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Abstract

Let V be a variety with two distinct nullary operations 0 and 1.
An algebra A ∈ V is called balanced if for each Φ, Ψ ∈ Con(A), we
have [0]Φ = [0]Ψ if and only if [1]Φ = [1]Ψ. The variety V is called
balanced if every A ∈ V is balanced. In this paper, balanced varieties
are characterized by a Mal’cev condition (Theorem 3). Furthermore,
some special results are given for varieties of bounded lattices.
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1. Balanced congruences on bounded lattices

Let L = (L;∨,∧, 0, 1) be a bounded lattice with least element 0 and greatest
element 1. We study congruences on L such that the 0-class determines the
1-class and vice versa.

Let M ⊆ L and a, b ∈ L. Denote by Θ(M) the least congruence on L

containing the relation M ×M and by Θ(a, b) the principal congruence on
L generated by (a, b), i.e. Θ(a, b) = Θ(M) for M = {a, b}. We will use the
following result of G. Grätzer and E. T. Schmidt, see [3]:

Proposition 1. Let L be a distributive lattice and a, b, c, d ∈ L with c ≤ d.
Then aΘ(c, d)b if and only if a ∧ c = b ∧ c and a ∨ d = b ∨ d.

Here and in the following, we write aΦb instead of (a, b) ∈ Φ, for any Φ ∈
Con(L) and a, b ∈ L.

From now on, every lattice under consideration is bounded, i.e. it has 0
and 1.

Definition 1. Let L be a lattice with 0 and 1 and Φ ∈ Con(L). Put
I = [0]Φ and F = [1]Φ. We say that Φ is balanced if

[0]Φ = [0]Θ(F ) and [1]Φ = [1]Θ(I).

Example 1. By Corollary 2.1 in [2], every complemented lattice is locally
regular at 0 (in the sense of [1]), i.e. for every Φ, Ψ ∈ Con(L), if [a]Φ =
[a]Ψ for some a ∈ L, then [0]Φ = [0]Ψ. Dually, it is locally regular at
1, i.e. [a]Φ = [a]Ψ implies [1]Φ = [1]Ψ. Thus every congruence on every
complemented lattice is balanced.

Definition 2. Let L be a lattice with 0 and 1. We say that L is a d-lattice
if for each a, b, c, d ∈ L the following holds:

aΘ(c, 1)0 ⇒ a ∧ c = 0
bΘ(d, 0)1 ⇒ b ∨ d = 1.

Example 2. The lattice N5 is a d-lattice. Of course, N5 has just five con-
gruences: the identical one ω, the full square N5 ×N5 and three nontrivial
ones Θ1, Θ2, Θ3 defined by the following partitions (see Figure 1):

Θ1 . . . {0, b, c}, {a, 1}
Θ2 . . . {0}, {a}, {b, c}, {1}
Θ3 . . . {0, a}, {b, c, 1}.
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Figure 1

It is an easy exercise to verify our condition for Θ1, Θ2,Θ3; for ω and N5×N5

it is trivial (since ω = Θ(0, 0) = Θ(1, 1) and N5 ×N5 = Θ(0, 1)).

Lemma 1. Every bounded distributive lattice is a d-lattice.

The proof follows immediately by Proposition 1 putting b = 0 and d = 1 in
the first case and a = 1 and c = 0 in the second one.

Lemma 2. Let L be a bounded lattice and Φ ∈ Con(L). Take S = {a∈L :
c ∧ a = 0 for some c ∈ [1]Φ}. Then S ⊆ [0]Φ.

Proof. Let a ∈ S. Then a ∧ c = 0 for some c ∈ [1]Φ. Hence, cΦ1 thus
also (c ∨ a)Φ(1 ∨ a) = 1, i.e. c ∨ a ∈ [1]Φ. It yields cΦ(c ∨ a) and 0 =
(c ∧ a)Φ((c ∨ a) ∧ a) = a proving a ∈ [0]Φ.

Theorem 1. Let L be a d-lattice and Φ ∈ Con(L). Then Φ is balanced if
and only if

[0]Φ = {a ∈ L : c ∧ a = 0 for some c ∈ [1]Φ} and
[1]Φ = {b ∈ L : d ∨ b = 1 for some d ∈ [0]Φ}.

Proof. Let L be a d-lattice and let Φ ∈ Con(L) be balanced. Define a
set S = {a ∈ L : c ∧ a = 0 for some c ∈ [1]Φ}. By Lemma 2 we have
S ⊆ [0]Φ. Conversely, let a ∈ [0]Φ. Since Φ is balanced, we have 0Θ(F )a for
F = [1]Φ. Applying the fact that Con(L) is a compactly generated lattice,
there exist elements c1, . . . , ck ∈ F such that 0[Θ(1, c1)∨ . . .∨Θ(1, ck)]a. Set
c = c1 ∧ . . . ∧ ck. Then c ≤ ci ≤ 1 whence Θ(1, ci) ⊆ Θ(1, c), i.e. 0Θ(1, c)a.
Since L is a d-lattice, it implies 0 = c ∧ a. Since c ∈ F , we have a ∈ S,
i.e. [0]Φ ⊆ S. We have shown [0]Φ = S. Dually it can be shown that
[1]Φ = {b ∈ L : d ∨ b = 1 for some d ∈ [0]Φ}.
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Conversely, let Φ ∈ Con(L), and suppose that [0]Φ, [1]Φ are described as in
Theorem 1. Set I = [0]Φ, F = [1]Φ and Ψ1 = Θ(F ), Ψ2 = Θ(I). Evidently,
[1]Ψ1 = F and [0]Ψ2 = I.

It gives immediately

[0]Φ = {a ∈ L : c ∧ a = 0 for some c ∈ F} =
= {a ∈ L : c ∧ a = 0 for some c ∈ [1]Ψ1}

thus I ⊆ [0]Ψ1 by Lemma 2. However, both Φ and Ψ1 have the 1-class F and
Ψ1 is the least congruence with this property, i.e. Ψ1 ⊆ Φ whence [0]Ψ1 ⊆ I.
We have shown that [0]Φ = I = [0]Θ(F ).

Analogously one can prove [1]Φ = [1]Θ(I), i.e. Φ is balanced.

Example 3. Consider the distributive lattice L visualized in Figure 2.
Consider the congruences Φ1 and Φ2 determined by the following partitions:

Φ1 . . . {0, a}, {p, q}, {c, 1}
Φ2 . . . {0, p}, {a, q}, {c}, {1}.

Then Φ1 is balanced since

[0]Φ1 = {0, a} = {x ∈ L : c ∧ x = 0},
[1]Φ1 = {c, 1} = {y ∈ L : a ∨ y = 1}.

On the contrary, Φ2 is not balanced since [1]Φ2 = {1} = [1]ω, whereas
[0]Φ2 6= [0]ω.
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2. Balanced algebras with two nullary operations

Definition 3. Let τ be a type containing two distinct nullary operations
denoted by 0 and 1 and let A be an algebra of type τ . A congruence
Φ ∈ Con(A) is called balanced if

[0]Φ = [0]Θ(F ) and [1]Φ = [1]Θ(I)

where, as in Definition 1, I = [0]Φ, F = [1]Φ and for M ⊆ A, Θ(M) denotes
the least congruence on A containing M × M . The algebra A is called
balanced if each Φ ∈ Con(A) is balanced. A variety V of type τ is called
balanced if every A ∈ V has this property.

Lemma 3. An algebra A with nullary operations 0 and 1 is balanced if and
only if for each Φ,Ψ ∈ Con(A) the following condition holds:

[0]Φ = [0]Ψ if and only if [1]Φ = [1]Ψ.

Proof. Of course, if Φ and Ψ are balanced and [0]Φ = [0]Ψ = I, then
[1]Φ = [1]Θ(I) = [1]Ψ and vice versa. Conversely, suppose that [0]Φ = [0]Ψ
if and only if [1]Φ = [1]Ψ for each Φ, Ψ ∈ Con(A). Then [0]Φ = I = [0]Θ(I),
thus also [1]Φ = [1]Θ(I) and similarly, [0]Φ = [0]Θ(F ) with F = [1]Φ,
i.e. every congruence on A is balanced. So A is balanced.

Example 4. The lattice N5 (see Figure 1) is balanced, since for Θ2 (of
Example 2), we have [0]Θ2 = [0]ω and [1]Θ2 = [1]ω. We have Θ2 6= ω, so it
is a nontrivial example.

The consequence of Example 1 is that every complemented lattice is bal-
anced (this yields another proof that N5 is balanced). However, this condi-
tion is not necessary. For example, every simple lattice is balanced but it
need not be complemented, see e.g. Figure 3.
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Problem. If L is a bounded distributive lattice (or a d-lattice), is it true
that L is balanced if and only if L is complemented?

Lemma 4. Let A be an algebra with nullary operations 0 and 1. If A is
balanced then for each Φ ∈ Con(A) the following property holds:

(S) [0]Φ is a singleton if and only if [1]Φ is a singleton .

Proof. Suppose, e.g., that [1]Φ = {1}. Then [1]Φ = [1]ω for the identical
congruence ω ∈ Con(A), thus, by Lemma 3, also [0]Φ = [0]ω = {0}. The
converse can be shown analogously.
For varieties, the converse statement is also valid:

Theorem 2. Let V be a variety of type τ containing two distinct nullary
operations 0 and 1. V is balanced if and only if for each A ∈ V and every
Φ ∈ Con(A) property (S) holds.

Proof. Let V satisfy condition (S), let A ∈ V and Φ, Ψ ∈ Con(A). Suppose
[1]Φ = [1]Ψ. Then clearly also [1]Φ = [1]Φ ∧Ψ, so we can assume Ψ ⊆ Φ
without loss of generality. Consider the factor algebra A/Ψ and the factor
congruence Φ/Ψ ∈ Con(A/Ψ). Since [1]Ψ = [1]Φ, the class of Φ/Ψ con-
taining the element [1]Ψ ∈ A/Ψ is a singleton. Thus, by (S), also the class
[[0]Ψ]Φ/Ψ is a singleton whence [0]Ψ = [0]Φ.

Analogously we can show that [0]Φ = [0]Ψ ⇒ [1]Φ = [1]Ψ, thus A

and hence also V is balanced, by Lemma 3. The converse assertion follows
directly by Lemma 4.

3. A characterization of balanced varieties

The following Theorem characterizes balanced varieties by a Mal’cev
condition.

Theorem 3. Let V be a variety of type τ which contains two distinct nullary
operations 0 and 1. The following conditions are equivalent:

1. V is balanced.

2. There exist – for some m, n, k and h – unary terms p1, . . . , pm, q1, . . . , qn,
(2m+1)-ary terms r1, . . . , rk and (2n+1)-ary terms s1, . . . , sh such that
the following identities hold in V:
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p1(0) = . . . = pm(0) = 1, q1(1) = . . . = qn(1) = 0, and
x = r1(p1(x), . . . , pm(x), 1, . . . , 1, x),
ri(1, . . . , 1, p1(x), . . . , pm(x), x) = ri+1(p1(x), . . . , pm(x), 1, . . . , 1, x),
i = 1, . . . , k − 1,
0 = rk(1, . . . , 1, p1(x), . . . , pm(x), x), and
x = s1(q1(x), . . . , qn(x), 0, . . . , 0, x),
sj(0, . . . , 0, q1(x), . . . , qn(x), x) = sj+1(q1(x), . . . , qn(x), 0, . . . , 0, x),
j = 1, . . . , h− 1,
1 = sh(0, . . . , 0, q1(x), . . . , qn(x), x).

3. There exist – for some m,n – unary terms p1, . . . , pm, q1, . . . , qn and
3-ary terms r1, . . . , rm, s1, . . . , sn such that the following identities hold
in V:
p1(0) = . . . = pm(0) = 1, q1(1) = . . . = qn(1) = 0, and
x = r1(p1(x), 1, x),
ri(1, pi(x), x) = ri+1(pi+1(x), 1, x), i = 1, . . . , m− 1,
0 = rm(1, pm(x), x), and
x = s1(q1(x), 0, x),
sj(0, qj(x), x) = sj+1(qj+1(x), 0, x), j = 1, . . . , n− 1,
1 = sn(0, qn(x), x).

4. There exist – for some m, n – unary terms p1, . . . , pm, q1, . . . , qn such
that

[p1(x) = 1& . . .&pm(x) = 1] ⇔ x = 0,

[q1(x) = 0& . . .&qn(x) = 0] ⇔ x = 1.

Proof. (1) ⇒ (2): Let A = FV(x) be a free algebra of V with one free
generator x, let Ψ = Θ(x, 0) ∈ Con(A) and B = [1]Ψ. Set Φ = Θ(B), i.e., Φ
is the least congruence on A having the 1-class equal to B. Then [1]Ψ = [1]Φ
thus, by (1), also [0]Ψ = [0]Φ, i.e., 0Φx. As the lattice Con(A) is compactly
generated, there exist b1, . . . , bm ∈ B such that

(∗) x[Θ(1, b1) ∨ . . . ∨Θ(1, bm)]0.

Since bi ∈ FV(x), there exist unary terms pi(x) such that bi = pi(x) for
i = 1, . . . ,m. Since bi ∈ [1]Θ(x, 0), it implies immediately

pi(0) = 1 for i = 1, . . . , m.

Applying the well-known Mal’cev scheme (see [4]) on (∗), we obtain
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x = r1(p1(x), . . . , pm(x), 1, . . . , 1, x),
rj(1, . . . , 1, p1(x), . . . , pm(x), x) = rj+1(p1(x), . . . , pm(x), 1, . . . , 1, x),

0 = rk(1, . . . , 1, p1(x), . . . , pm(x), x)

for some (2m + 1)-ary terms r1, . . . , rk and j = 1, . . . , k − 1.
If we set Ψ = Θ(x, 1) and B = [0]Ψ, then the constants 0 and 1 only

interchange their roles and we obtain the remaining identities of (2)
analogously.

(2) ⇒ (3): For i = 2, . . . ,m− 1 and j = 1, . . . , k put

rj1(u, v, x) = rj(u, p2(x), . . . , pm(x), v, 1, . . . , 1, x)
rji(u, v, x)= rj(1, . . . , 1, u, pi+1(x), . . . , pm(x), p1(x), . . . , pi−1(x), v, 1, . . . , 1, x),

where there are i−1 nullary operations 1 at the beginning and m− i nullary
operations 1 after v, and

rjm(u, v, x) = rj(1, . . . , 1, u, p1(x), . . . , pm−1(x), v, x).

Furthermore, put pji(x) = pi(x) for i = 1, . . . , m and j = 1, . . . , k.
Then we have for i = 1, . . . , m− 1 and j = 1, . . . , k:

rji(1, pji(x), x) =
= rj(1, . . . , 1, 1, pi+1(x), . . . , pm(x), p1(x), . . . , pi−1(x), pi(x), 1, . . . , 1, x) =
= rj,i+1(pj,i+1(x), 1, x)

and for j = 1, . . . , k − 1:

rjm(1, pjm(x), x) = rj(1, . . . , 1, 1, p1(x), . . . , pm−1(x), pm(x), x) =
= rj+1(p1(x), . . . , pm(x), 1, . . . , 1, x) =
= rj+1,1(pj+1,1(x), 1, x),

where the second identity follows from (2).
Furthermore we have, again by (2):

r11(p11(x), 1, x) = r1(p1(x), p2(x), . . . , pm(x), 1, 1, . . . , 1, x) = x,

rkm(1, pkm(x), x) = rk(1, . . . , 1, 1, p1(x), . . . , pm−1(x), pm(x), x) = 0.

By writing m instead of km, r1, . . . , rm instead of r11, . . . , rkm and p1, . . . , pm

instead of p11, . . . , pkm (both in lexicographic order), we obtain the first part
of (3). The second part of (3) can be shown analogously.
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(3)⇒ (4): Take the same terms pi, qj as in (3). Then pi(0) = 1, qj(1) = 0
for i = 1, . . . , m and j = 1, . . . , n.

If we suppose pi(x) = 1 for i = 1, . . . , m, then, by (3), we obtain

x = r1(p1(x), 1, x) = r1(1, 1, x) =
= r2(1, 1, x) = . . . = rk(1, 1, x) =
= rm(1, pm(x), x) = 0,

i.e., x = 0, thus we have the first implication of (4). The second one can be
shown analogously.

(4) ⇒ (1): Let A ∈ V and Φ ∈ Con(A). Suppose, e.g., [1]Φ = {1} and
take b ∈ [0]Φ. Then [b]Φ = [0]Φ and, by (4), we have in the factor algebra
A/Φ

[pi(b)]Φ = pi([b]Φ) = pi([0]Φ) = [1]Φ = {1}
whence pi(b) = 1 for i = 1, . . . , m. Applying (4) again, we conclude b = 0,
thus [0]Φ = {0}. Analogously we can show

[0]Φ = {0} ⇒ [1]Φ = {1}.

By Theorem 2 , V is balanced.

Remark. The equivalence of (2) and (3) can also be proved directly since
(3) ⇒ (2) can be seen as follows:
Take the ri in (3) and define the (2m + 1)-ary terms r̄i by

r̄i(x1, . . . , xm, y1, . . . , ym, x) = ri(xi, yi, x), i = 1, . . . ,m,

then we have

r̄i(p1(x), . . . , pm(x), 1, . . . , 1, x) = ri(pi(x), 1, x) and
r̄i(1, . . . , 1, p1(x), . . . , pm(x), x) = ri(1, pi(x), x),

and we obtain the identities of (2) with m = k and r̄i instead of ri. Similarly,
we obtain the identities of (2) with n = h and some s̄i instead of si.

Example 5. The variety of all ortholattices (L;∨,∧,⊥ , 0, 1) is balanced.
We can take m = 1 = n and p1(x) = q1(x) = x⊥. Then p1(x) = 1 if and
only if x = 0 and q1(x) = 0 if and only if x = 1.
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Example 6. Every variety of double p-algebras is balanced (a double
p-algebra is an algebra (L;∨,∧,∗ ,+ , 0, 1) of type (2, 2, 1, 1, 0, 0), where
(L;∨,∧, 0, 1) is a bounded lattice, a∗ is a pseudocomplement of a ∈ L
and a+ is a dual pseudocomplement). We can take m = 1 = n and
p1(x) = x∗, q1(x) = x+. Of course, 0∗ = 1, 1+ = 0, and x∗ = 1 ⇒ x = 0,
x+ = 0 ⇒ x = 1.
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