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Abstract

For a rank-1 matrix A = a ⊗ bt over max algebra, we define the
perimeter of A as the number of nonzero entries in both a and b. We
characterize the linear operators which preserve the rank and perimeter
of rank-1 matrices over max algebra. That is, a linear operator T
preserves the rank and perimeter of rank-1 matrices if and only if it
has the form T (A) = U ⊗ A ⊗ V , or T (A) = U ⊗ At ⊗ V with some
monomial matrices U and V.
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1. Introduction and preliminaries

There are many papers on the study of linear operators that preserve rank
of matrices over several semirings. Beasley and Pullman ([3]) obtained char-
acterizations of rank-preserving operators of Boolean matrices. Bapat, Pati
and Song ([2]) obtained characterizations of linear operators that preserve
the rank of matrices over max algebra. They did not find necessary and
sufficient conditions for an operator to preserve the rank of rank-1 matrices
over max algebra. We consider characterizations of the linear operator that
preserve the rank of the rank-1 matrices over max algebra.
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The max algebra consists of the set Rmax, where Rmax is the set of non-
negative real numbers, equipped with two binary operations, which we call
addition (⊕) and multiplication (·). The operations are defined as a ⊕ b =
max{a, b} and a · b = ab. That is, their sum is the maximum of a and b and
their product is the usual product in the reals. There has been a great deal
of interest in recent years in this max algebra. This system allows us to
express some nonlinear phenomena in the conventional algebra in a linear
fashion ([1]).

Let Mm,n(Rmax) denote the set of all m × n matrices with entries in
Rmax. The (i, j)th entry of a matrix A is denoted by aij . If A = [aij ] and
B = [bij ] are m×n matrices over Rmax, then the sum of A and B is denoted
by A ⊕ B, which is the m × n matrix with aij ⊕ bij as its (i, j)th entry. If
c ∈ Rmax, then cA is the matrix [caij ]. If A is an m× n matrix and B is an
n × p matrix, then their product is denoted by A ⊗ B, which is the m × p
matrix with max{airbrj |r = 1, · · · , n} as its (i, j)th entry. The zero matrix
is denoted by O. The identity matrix of an appropriate order is denoted by
I. And the transpose of A = [aij ], denoted by At, is defined in the usual
way. That is, the (i, j)th entry of At is aji for all i and j. Throughout this
paper, we shall adopt the convention that m ≤ n unless otherwise specified.

The rank or factor rank, r(A), of a nonzero matrix A ∈Mm,n(Rmax) is
defined as the least integer k for which there exist m× k and k×n matrices
B and C with A = B ⊗ C. The rank of a zero matrix is zero. It is well
known that r(A) is the least k such that A is the sum of k matrices of rank
1 (see [5], [4]).

Let ∆m,n = {(i, j)|1 ≤ i ≤ m, 1 ≤ j ≤ n}, and Eij be the m× n matrix
whose (i, j)th entry is 1 and whose other entries are all 0, and Em,n =
{Eij |(i, j) ∈ ∆m,n}. We call Eij a cell.

A square matrix A over Rmax is called monomial if it has exactly one
nonzero element in each row and column. Since Mn,n(Rmax) is a semiring,
we can consider the invertible matrices under multiplication. The monomial
matrices are precisely invertible matrices over Rmax (see [2]).

If A and B are in Mm,n(Rmax), we say A dominates B (written B ≤ A
or A ≥ B) if aij = 0 implies bij = 0 for all i, j.

For example, if

A =
[
2 4
0 0

]
and B =

[
4 2
0 0

]
,

then we have A ≤ B and B ≤ A, but A 6= B.
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Also lowercase, boldface letters will represent column vectors, all vectors u
are column vectors (ut is a row vector) for u ∈ Rmax

m [= Mm,1(Rmax)].
It is easy to verify that the rank of A ∈Mm,n(Rmax) is 1 if and only if

there exist nonzero vectors a ∈Mm,1(Rmax) and b ∈Mn,1(Rmax) such that
A = a⊗bt. We call a the left factor, and b the right factor of A. But these
vectors a and b are not uniquely determined by A.

For example,

[
2 4
0 0

]
=

[
1
0

] [
2 4

]
=

[
2
0

] [
1 2

]
= · · · .

For any vector u ∈ Mm,1(Rmax), we define |u| to be the number of
nonzero entries in u. Let A = [aij ] be any matrix in Mm,n(Rmax). Then we
define A∗ = [aij

∗] to be the m × n (0, 1)-matrix whose (i, j)th entry is 1 if
and only if aij 6= 0 for A = [aij ].

It follows from the definition that

(1.1) (A⊗B)∗ = A∗ ⊗B∗ and (B ⊕ C)∗ = B∗ ⊕ C∗

for all A ∈ Mm,n(Rmax) and all B, C ∈ Mn,r(Rmax). Also we can easily
obtain that A ≥ B if and only if A⊕ B = A for any m× n (0, 1)-matrix A
and B.

Lemma 1.1. For any factorization a⊗ bt of an m× n rank-1 matrix A,
|a| and |b| are uniquely determined by A.

Proof. Consider the m × n (0, 1)-matrix A∗ = [aij
∗] whose (i, j)th entry

is 1 if and only if aij 6= 0. By (1.1), A∗ = a∗ ⊗ (b∗)t is the rank-1 matrix.
Since A∗ is the (0, 1) matrix, it is easy to show that |a∗| and |b∗| are uniquely
determined by A∗. Therefore, |a| and |b| are uniquely determined by A.

Let A be any rank-1 matrix in Mm,n(Rmax). We define the perimeter of A,
P (A), as |a| + |b| for arbitrary factorization A = a ⊗ bt. Even though the
factorizations of A are not unique, Lemma 1.1 shows that the perimeter of
A is unique, and that P (A) = P (A∗).
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Proposition 1.2. If A, B and A⊕B are rank-1 matrices in Mm,n(Rmax),
then P (A⊕B) < P (A) + P (B).

Proof. Let A = a⊗xt, B = b⊗yt and A⊕B = c⊗zt be any factorizations
of A,B and A⊕B. Then we have for all i, j

(1.2) aix⊕ biy = ciz

and

(1.3) xja⊕ yjb = zjc.

If B ≤ A, we have (A⊕B)∗ = A∗ ⊕B∗ = A∗. Thus we obtain that

P (A⊕B) = P ((A⊕B)∗) = P (A∗) = P (A) < P (A) + P (B)

because P (B) 6= 0, as required.
The similar argument shows that if A ≤ B, then P (A ⊕ B) < P (A) +

P (B). So we can assume that A 6≤ B and B 6≤ A. We consider the three
cases.

Case 1. a 6≤ b and b 6≤ a. The equation (1.2) implies that aix = ciz and
bjy = cjz for some nonzero scalars ai, ci, bj , cj ∈ Rmax. Thus we have the
following

P (A⊕B) = P

((
ci

ai
a⊕ cj

bj
b
)
⊗ zt

)
=

∣∣∣∣
ci

ai
a⊕ cj

bj
b
∣∣∣∣ + |z|

< (|a|+ |z|) + (|b|+ |z|)

= (|a|+ |x|) + (|b|+ |y|) = P (A) + P (B),

as required.

Case 2. a ≤ b. Then x 6≤ y( and so x∗ 6≤ y∗). Also the equation (1.3)
becomes

(1.4) xj
∗a∗ ⊕ yj

∗b∗ = zj
∗c∗.

Thus we have xj
∗a∗ = zj

∗c∗ for some nonzero scalars xj , zj ∈ Rmax. Since
xj
∗ = zj

∗ = 1, we have a∗ = c∗. But b∗ ≤ c∗ from (1.4). Therefore,
a∗ = b∗ = c∗ and we have
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P (A⊕B) = P ((A⊕B)∗) = P
(
c∗ ⊗ (x∗ ⊕ y∗)t

)
= |c∗|+ |x∗ ⊕ y∗|

< (|c∗|+ |x∗|) + (|c∗|+ |y∗|) = (|a∗|+ |x∗|) + (|b∗|+ |y∗|)
= (|a|+ |x|) + (|b|+ |y|) = P (A) + P (B),

as required.

Case 3. b ≤ a. It is similar to the Case 2.

A mapping T : Mm,n(Rmax) → Mm,n(Rmax) is called a linear operator if
T has the following two properties:

(1) T (0) = 0 and

(2) T (αA⊕βB) = αT (A)⊕βT (B) for all A,B ∈Mm,n(Rmax) and for all
α, β ∈ Rmax.

A linear operator T : Mm,n(Rmax) →Mm,n(Rmax) is invertible if T is
injective and surjective. As with vector space over fields, the inverse, T−1,
of a linear operator T is also linear.

Bapat, Pati and Song obtain the following:

Lemma 1.3. ([2]) If T is a linear operator on Mm,n(Rmax), then T is
invertible if and only if T permutes Em,n with some nonzero scalar multipli-
cation.

In this paper, we characterize the linear operators that preserve the rank
and the perimeter of every rank-1 matrix over max algebra. These are
motivated by analogous results for the linear operator which preserves all
ranks in Mm,n(Rmax). However, we obtain results and proofs in the view of
the perimeter analog.

2. Rank and perimeter preservers of rank-1 matrices over
max algebra

In this section, we will characterize the linear operators that preserve the
rank and the perimeter of every rank-1 matrix in Mm,n(Rmax).

Suppose T is a linear operator on Mm,n(Rmax). Then:
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(1) T is a (U, V )-operator if there exist monomials U ∈Mm,m(Rmax) and
V ∈Mn,n(Rmax) such that T (A) = U⊗A⊗V for all A inMm,n(Rmax),
or m = n and T (A) = U ⊗At ⊗ V for all A in Mm,n(Rmax);

(2) T preserve rank 1 if r(T (A)) = 1 whenever r(A) = 1 for all A ∈
Mm,n(Rmax);

(3) T preserve perimeter k of rank-1 matrices if P (T (A)) = k whenever
P (A) = k for all A ∈Mm,n(Rmax) with r(A) = 1.

Proposition 2.1. If T is a (U, V )-operator on Mm,n(Rmax), then T
preserves both rank and perimeter of rank-1 matrices.

Proof. Since T is a (U, V )-operator, there exist monomials U ∈Mm,m(Rmax)
and V ∈ Mn,n(Rmax) such that either T (A) = U ⊗ A ⊗ V or m = n,
T (A) = U ⊗ At ⊗ V for all A in Mm,n(Rmax). Let A be a matrix in
Mm,n(Rmax) with r(A) = 1 and A = a ⊗ bt be any factorization of A
with P (A) = |a|+ |b|. For the case T (A) = U ⊗A⊗ V ,

T (A) = U ⊗A⊗ V = (U ⊗ a)⊗ (bt ⊗ V ) = (U ⊗ a)⊗ (V t ⊗ b)t.

Thus we have

r (T (A)) = r
(
(U ⊗ a)⊗ (V t ⊗ b)t

)
= 1,

and
P (T (A)) = |U ⊗ a|+ |V t ⊗ b| = |a|+ |b| = P (A).

For the case T (A) = U ⊗ At ⊗ V , we can show that r (T (A)) = 1 and
P (T (A)) = |a|+ |b| by the similar method as above.

Hence (U, V )-operator preserves rank and perimeter of every rank-1
matrix.

We note that an m×n matrix has perimeter 2 if and only if it is a cell with
nonzero scalar multiplication. Thus, we have the following Lemma:

Lemma 2.2. Let T be a linear operator on Mm,n(Rmax). If T preserves
rank 1 and perimeter 2 of rank-1 matrices, then the following statements
hold:
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(1) T maps a cell into a cell with nonzero scalar multiplication;

(2) T maps a row (or a column) of a matrix into a row or a column
(if m = n) with scalar multiplication.

Proof. (1): It follows from the property that T preserves perimeter 2.
(2): If not, then there exists two distinct cells Eij , Eih in some i-th row

such that T (Eij) and T (Eih) lie in two different rows and different columns.
Then the rank of Eij ⊕Eih is 1 but that of T (Eij ⊕ Eih) = T (Eij)⊕T (Eih)
is 2. Therefore, T does not preserve rank 1, a contradiction.

The following is an example of a linear operator that preserves rank 1 and
perimeter 2 of rank-1 matrices, but the operator does not preserve perimeter
3 and is not a (U, V )-operator.

Example 2.3. Let T : M2,2(Rmax) →M2,2(Rmax) be defined by

T

([
a b
c d

])
= (a⊕ b⊕ c⊕ d)

[
0 0
1 0

]
.

Then it is easy to verify that T is a linear operator and preserve rank 1

and perimeter 2. But T does not preserve perimeter 3: For, A =
[
1 0
2 0

]
=

[
1
2

]
⊗ [1 0] has rank 1 and perimeter 3: but T (A) =

[
0 0
2 0

]
=

[
0
2

]
⊗ [1 0]

has rank 1 and perimeter 2. Moreover, T is not a (U, V )-operator: For, let

X =
[
1 2
3 4

]
∈ M2,2(Rmax). Then T (X) = T

([
1 2
3 4

])
=

[
0 0
4 0

]
. So, we

cannot find monomials U, V ∈ M2,2(Rmax) such that T (X) = U ⊗X ⊗ V .
This shows that T is not a (U, V )-operator.

Let Ri = {Eij |1 ≤ j ≤ n}, Cj = {Eij |1 ≤ i ≤ m}, R = {Ri|1 ≤ i ≤ m}
and C = {Cj |1 ≤ j ≤ n}. For a linear operator T on Mm,n(Rmax), define
T ∗(A) = [T (A)]∗ for all A in Mm,n(Rmax). Let T ∗(Ri) = {T ∗(Eij)|1 ≤
j ≤ n} for all i = 1, · · · , m and T ∗(Cj) = {T ∗(Eij)|1 ≤ i ≤ m} for all
j = 1, · · · , n.
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Lemma 2.4. Let T be a linear operator on Mm,n(Rmax). Suppose that T
preserves rank 1 and perimeters 2 and p (≥ 3) of rank-1 matrices. Then:

(1) T maps two distinct cells in a row(or a column) into two distinct cells
in a row or in a column with nonzero scalar multiplication;

(2) For the case m = n, if T maps a row of a matrix A into a row with
nonzero scalar multiplication, then T maps each row of A into a row
of T (A) with nonzero scalar multiplication. Similarly, if T maps a
column of a matrix A into a column with nonzero scalar multiplication,
then T maps each column of A into a column of T (A) with nonzero
scalar multiplication.

Proof. (1): Suppose T (Eij) = αErl and T (Eih) = βErl for some distinct
pairs (i, j) 6= (i, h) and some nonzero scalars α, β ∈ Rmax. Then T maps the
ith row of a matrix A into rth row or lth column with scalar multiplication
by Lemma 2.2. Without loss of generality, we assume the former. Thus for
any rank-1 matrix A with perimeter p (≥ 3) which dominates Eij ⊕Eih, we
can show that T (A) has perimeter at most p − 1, a contradiction. Thus
T maps two distinct cells in a row into two distinct cells in a row or in a
column with nonzero scalar multiplication.

(2): If not, then there exist rows Ri and Rj such that T ∗(Ri) ⊆ Rr and
T ∗(Rj) ⊆ Cs for some r, s. Consider a rank-1 matrix D = Eip⊕Eiq⊕Ejp⊕
Ejq with p 6= q. Then we have

T (D) = T (Eip ⊕Eiq)⊕ T (Ejp ⊕Ejq)

= (α1Erp′ ⊕ α2Erq′)⊕ (β1Ep′′s ⊕ β2Eq′′s)

for some p′ 6= q′ and p′′ 6= q′′ and some nonzero scalars αi, βi ∈ Rmax by (1).
Therefore, r (T (D)) 6= 1 and T does not preserve rank 1, a contradiction.
Hence T maps each row of A into a row (or a column) of T (A) with nonzero
scalar multiplication. Similarly, T maps each column of A into a column
(or a row) of T (A) with nonzero scalar multiplication.

Now we have an interesting example:

Example 2.5. Consider a linear operator T on Mm,n(Rmax), with m ≥ 3
and n ≥ 4, such that

T (A) = B = [bij ],
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where A = [ai,j ] in Mm,n(Rmax), bi,j = 0 if i ≥ 2 and bi,j = ⊕m
i=1ai,r with

r ≡ i + (j − 1) (mod n) and 1 ≤ r ≤ n. Then T maps each row and each
column into the first row with some scalar multiplication. And T preserves
both rank and perimeters 2, 3 and n+1 of rank-1 matrices. But T does not
preserve perimeters k (k ≥ 4 and k 6= n + 1) of rank-1 matrices:

For if 4 ≤ k ≤ n, then we can choose a 2 × (k − 2) submatrix with
perimeter k which is mapped to distinct k position in the first row of B
under T . Then this 1× k submatrix has perimeter k + 1. Therefore T does
not preserve perimeter k of rank-1 matrices.

For a linear operator T on Mm,n(Rmax) preserving rank 1 and perimeter 2
of rank-1 matrices, we define the corresponding mapping T ′ : ∆m,n → ∆m,n

by T ′(i, j) = (k, l) whenever T (Eij) = bijEkl for some nonzero scalar bij ∈
Rmax. Then T ′ is well-defined by Lemma 2.2 (1).

Lemma 2.6. Let T be a linear operator preserving both rank and perimeters
2 and k(k ≥ 4, k 6= n + 1) of rank-1 matrices. Then T ′ is a bijection on
∆m,n.

Proof. By Lemma 2.2, T (Eij) = bijErl for some (r, l) ∈ ∆m,n and some
nonzero scalar bij ∈ Rmax. Without loss of generality, we may assume that T
maps the ith row of a matrix into the rth row with nonzero scalar multiplica-
tion. Suppose T ′(i, j) = T ′(p, q) for some distinct pairs (i, j), (p, q) ∈ ∆m,n.
By the definition of T ′, we have T (Eij) = bijErl and T (Epq) = cpqErl for
some nonzero scalars bij , cpq ∈ Rmax. If i = p or j = q, then we have
contradictions by Lemma 2.4. So let i 6= p and j 6= q.

If k = n + k′ ≥ n + 2, consider the matrix

D = ⊕n
s=1Eis +⊕n

t=1Ep t +⊕k′−2
h=1 ⊕n

g=1 Ehg

with rank 1 and perimeter n + k′ = k. Then T maps the ith and pth row of
D into the rth row with nonzero scalar multiplication by Lemma 2.4. Thus
the perimeter of T (D) is less than n + k′ = k, a contradiction.

If 4 ≤ k ≤ n, we will show that we can choose a 2× (k − 2) submatrix
from the ith and pth row whose image under T has 1× k submatrix in the
rth row as follows: Since T (Eij) = bijErl and T (Epq) = cpqErl, T maps
the ith row and the pth row into the rth row. But T maps distinct cells
in each row (or column) to distinct cells by Lemma 2.4. Now, choose Eij ,
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Epj but do not choose Eiq, Epq. Since there is a cell Eph (h 6= j, q) in the
pth row such that T ′(p, h) = T ′(i, q) but T ′(i, h) 6= T ′(p, j), we choose 2× 2
submatrix Eij ⊕Eih⊕Epj ⊕Eph whose image under T is 1× 4 submatrix in
the rth row. And we can choose a cell Eps (s 6= q, j, h) such that T ′(i, s) 6=
T ′(p, j), T ′(p, q), T ′(p, h). Then we have 2× 3 submatrix Eij ⊕ Eih ⊕ Eis ⊕
Epj ⊕ Eph ⊕ Eps whose image under T is 1 × 5 submatrix in the rth row.
Similarly, we can choose a 2× (k − 2) submatrix whose image under T is a
1 × k submatrix in the rth row. This shows that T does not preserve the
perimeter k of a rank-1 matrix, a contradiction.

Hence T ′(i, j) 6= T ′(p, q) for any two distinct pairs (i, j), (p, q) ∈ ∆m,n.
Therefore, T ′ is a bijection.

We obtain the following characterization theorem for linear operators pre-
serving the rank and the perimeter of rank-1 matrices over max algebra.

Theorem 2.7. Let T be a linear operator on Mm,n(Rmax). Then the
following are equivalent:

(1) T is a (U, V )-operator;

(2) T preserves both rank and perimeter of rank-1 matrices;

(3) T preserves both rank and perimeters 2 and k (k ≥ 4, k 6= n + 1) of
rank-1 matrices.

Proof. (1) implies (2) by Proposition 2.1. It is obvious that (2) implies
(3). We now show that (3) implies (1). Assume (3). Then the corresponding
mapping T ′ : ∆m,n → ∆m,n is a bijection by Lemma 2.6.

By Lemma 2.4, there are two cases; (a) T ∗ maps R onto R and maps C
onto C or (b) T ∗ maps R onto C and C onto R.

Case a): We note that T ∗(Ri) = Rσ(i) and T ∗(Cj) = Cτ(j) for all i, j, where
σ and τ are permutations of {1, · · · ,m} and {1, · · · , n}, respectively. Let P
and Q be the permutation matrices corresponding to σ and τ , respectively.
Then for any Eij ∈ Em,n, we can write T (Eij) = bijEσ(i)τ(j) for some nonzero
scalar bij ∈ Rmax. Now we claim that for all i, l ∈ {1, · · · ,m} and all
j, r ∈ {1, · · · , n},

bij

bir
= blj

blr
.
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Consider a matrix E = Eij ⊕ Eik ⊕ Elj ⊕Elr with rank 1. Then we have

T (E) = bijEσ(i)τ(j) ⊕ birEσ(i)τ(r) ⊕ bljEσ(l)τ(j) ⊕ blkEσ(l)τ(r).

Since T (E) has rank 1, it follows that bij

bir
= blj

blr
. Let C ∈ Mm,m(Rmax)

and D ∈ Mn,n(Rmax) be diagonal matrices such that c11 = 1, d11 = b11,
cii = bi1

b11
, and djj = b1j for all i = 2, · · · ,m and j = 2, · · · , n. Then

bij = ciidjj for all i ∈ {1, · · · ,m} and j ∈ {1, · · · , n}.
Let A = [aij ] be any m× n matrix in Mm,n(Rmax). Then we have

T (A) = T




m∑

i=1

n∑

j=1

aijEij


 =

m∑

i=1

n∑

j=1

aijT (Eij)

=
m∑

i=1

n∑

j=1

aijbijEσ(i)τ(j) =
m∑

i=1

n∑

j=1

ciiaijEσ(i)τ(j)djj

= C ⊗ P ⊗A⊗Q⊗D.

Since C ⊗ P = U is an m × m monomial and Q ⊗ D = V is an n × n
monomial, it follows that T is a (U, V )-operator.

Case b): We note that m = n and T ∗(Ri) = Cσ(i) and T ∗(Cj) = Rτ(j) for all
i, j, where σ and τ are permutations of {1, · · · ,m}. By the similar argument
of case a), we obtain that T (A) is of the form T (A) = C ⊗P ⊗At⊗Q⊗D.
Thus T is a (U, V )-operator.

Even though T is an invertible operator onMm,n(Rmax), T may not preserve

rank 1. For example, let T : M2,2(Rmax) →M2,2(Rmax) by T

([
a b
c d

])
=

[
a b
d c

]
. Then T is clearly invertible, but does not preserve rank 1 since

T

([
1 0
2 0

])
=

[
1 0
0 2

]
. However all (U, V )-operator is invertible and its

inverse is (U−1, V −1)-operator. Here, U−1 and V −1 are monomials since U
and V are monomials.
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Corollary 2.8. Let T be a linear operator on Mm,n(Rmax) that preserves
both rank and perimeter of rank-1 matrices. Then T is invertible.

We say that a linear operator T onMm,n(Rmax) strongly preserves perimeter
k of rank-1 matrices if P (T (A)) = k if and only if P (A) = k.

Consider a linear operator T on M2,2(Rmax) defined by

T

([
a b
c d

])
= (a⊕ b⊕ c⊕ d)

[
0 1
0 0

]
.

Then T preserves both rank and perimeter 2 of rank-1 matrices but does not

strongly preserve perimeter 2, since T

([
1 2
2 4

])
=

[
0 4
0 0

]
with P

([
1 2
2 4

])

= 4 but P

([
0 4
0 0

])
= 2.

Theorem 2.9. Let T be a linear operator on Mm,n(Rmax). Then T pre-
serves both rank and perimeter of rank-1 matrices if and only if it preserves
perimeter 3 and strongly preserves perimeter 2 of rank-1 matrices.

Proof. Suppose T preserves perimeter 3 and strongly preserves perimeter 2
of rank-1 matrices. Then T maps each row of a matrix into a row or a column
(if m = n) with nonzero scalar multiplication. Since T strongly preserves
perimeter 2, T maps each cell onto a cell with nonzero scalar multiplication.
This means that the corresponding mapping T ′ is a bijection. Thus, by the
similar method as in the proof of Theorem 2.7, T preserves both rank and
perimeter of rank-1 matrices.

The converse is immediate.

Theorem 2.10. Let T be a linear operator on Mm,n(Rmax) that preserves
the rank of rank-1 matrices. Then T preserves perimeter of rank-1 matrices
if and only if it strongly preserves perimeter 2 of rank-1 matrices.

Proof. Suppose T strongly preserves perimeter 2 of rank-1 matrices. Then
T maps each cell onto a cell with nonzero scalar multiplication. Thus T ′ is
a bijection. Since T preserves rank 1, it maps a row of a matrix into a row
or a column (if m = n). Thus, by the similar method as in the proof of
Theorem 2.7, T preserves both rank and perimeter of rank-1 matrices.

The converse is immediate.
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Thus we have characterizations of the linear operators that preserve both
rank and perimeter of rank-1 matrices over max algebra.

References

[1] R.B. Bapat, A max version of the Perron-Frebenius theorem, Linear Algebra
Appl. 275–276 (1998), 3–18.

[2] R.B. Bapat, S. Pati and S.-Z. Song, Rank preservers of matrices over max
algebra, Linear and Multilinear Algebra 48 (2000), 149–164.

[3] L.B. Beasley and N.J. Pullman, Boolean rank-preserving operators and
Boolean rank-1 spaces, Linear Algebra Appl. 59 (1984), 55–77.

[4] L.B. Beasley, S.-Z. Song and S.-G. Lee, Zero term rank preservers, Linear
and Multilinear Algebra 48 (2001), 313–318.

[5] S.-Z. Song and S.-R. Park, Maximal column rank preservers of fuzzy matrices,
Discuss. Math. – Gen. Algebra Appl. 21 (2001), 207–218.

Received 24 April 2003

Powered by TCPDF (www.tcpdf.org)

http://www.tcpdf.org

