similarly, most of the face identities

(3.6) εi
n ◦ εj−1

n−1 = εj
n ◦ εi

n−1

for the pointed complex of A (those not involving factors of the form ε0
m or

εm−1
m ) reduce to the degeneracy identities (2.4) for the product complex of

A. If j = 1 in (3.6), then necessarily i = 0, and using (3.2), (3.3) one verifies

ε0
n ◦ ε0

n−1(a0, . . . , an−3) = ε0
n(0, a0, . . . , an−3) = (0, 0, a0, . . . , an−3)

= ε1
n(0, a0, . . . , an−3) = ε1

n ◦ ε0
n−1(a0, . . . , an−3)

as required for satisfaction of (3.6) in this case. The verifications of the
other exceptional cases of (3.6) are similar.

It remains to check the mixed identities

(3.7) δi
n ◦ εj

n+1 =





εj
n ◦ δi−1

n−1, if j < i,

εj−1
n ◦ δi

n+1, if j > i + 1,

1, otherwise

in the pointed complex. As for the face identities, most of the cases reduce
to the corresponding identities (2.5) for the product complex. If j = n and
i < n− 1, one verifies using (3.1) and (3.4) that

δi
n ◦ εn

n+1(a0, . . . , an−2)= δi
n(a0, . . . , an−2, 0)

= (a0, . . . , ai−1, ai+1, . . . , an−2, 0)

= εn−1
n (a0, . . . , ai−1, ai+1, . . . , an−2)

= εn−1
n ◦ δi

n+1(a0, . . . , an−2).

For i = n− 1, one obtains

δn−1
n ◦ εn

n+1(a0, . . . , an−2) = δn−1
n (a0, . . . , an−2, 0) = (a0, . . . , an−2),

as required for satisfaction of (3.7) in this case. Treatment of the other
exceptional cases of (3.7) is similar.
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4. Mal’tsev identities for pointed algebras

Following the establishment in Theorem 3.1 of the pointed complex belong-
ing to each algebra in a pointed variety, one may now study the satisfaction
of the simplicial Mal’tsev identities in these complexes. The first result
shows that the original 2-dimensional simplicial Mal’tsev identity (2.6) in
pointed varieties serves to characterize Jónsson-Tarski varieties.

Theorem 4.1. A pointed variety V is a Jónsson-Tarski variety if and only
if there is a ternary derived operation P such that the simplicial Mal’tsev
identity (2.6) holds in the pointed complex of each member A of V.

Proof. Applied to an element x of A, the simplicial Mal’tsev identity

P
(
ε0
3, ε

2
3 ◦ ε0

2 ◦ δ0
1, ε

2
3

)
= ε1

3

becomes

(P (0, 0, x), P (x, 0, 0))= P ((0, x), (0, 0), (x, 0))

= P
(
ε0
3(x), ε2

3 ◦ ε0
2 ◦ δ0

1(x), ε2
3(x)

)

= P
(
ε0
3, ε

2
3 ◦ ε0

2 ◦ δ0
1, ε

2
3

)
(x)

= ε1
3(x) = (x, x),

whose two components are

(4.1) P (0, 0, x) = x and P (x, 0, 0) = x.

If V is a Jónsson-Tarski variety, then (4.1) holds with

P (x, y, z) = x + (y + z).

Conversely, suppose that (4.1) holds. By analogy with (1.3), define

x + y = P (x, 0, y).

Then (4.1) reduces to the Jónsson-Tarski identities (1.2).

In contrast with the direct characterization of Jónsson-Tarski algebras given
by Theorem 4.1, the issue of satisfaction of the higher-dimensional simplicial
Mal’tsev identities in the pointed complex of a member of a pointed variety
is more involved. On the one hand, these identities are sufficient, but not
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necessary, for the variety to be a Jónsson-Tarski variety. On the other hand,
they are necessary, but not sufficient, for the variety to be a Goldie variety.

Lemma 4.2. A derived ternary operation P of a pointed variety V satis-
fies each higher-dimensional simplicial Mal’tsev identity (2.8) in the pointed
complex of each algebra A of V if and only if the identities

(4.2) P (0, 0, x) = x

and

(4.3) P (x, y, y) = x

are satisfied in V.

Proof. Applied to an element (a0, . . . , an−3) of An−2, the higher-dimensional
simplicial Mal’tsev identity

P
(
ε0
n, ε2

n ◦ ε0
n−1 ◦ δ0

n−2, ε
2
n

)
= ε1

n

becomes

(P (0, 0, a0), P (a0, a1, a1), P (a1, a1, a1), . . . , P (an−3, an−3, an−3))

=P ((0, a0, a1, . . . , an−3), (0, a1, a1, . . . , an−3), (a0, a1, a1, . . . , an−3))

=P
(
ε0
n(a0, . . . , an−3), ε2

n ◦ ε0
n−1 ◦ δ0

n−2(a0, . . . , an−3), ε2
n(a0, . . . , an−3)

)

=P
(
ε0
n, ε2

n ◦ ε0
n−1 ◦ δ0

n−2, ε
2
n

)
(a0, . . . , an−3)

=ε1
n(a0, . . . , an−3) = (a0, a0, a1, . . . , an−3),

whose components are

(4.4) P (0, 0, a0)=a0, P (a0, a1, a1)=a0, P (ai, ai, ai)=ai for 1 ≤ i ≤ n−3.

Note that the first two identities of (4.4) are (4.2) and (4.3). Conversely, if
(4.2) and (4.3) are satisfied, then (4.3) yields the idempotence of P which
completes the list (4.4) of identities in V.
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Theorem 4.3. In a pointed variety V, the existence of a ternary derived
operation P such that the higher-dimensional simplicial Mal’tsev identities
(2.8) are satisfied in the pointed complex of each member A of V is sufficient,
but not necessary, for V to be a Jónsson-Tarski variety.

Proof. If (4.2) and (4.3) hold, then (4.1) follows, so that V is a Jónsson-
Tarski algebra.

Conversely, consider the variety V of commutative monoids, certainly
a Jónsson-Tarski variety. Each derived ternary operation P of V, as an
element of the free V-algebra on the three-element generating set {x, y, z},
has the normal form

ax + by + cz,

with natural numbers a, b, c, inside the free abelian group on {x, y, z}. Then
(4.2) would force c = 1, contradicting the equation b = c = 0 given by (4.3).

Theorem 4.4. In a pointed variety V, the existence of a ternary derived
operation P such that the higher-dimensional simplicial Mal’tsev identities
(2.8) are satisfied in the pointed complex of each member A of V is necessary,
but not sufficient, for V to be a Goldie variety.

Proof. If V is a Goldie variety with Mal’tsev operation P , then the identity
(4.3) is just the right hand side of (1.1), while in a pointed variety (4.2) is a
consequence of the left hand side of (1.1).

Conversely, consider the set N of natural numbers, equipped with a
nullary operation selecting 0, the binary operation + of ordinary addition,
and a binary operation

xr y =

{
y, if x < y,

x− y, otherwise

called pseudosubtraction. Consider the derived ternary operation

P (x, y, z) = (x + y)r z.

Then P satisfies (4.2) and (4.3), so the higher-dimensional simplicial Mal’tsev
identities (2.8) are satisfied in the pointed complex of each member A of the
variety V generated by the algebra (N, 0, +,r).

It will now be shown that V is not a Goldie variety. Consider the identi-
cal embedding of the (monoid reduct of the) fourth power N4 of the algebra



160 J.D.H. Smith

(N, 0,+,r) into the abelian group Z4. Let V be the kernel congruence of
the operation of integer subtraction, considered as a subgroup of Z4. Then
the intersection W of V with N4 is a subalgebra of (N, 0, +,r)4, since the
values of the basic operations of V are obtained either by group operations
or by projections performed on their vector of arguments. Moreover, W is
a reflexive subalgebra of (N2)2, since V is a congruence on Z2. If V were a
Goldie variety, then W would be a congruence on N2 ([11], Proposition 143),
having the diagonal N̂ as a congruence class. The algebra N would then be
central ([11], p. 43), and so there would be an isomorphism

(4.5) N→ N2/N̂ ; n 7→ (0, n)W

([11], 414). But (4.5) does not surject, since (1, 0)W does not lie in its image.

5. Concluding remarks

The Mal’tsev identities (1.1) are equivalent to simplicial identities in the
product complex (Proposition 2.1, Corollary 2.2). For a pointed variety, the
Jónsson-Tarski identities (1.2) are equivalent to the 2-dimensional simpli-
cial Mal’tsev identity in each pointed complex (Theorem 4.1). The higher-
dimensional Mal’tsev identities in each pointed complex characterize a class
of pointed varieties lying properly between the classes of Jónsson-Tarski and
Goldie varieties (Theorems 4.3, 4.4).

Given the common framework for Mal’tsev and Jónsson-Tarski algebras,
one may begin the programme of unifying the two theories. For example,
the extension theory for Mal’tsev varieties ([11], Ch. 6) should translate
readily to Jónsson-Tarski varieties. It may also prove fruitful to take other
Mal’tsev conditions (such as those for modularity of the congruence lattice
as summarised nicely in [14], or those for higher-order permutability of con-
gruences [3] [6]), translate them to simplicial form, and then interpret them
in pointed complexes of pointed varieties.
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